Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 8 (1906)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: propos de la rotation de la terre1.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

aux formes simples. Ces vues stéréoscopiques méritent d'être signalées à tous ceux qui enseignent la Cristallographie.

H.F.

12. — Das Stereoskop, seine Anwendung in den technischen Wissenschaften; über Entstehung und Konstruktion stereoskopischen Bilder. W. Manchot; 68 p., 1 Mk. 80, Veit & C°, Leipzig. — Nous signalons ce petit volume à tous ceux qui veulent examiner les bases mathématiques du stéréoscope et parvenir eux-mêmes à construire des vues stéréoscopiques. L'auteur insiste avec raison sur le parti que l'on peut tirer du stéréoscope dans les branches techniques. Toutefois, pour qu'il puisse être utilisé avec avantage, même pour des figures très compliquées, il faut que le stéréoscope puisse s'adapter à des vues de grandeur quelconque. C'est ce que l'on obtient avec l'appareil dit « stéréoscope universel » inventé par l'auteur. Son Ouvrage en donne une étude détaillée.

H. F.

(à suivre)

A propos de la rotation de la terre 1.

Lettre de M. Combebiac (Bourges).

On pensera sans doute qu'il devient sans intérêt de poursuivre une discussion qui s'égare hors du terrain scientifique. Toutefois, il n'est peut-être pas inutile, à cette occasion, d'insister encore sur la nature logique de l'idée d'explication, dont une définition très nette a été donnée par M. J. Richard²: expliquer un phénomène, c'est montrer qu'il est une conséquence d'une loi plus générale antérieurement admise.

Il résulte de cette définition qu'une explication comporte deux jugements, dont l'un consiste dans une loi et l'autre dans une affirmation que tel objet appartient à la catégorie visée par cette loi. Réduite à son cadre logique et abstraction faite de la complexité que peut affecter la définition de ses termes, une explication se présente donc sous la forme syllogistique. Selon que l'une des prémisses apparaît comme évidente et, par suite, s'efface de l'esprit, l'explication paraît résider soit dans une loi soit dans un jugement particulier; dans le cas ou les deux jugements sont évidents, le fait considéré est parfaitement clair et ne provoque aucun besoin d'explication. A la vérité, la loi à invoquer pourrait être considérée comme ne faisant pas partie intégrante de l'explication elle-même, de sorte que celle-ci se reduirait à un jugement, c'est-à-dire à un

¹ Voir L'Enseignement mathématique du 15 mars 1906, p. 150.

² Voir L'Enseignement mathématique, 8me année, pp. 150-155, 229-232, 311-313, 397-400.

classement. Exemple d'une explication : la lumière donne lieu au phénomène de l'interférence, parce que les phénomènes ondulatoires donnent lieu à des interférences et que la lumière est un

phénomène ondulatoire.

Une question en terminant: Condillac, dans la boutade rapportée par M. Andrault, n'aurait-il pas commis une erreur en attribuant à un physicien la manie d'expliquer des faits qui lui auraient été inconnus? Ce sont les philosophes qui paraissent surtout affectés de ce travers, la philosophie étant d'ailleurs essentiellement l'art de traiter de généralités qui ne correspondent à aucune application.

Lettre de M. J. Richard (Dijon).

J'hésitais à répondre à M. Andrault. Les lecteurs de l'*Enseigne-ment mathématique* sont sans doute fatigués de cette discussion. D'autre part, je ne comprenais pas très bien la lettre de M. Andrault. Je me décide cependant à faire quelques remarques.

1. Une explication, dit M. Andrault, est une relation, une force aussi. Que faut-il donc entendre par relation? Une force dit-il a deux bouts; je l'accorde, mais ces deux bouts ne sont pas symétriques. La force qu'une locomotive exerce sur les rails fait mouvoir le train et laisse la voie sensiblement immobile. La comparaison de l'aveugle et du chien ne vaut rien. Si l'aveugle et le chien tirent en sens contraire, le plus fort entraînera l'autre. Le principe de l'action et de la réaction loin d'être contraire à la notion de mouvement absolu, la suppose. Montrer cela serait facile, mais m'entraînerait un peu loin.

2. M. Andrault parle du repère de la dynamique. Voilà un repère qui ressemble au corps α , mais passons. Ce qui suit me paraît si je comprends bien, une sorte de cercle vicieux, d'une nature

fort compliquée.

Il s'agit pour M. Andrault, d'expliquer les forces contrifuges. Peut-on les expliquer par une action de milieu? non, et voici pour-quoi. Soit A un corps plongé dans un milieu, et subissant une action de la part de ce milieu. Cela veut dire que des forces sont appliquées aux différents points de la surface du corps A. Expliquer le mouvement que prend le corps A, c'est montrer que le mouvement de A est dû à ces forces. Pour écrire les équations du mouvement de A sous l'action de ces forces, il nous faut appliquer les principes de la dynamique: c'est une sorte de cercle vicieux, car ces principes supposent la notion de mouvement absolu.

D'autre part en admettant ces principes, les forces contrifuges

s'expliquent sans action de milieu.

3. Ni l'habitude ni le langage ne nous font croire au mouvement absolu. La loi de Causalité est l'origine de la notion. Si le ciel tourne autour de la terre comme un solide invariable, cette invariabilité paraît sans cause. Les astres ne sont pas reliés les uns aux autres par des barres rigides. La locomotive fait mouvoir son train par rapport au reste du monde. Elle brûle plus de charbon si le train est plus lourd. Comment pourrait-on croire que la locomotive et le train sont fixes, et que tout l'univers se déplace, bien que les astres n'aient aucun lien avec la machine?

4. La question est selon moi très nette, sans métaphysique. Le relativiste dit: Tous les repères se valent. Cette assertion est fausse, l'observation le montre. Personne ne doute sérieusement de la dynamique. Or elle suppose le mouvement absolu. Ceci admis il n'y a plus rien à dire, à moins de s'enfoncer dans le nuage épais de la métaphysique.

CHRONIQUE

Congrès des mathématiciens allemands; Stuttgart, 1906.

La réunion annuelle de l'Association allemande des mathématiciens a eu lieu cette année à Stuttgart, du 16 au 20 septembre, en même temps que le Congrès des naturalistes et médecins allemands. Elle était présidée par M. le Prof. Princhel (Munich).

Communications scientifiques. — Au nombre de 23, elles ont été réparties sur cinq séances :

1. Blumenthal (Aachen): Über die ganzen transzendenten Funktionen und den Picardschen Satz (Referat).

2. A. Pringsheim (München): Über das Fouriersche Integraltheorem.

3. G. Faber (Karlsruhe) : Über Reihen nach Legendreschen Polynomen.

4. O. Perron (München): Über die singulären Punkte auf dem Konvergenzkreise.

5. F. Harrogs (München): Über neuere Untersuchungen auf dem Gebiete der analytischen Funktionen mehrerer Variablen (Referat).

6. Р. Stäckel (Hanover) : Über Potenzreihen von mehreren Veränderlichen.

7. D. Hilbert (Göttingen): Über Wesen und Ziele der Theorie der Integralgleichungen.

8. E. Hilb (Augsburg): Über eine Erweiterung des Kleinschen Oszillationstheorem.

9. M. Krause (Dresden) : Zur Theorie der Funktionen reeller Veränderlichen.

10. P. Koebe (Göttingen): Über konforme Abbildung mehrfach zusammenhängender ebener Bereiche.