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Donc le point (%, o) n’est plus
sur la courbe.
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v =0 ne donne plus de solu-
tions en wautre que w—oc, par
conséquent la premiére base
n'est plus une tangente; par
contre w =— o« donne (n— 1)
solutions en v différentes et
différentes de v — o« ce qui
prouve que la deuxiéme base
est une tangente multiple d’or-
dre (n — 1)

»

APPLICATION DES THEORIES PRECEDENTES A LA CONSTRUCTION DES

COURBES.

Les deux théorémes précédents et leurs cas spéciaux permettent
de construire par points et par tangentes les courbes du 3¢ degré
a point double ou de la 3°classe a tangente double quand on con-
nait 5 paires d’éléments homologues dans les groupes générateurs.

Les cas spéciaux déterminent des coniques auxiliaires au moyen
desquelles on peut trouver tous les éléments des groupes et par

conséquent les courbes ¢onsidérées.

Courbes du 3° degré.

I.e groupe primitif du 3¢ degré
sera formé par un faisceau S
(e, b, ¢) et unun faisceau S, (a,,
ay, b,, by, c¢,) contenant les
rayons homologues nécessaires.

Le rayon ¢ détermine sur S,
une division A,, A,, B,, B,, C,

et le rayon C, sur S une division

A BC; celles-ci ont le point CC,

commun. Elles ont pour enve-
loppe une courbe de 2°¢ degré

Courbes de la 3° classe.

Désignons par A, B, C des
points de la 1™ division et par
A, A, B, B,, C, les points ho-
mologues nécessaires de la 2°.
Les tangentes sont avec les deux
bases :

AA:1,AA:, BB:,BB:2, CC;1 .

En considérant les points C et
C, comme sommet de deux fais-
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déterminée par les tangentes
AA,, AA,, BB,, BB, et la base ¢
de la division.

Par tout point X de ¢, on peut
mener deux tangentes arbi-
traires a cette conique. Elle dé-
terminent 2 points X, et X, sur

¢. Donc SX et S, X, puis 5, X,

ceaux et en joignant C avec les
points de la 2° base, C, avec
ceux de la 1 base, on obtient
un groupe du 3° degré dans le-
quel CC, représente 2 rayons
homologues confondus. Ce
groupe détermine une conique

sont des rayons homologues du
groupe primitif et ils détermi-
nent deux points nouveaux de la
courbe. En laissant X décrire
C, on forme 'ensemble des tan-
gentes de la conique auxiliaire

et '’ensemble des points de la’

courbe du 3° degré. (Voir fig. 1)

que 'on construit par les cing
points 1, 2, 3, 4, 5 connus.

Tout rayon passant par C, et
coupant la conique donne deux
points que l'on joint a C et qui
sont les rayons homologues du
2¢ faisceau. Les 3 rayons sont
prolongés jusqu’aux bases et
déterminent ainsi 2 nouvelles
paires de points du groupe pri-
mitif de 3° classe et par consé-
quent deux nouvelles tangentes.
Donc la courbe peut étre con-
struite par tangentes en menant
par C des rayons arbitraires qui
coupent la conique auxiliaire.

(Voir fig. 2).

Revarque. Le 2¢ faisceau ou la 2° ponctuelle forme une involu-
tion du 2° degré, qui est homographique avec 'autre faisceau ou
I'autre ponctuelle. L.a construction précédente donne une démon-
stration des théorémes suivants tres connus.

Quand le sommet d’un fais-
ceaw involutif est sur une co-
nique, les sécantes déterminées

Quand une tangente dune
conique est considérée comime
base d’une inyolution, les points
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par chaque paire de rayons
/wm()ZOgues sont concourantes.

Courbes du (n - 1) degreé.

1) Etant donné deux faisceaux
S., S, formant un groupe du
(n+41, degré, celui-ci est dé-
terminé par (2 n 4+ 1) paires de
rayons homologues fournissant
(2n -+ 1) points de la courbe en
dehors du point multiple d’or-
dre n et du point simple consi-
dérés aux sommets des deux
faisceaux.

2). Soient maintenant deux
rayons homologues a et a’ cou-
pant les deux faisceaux a coupe
S, et @’ coupé S,. Ceux-ci don-
nent deux divisions de points
du (n + 1)¢degré avec un point
homologue commun. Ces divi-
sions entrainent une courbe
auxiliaire de la n° classe dans
laquelle la base &’ est tangente
d’ordre (n — 1) tandis que a
n’est pas tangente.

3) Si wous supposons cette
courbe auxiliaire construite ;
par tous les points de @’ on peut
lui mener une tangente mais
une seule qui donne un point
sur la division @, mais par con-
tre par le point trouvé on peut
mener (n — 1) tangentes, nou-
velles qui donnent les n — 1
autres points correspondant a
celui-la, de telle sorte par les
points ainsi considérés, on peut
toujours mener lesrayons homo-

CRELIER

de coupe de chaque paire de tan-
gentes menées par deux points
homologues sont sur une méme
ligne droite.

Courbes de la (n + 1)° classe.

1) Etant donné deux divisions
de points D, et D,, formant un
groupe de la (n + 1)° classe
celle-ci est déterminée par (2 n
-+ 1) paires de points, c¢’est-a-
dire par (2 n - 1) tangentes en
dehors de la tangente multiple
d’ordre n et de la tangente sim-
ple considérées comme bases
des divisions.

2) Si maintenant nous pre-
nons deux points homologues A
A’ et que nous joignons tous les
points de D,avec A’ et tous ceux
de D, avec A nous formons deux
faisceaux en A’ et A tels qu’a
tout rayon de A’ en correspon-
dentun de A et a toutrayon de A
on en trouve n de A’. On a un
groupe de la (n -+ 1)°¢ classe
avec un rayon homologue com-
mun ; la courbe correspondante
est du n° degré, le sommet A’
est un point multiple d’ordre
n — 1, 'autre est extérieur.

3) Si nous supposons cette
courbe auxiliaire construite, a
tout rayon arbitraire issu de A
correspondent n points de coupe
avec cette courbe, c’est-a-dire
n rayons issus de A’ (réels ou
imaginaires). Le rayon par A
donne un point sur D, et les n
rayons par A’ donnent les »n
points correspondants sur D..
Ceux-cidéterminent n nouvelles
tangentes de la courbe primi-
tive de la (n 4 1)¢ classe. Par
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logues correspondants, n en S,
et un en S,. Ces rayons don-
nent des nouveaux points de la
courbe du (n+ 1)¢ degré, et par
conséquent, cette courbe peut
étre construite au moyen de la
courbe auxiliaire correspon-
dante de lan* classe.

conséquent cette courbe peut
étre construite au moyen des
points de la courbe inféricure
du n° degré.

CONSTRUCTION DE LA COURBE AUXILTAIRE.

Pour déterminer cette courbe
de n°® classe qui correspond a
un groupe de (n + 1)° classe
ayantune paire de points homo-
logues confondus, nous remar-
quons que l'on a 2 n tangentes
différentes, une d’ordre (n — 1)
et une droite non tangente.

Si maintenant, nous prenons
une quelconque des 27 tangen-
tes simples différentes, celle-ci
est coupée parles(2n—1) autres
en 2 n — 1 points. A chaque
point de la tangente d’ordre (n
— 1) correspond un seul point
de cette tangente simple et a
chaque point de celle-ci corres-
pondent (n — 1) points homo-
logues sur la tangente multiple,
car, par chaque point de la tan-
gente simple on peut mener (n
— 1) autres tangentes simples.

Il en résulte donc que la cons-
truction de la courbe de la n°
classese raménea deuxdivisions
formant un groupe de la ne
classe, donc telle qu’a tout point
de I'une correspondent (n — 1)
points de I'autre et & tout point
de cette autre un seul de la pre-
miére.

On peut également ramener
cette courbe a celle résultant
d’'un groupe de n° degré. Cette
courbe comporte le point A’
comme point multiple d’ordre
(n— 1) et enplus2n++1—1
ou 2 n autres points simples.

En joignant un quelconque
de ces points avec les 2 n — 1
autres puis ceux-ci avec A’, on
forme deux faisceaux, tels qu’a
chaque rayon du premier en
correspondent n — 1 du 2°¢ et
chaque rayon du 2°un du pre-
mier ; car tout rayon parle point
simple en question a encore
(n —1) points de coupe possible
avec la courbe.

I en résulte également que
la construction de cette courbe
se ramene a celle résultant de
deux faisceaux formant un
groupe du n® degré d’aprés les

formules précédentes appli-
quées au nombre des points
nécessaires.

'Si dans la formule

2n 4+ 1
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