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422 A. AUBE Y

Le besoin d'abréger les immenses calculs des astronomes
a en effet amené la découverte des logarithmes, que Bürgi
parait avoir faite dès 1588. Mais c'est à Neper seul qu'on
en fait honneur, car non seulement il a devancé Bürgi dans
la publication des tables, mais il en a donné du même coup
la théorie et l'usage, et il en a très bien compris la portée,
tant au point de vue arithmétique qu'au point de vue
analytique.

Bürgi avait composé vers 1603 une table d'anti-logarithmes,
longtemps inconnue. Cette table (.Arith. und Geom. Progress
Tabulen, Prag. 1620), retrouvée par Kœstner, en 1740,
contient environ 33,000 logarithmes écrits en rouge (rothe
Zahlen) à côté des nombres correspondants, écrits en noir
[schwarze Zahlen).

Il a simplement remplacé la progression 1:2: 4:... de

Chuquet, de Stifel et des autres, par la progression ^ 1 :

C10001:1,00012: 1,00013 :... variant très lentement, et en outre
très facile à construire. L'usage de cette table n'a été publié
qu'en 1856, par Giesvvald.

Appendice : Sur quelques méthodes élémentaires

DE CALCULS DES LOGARITHMES.

Neper considère deux points mobiles H, yj, sur deux droites

AO, aw, le premier se mouvant uniformément et l'autre
avec une vitesse proportionnelle à la distance variable yjw-

AH est le logarithme de la partie correspondante y?<>,. La
définition de Neper, d'ailleurs non rigoureusement justifiée,
n'est autre que la définition infinitésimale Lx f* ^ ou,

7?

mais moins directement, celle-ci Lx lim ni\/x — 1).

Ses logarithmes, que nous désignerons par la lettre N,
107

peuvent être définis par la relation N [ci) 107 L — : ils

décroissent donc quand le nombre augmente. Neper avait
surtout pour but de faciliter les calculs trigonométriques ; aussi,

pour ne pas avoir de nombres négatifs, il fait le sinus total
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(sin. 90° ou rayon) égal à l'unité (représentée par 107) et fait

croître les logarithmes à partir de celui de ce nombre.

Pour calculer sa table, il construit une progression géométrique

de cent termes, dont le premier est le sinus total et la

raison 1 — ; le dernier terme est a= 9999900,0004950.

D'après un théorème de Neper qui peut se rendre par la

formule {*) de l'exercice 8 de notre Etucle des fonc. hyp—
formule qui se déduit immédiatement de la définition
cinématique de Neper, — on trouve

100 < N (ci) < 100,00001 d'où sensiblement N (a) 100,000005

et d e 1 à
N (9999900) 100,00050000.

Une autre progression de cinquante termes dont le

premier est le sinus total, et le second 999 9900, — la raison par
suite étant 1 — lui donne

N (9995001,222927) 50.100,0005 5000.025

d'où
N (9995000)= 5001,2485387.

Il construit ensuite soixante-neuf progressions de vingt
termes chacune ; la raison est partout 1 — 5

^es termes

initiaux forment eux-mêmes une progression dont le premier

terme est le sinus total et la raison 1 — ^ Il a ainsi les

logarithmes de 1380 nombres variant de 1 à 0,5 et qui lui
permettent de calculer par approximation ceux des lignes trigo-
nométriques de 90° à 30°.

Neper indique aussi un autre genre de logarithmes plus
commode dans la pratique: ce sont ceux qui ont zéro pour
logarithme de l'unité et 1010 pour logarithme de 10. Pour
calculer ces nouveaux logarithmes, il propose trois méthodes
élémentaires, ingénieuses mais peu pratiques. Par la
première, on déterminera, au moyen de racines cinquièmes
successives de 10, les nombres dont les logarithmes sont
2 000000000, 400000000, 80000000, 16000000, 3200000,
640000, 128000, 25 600, 5 120, 1024; puis, par des extractions
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de racines carrées successives de la dernière racine obtenue,
les nombres dont les logarithmes sont 512, 256, 128, 64, 32,
'16, 8, 4, 2, 1. Par des multiplications convenables de ces
racines, on aurait les anti-logarithmes de tous les nombres h

La seconde méthode ne demande que des extractions de
racines carrées. Par exemple, pour trouver log. 5, on prendra

successivement le moyen géométrique des nombres 10,

1, dont les logarithmes sont connus, puis le moyen géométrique

entre 10 et ce moyen, etc., en moyennant toujours
deux nombres, Tun plus grand que 5 et l'autre plus petit

2.

Enfin la troisième méthode de Neper se déduit de cette
remarque que le nombre de chiffres de la puissance 1000rae de a
diminué de 1 représente log. a. Ainsi comme on a:

210000000 — IQ301029996

on peut écrire log. 2 0,30102995. Briggs a continué ce calcul

et a obtenu ainsi log. 2 avec treize décimales.
Kepler (Chil. log. Marpurg, 1624) considère un rapport

fixe et le mesure par la différence de ses termes. Tout autre
rapport a pour mesure celle du rapport fixe multipliée par le
nombre de fois que ce rapport contient le rapport type 3. Par

exemple, prenons pour rapport type la racine (230)me de

c'est-à-dire le rapport obtenu après trente extractions successives

de racines carrées, et que nous désignerons par :

1 lles rapports — et— seront mesurés par 1 — a et par 230 (1 —
1

a). Pour mesurer le rapport on en extraira des racines

1 Cette propriété des termes de la progression 1:2:4:8;... de donner par multiplication
tous les nombres entiers et celle presque identique de la progression 1 : 3 : 9 : 27 :... se voient
dans l'ouvrage cité de Stifel.

2 Euler, refaisant ce calcul, a dû extraire vingt-deux racines pour obtenir log 5 avec sept
décimales exactes.

3 Cela veut dire que si 1 — co désigne un nombre fixe dont le logarithme soit co, le loga-
n

rithme de tout nombre k, dans ce système, sera n (1 — \J k), n désignant l'exposant de la puis-
1

sance de co qui donne le nombre k, ou, comme dit Kepler, le nombre de fois que le rapport
co

est contenu dans le rapport 2-
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carrée.s successives jusqu'à la vingt-cinquième, è, qui est

sensiblement égale à — : la mesure cherchée est clone 22°
0 Cl

(1 - b).

On mesurera de même les rapports

1 îiii 1 1 1

2 ' 07% ' 0798 ' 0799 ' Ö795 ' 0,988 ' 0,969 ' 0,961 '

ce (fui donnera les logarithmes kepleriens des nombres 2, 5,

3, 11, 13, 17, 23,...
Il donne, sans démonstration suffisante, plusieurs

relations intéressantes, dont la relation (ß) de l'exercice 8 et la

première inégalité (a) de l'exercice 16, de notre article sur
les forte, hyp.

On voit que Kepler peut représenter tous les systèmes,
sauf le système neperien. Sa théorie est d'ailleurs bien
inférieure à celle de Neper, qu'il se proposait d'éclaircir.

Briggs s'est attaché, comme on sait, au calcul des
logarithmes vulgaires. Voulant que la raison de la progression
géométrique soit aussi voisine que possible de l'unité, mais
ne pouvant se donner celle-ci a priori, puisque la base était
fixée d'avance ; voulant d'autre part obtenir ses logarithmes
avec quinze décimales exactes ; il calcula d'abord la table
suivante de logarithmes vulgaires, qu'il poursuivit jusqu'à
ce qu'il ait quinze zéros après la virgule, ce qui lui permettait

de concevoir l'insertion de 1015 — 1 moyens géométriques

entre 10 et L,

4 8

(a) log 10 — 1 log |/10 0,5 log f/l0 0,25 log j/l0 0,125

et dont le cinquante-quatrième terme est1

log 1,01512781914932003235 0,0165551115123125782702.

Il remarqua que le rapport de l'excès d'une racine sur

1 Ces racines successives se déduisent les unes des autres à l?aide de diverses formules,
dont voici la plus simple : soient

^1 + A 1 -j- a, Cl + a 1 + a et Cl + a — 1 + #
on aura
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l'unité au logarithme correspondant tend vers une .limite
fixe 1 qui se trouve être le nombre

M 0,434294481903251804

De là une première méthode de calcul des logarithmes. En
effet soit à trouver log. 2 : il extrait quarante-sept fois de
suite la racine du nombre 1,024, ce qui lui donne

Jog 1,01516851605705394977 0,016731855936906239368

M 0,0151685165705394977

Multipliant par 247, il trouve

log 2 0,3010299956639111952

Pour log. 3 il part de 1,0077696 ^ ; pour log. 7, il agit
1 1

de même sur 1 + î pour log. il, sur 1 + ; en géné-
72^

rai, sur desmombres de la forme -s les facteurs des nom-7 n — 1

bres n, n — 1, n + 1 ayant leurs logarithmes connus, sauf un.
La table (a) permet de trouver autrement log. ny n étant

compris entre 1 et 10. On divise n par le nombre de la table
immédiatement inférieur, puis le quotient par le nombre qui
lui est immédiatement inférieur, etc. On ajoute ensuite les

logarithmes correspondants.
Briggs donne encore une autre méthode fondée sur l'emploi

d'une table des logarithmes des nombres 1,1,1,2, 1,9 ;

1,01,... 1,09;... l,08i, i,082,... 1,089.

Ainsi, par les divisions successives, on a :

2966,82051458 2966 .1,0S2 .1,0*7 .1,056....

d'où le logarithme du nombre proposé à l'aide de ceux de la
table.

Les logarithmes étant calculés par exemple de 10 en 10,

Briggs montre à intercaler les autres à l'aide de diverses for-

1 Si Cl 4- A 1 -f- a, on a en effet : 7^-7—— (\ + —^
1^ log (I + A) \ 2 lug (1 + a)
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mules utilisant surtout les différences secondes et cinquièmes.

Gregory a appliqué au calcul de L 10 le théorème rappelé,
exercice 15 de nos fonc. hyp. Au vingtième terme, il a trouvé
deux limites qui ont vingt-deux décimales communes. Il
indique ensuite le calcul des nombres plus petits que 100,

comme Briggs :

L (' + m) ** L-' V, + »o) *•» "»-•
Au-delà de 100, il prescrit de calculer

L [l+ i^rAy]
d'où le logarithme de A + 1, connaissant ceux de A — 2,
de A — 1 et de A.

Mercator {Log. Londres, 1668) a donné une ingénieuse
théorie qui s'appuie sur l'étude des proportions à termes
é<quidifférents,

ci ci —f- b ci —j- 2 b

ci -}- b ci -)— 2 b a -j~ 3 b

des rapports de ces rapports, de leurs rapports seconds, etc.
Par exemple, on a sensiblement:

11

Ig 11 ~f" a) — — ci)

V ^ "h

Ainsi on a :

3 15 17 19 21 23 \ß 19
5 - 17 Î9 21 23 25

d °u \/ 5 2T

Cela fait voir que les logarithmes des nombres

# à 3# 2b -f- 4a ob -j- 5a
b 3b g- a 4b -j- la ' 5 b -\- 3a

sont comme les nombres 1, -i i „ „2 3 4
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Il tire de là, par des moyens élémentaires, mais peu
rigoureux, les formules approchées

et autres analogues.
Ceci posé, il a, par des calculs faciles à restituer,

De là les logarithmes de 0,995 et de L,005, d'où, en utilisant
(a), log. 101 — log. 100, puis log. 102 — log. 101, etc.

Dans les P. T. de 1714, ont été publiées deux méthodes
intéressantes pour le calcul d'un logarithme isolé quelconque.

L'une,{due à Long est basée sur l'emploi de la table des
racines 10e, 100e, 1000e,... de 10 et de leurs neuf premières
puissances. On divise le nombre dont on cherche le
logarithme par le nombre le plus voisin de la table, puis on agit
de même sur le quotient, et ainsi de suite. On n'a plus qu'à
ajouter les logarithmes obtenus.

Le second procédé est de Taylor qui l'expose en l'appliquant

au logarithme de 2. Posons

A 7 log 2 — 2 — log 1,28 0
> d'où log 2 0,28

B — 3 log 2 — 1 log 0,8 < 0 d'où log 2 < 0,33
C =r A -f- B 10 log 2 — 3 log 1,024 y> 0 d'où log 2 0,3

D B + 9C 93 log 2 — 28 log 0,990352031429 < 0

d'où log 2 < 0,30107

E C + 2D 169 log 2 — 59 log 1,004336277664 > 0

d'où log 2 0,301020

N L + M 325147 log 2 — 97879 log 1,000000364511

d'où log 2 > 0,3010299956635

O M + 18N 6107016 log 2 — 1838336 log 0,999999764687

d'où log 2 < 0,3010299956640

On a ainsi deux valeurs très rapprochées de log. 2 et on

1005461 9965774 995459 1001823

d'où, par des interpolations linéaires

1005461'6368 10 et 9954ô9,36S9 _ 0.1
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peut en tirer une valeur très exacte en remarquant que si x
est très petit on a sensiblement

(i + x)z — 1 + zx d'où sensiblement x log (1 — z) + 2 log (1 -f- ,r) — 0.

Posant en conséquence

3645110 + 235313 N 0

on trouve la valeur cle log. 2 avec quinze décimales exactes.
Dodson [anti-log, Canon, 1742) donne avec onze décimales

les 100 000 moyens géométriques insérés entre 10 et 1, avec
leurs logarithmes vulgaires, c'est-à-dire la table désignée
ci-dessous :

1 .cl — 1,000023026116 : a2 : a3 : : 10

0 a := 0,000001 2a 3a 1

Euler, dans son Alg. enseigne ainsi à trouver la valeur de

log. 2. 11 s'agit de résoudre l'équation 10* 2. Or on a :

2* > '10 > 2S d'où A
S 4

La fraction ~ formée en additionnant les numérateurs et
b

les dénominateurs de ces deux limites de x, est comprise
entre elles 1

: c'est donc une nouvelle approximation. Or

1 Cette remarque, que les Anciens paraissent avoir connue et utilisée, se voit pour la
première fois chez Chuquet (1. cit.), qui l'appelle « la rigle des moyens » et l'emploie ainsi pour
« lextraction des racines imparfaictes. »

Soit / (5 ; l'essai direct donne 2 < C6~< 3. Essayons successivement 2 2
}

9 -i
1 122 — 2 — 2 — nous trouvons :
5 3 3

2 | 2 1

2
d'où le moyen 2 — qui après essai, se trouve être trop petit. Moyennons les deux limites

12 3
2 _ et; 2 — il vient 2 — valeur trop petite. « Et par ceste manière peulx procéder en

adjoustant le moins avec le plus ou le plus avec le moins Jusques a ce que Ion sapproche bien
près de 6 ung petit plus ou ung petit moins et tant qu'il souffise. Et doit on scavoir que
tant plus Ion continueroit par ceste manie tant plus près de 6 Ion sapprocheroit mais
Jamais on ne lattaindroit pcisemet. »

Estienne de la Boche, dans son Arismètique (Lyon, 1520) emploie également ce procédé,
qu'il appelle par mêdiacion.

On appelle aujourd'hui mèdiantes le genre de moyennes dont il vient d'être parlé, et leur
étude a mené à la connaissance de diverses suites importantes étudiées par Fa rev, Cauchy,
Brocot, Halphen, etc.
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on a :

102 < 27 donc i > x > ~

De même, on trouve :

1^34^ 3 7 3 28 ^
3 31 ^

3
x ïô ' Î3 > ^> 10 ' 23 ^ X > Î0 ' *•* 93 ^ X ^ 10 ' 103 <^X '

La relation > x > ^ donne l'approximation — qui se

28 87
trouve être trop petite. Combinons-la avec ^ il vient ^ *

59 146
trop forte. Combinons cette dernière avec — il vient; et1 196 48o

ainsi de suite.
Cette méthode serait certainement la moins pratique de

toutes celles qu'on a imaginées dans ce but.
La méthode de Briggs, décrite plus haut a été modifiée

heureusement par Flower (New way of making log. 1771.) Le
diviseur est formé de l'ensemble des quatre premiers chiffres,
en ajoutant 1, ce qui fournit un quotient de la forme 0,9"
ab... On multiplie ce quotient par 1,0" a, a étant le complément

à 9 de a. On répète la même opération sur le produit
et on continue jusqu'à ce que la première moitié des chiffres
du produit soit composée de 9: on écrit, immédiatement les
derniers facteurs, en prenant les compléments des derniers
chiffres. Ainsi par exemple

2966,82051456
=q,943950608695

le quotient multiplié par 1,046, donne 0,96502457315 ; ce
produit, multiplié par 1,064, donne 0,9702457116 ; celui-ci, multiplié

par 1,079, donne 0,982457107; ce dernier résultat fournit

les facteurs

i,087 1,095 l,0lo4 l,0n2 1,0128 1,0189 1,0U2 ;

d'où

log 2966,8... m log 2967 — (log 1,046 + log 1064 -f
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Cette méthode a reçu plusieurs perfectionnements de

détails de Lefort, Fedor Thoman, Burnier, Gray et flopp.

Byrne Dual log.1863) a proposé de la modifier en remplaçant

dans la table, les logarithmes de 1,2,1,3,... 1,02, 1,03,...

par ceux de 1,1®, 1,13,... 1,01®, 1,018,... ce qui réduit la
construction de la table au calcul des logarithmes de 1,1, 1,01,

1,001,...
Garnier dans son Alg. (Paris, 1800), apprend à développer

les logarithmes en fractions continues. Soit à trouver log. 2 ;

on a 10* 2, d'où x < 1. Posons - ; on aura 2a — 10,

d'où « 34-/3 et 2/3 1,25. Donc ß < 1 ; posons ß =i
on aura de la même manière

y 3 4 S,1,25^ 1,024 d'où <1 <.1 ;

1

posons donc $ — — ce qui donnera

> 125
s 9 + Ç, 1,0245 1,0097

1,16 j y-±

{=1. + J.0097« ,4^4 «-004S

Il arrive finalement à ce résultat

'<«2 4 ST 5T hh V Si
Enfin nous signalerons la méthode de Namur (Tables de log.

Bruxelles, 1877), qui prescrit de multiplier le nombre dont
on cherche le logarithme par un facteur convenable, de
manière que le produit soit voisin de 1 000000M : les différences

des logarithmes sont, aux environs de ce nombre, de la
forme 100..., ce qui rend l'interpolation très aisée.

Nous aurions voulu faire encore ressortir davantage
l'importance de l'admirable découverte cle Neper, en signalant
l'influence qu'elle eut sur les progrès du calcul, de la
trigonométrie, de la cinématique, de l'algèbre ; sur l'extension
de celle-ci aux quantités transcendantes; ainsi que sur la
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découverte du calcul des fonctions et du calcul infinitésimal.
Mais cela eût dépassé notre but, et nous nous contenterons
de rappeler, en nous y associant, Tune des épigraphes
placées en tête de la Mirifici Descriptio :

« Hic liber est minimus, si spectes verba ; sed usum
Si spectes, Lector, maximus hic liber est.

Disce ; scies parvo tantum debere libello
Te, quantum magnis mille voluminibus. Andreas Junius. »

A. Aubry (Beaugency, Loiret).

LA MATHÉMATIQUE PURE ET L'APPROXIMATION

1. — Dans l'évolution actuelle de l'enseignement des
sciences, on constate un mouvement bien marqué vers l'utilité.

Trop longtemps on a dit que le seul but des mathématiques

était de former le raisonnement; 011 les a enseignées
comme s'il ne s'agissait que de créer de futurs mathématiciens.

Aujourd'hui, on veut faire voir aux élèves que les
sciences exactes ont de nombreuses applications pratiques,
que la mathématique pure n'est pas seulement une excellente
gymnastique de l'esprit, un admirable modèle de pensée
logique, mais encore une interprétation approchée et
commode de la réalité. Il n'est guère besoin de rappeler ici les
nombreux écrits de M. Klein 1 en Allemagne, de M. Perry1
en Angleterre et de beaucoup d'autres auteurs2. Signalons
toutefois, parmi les ouvrages français, les volumes très
suggestifs de M. Laisant, La Mathématique ; Philosophie-En-

1 Voir l'aperçu qu'en donne M. Marotte dans sa note sur L'évolution actuelle de l'enseignement

mathématique en Angleterre et en Allemagne, publiée dans le Bull, des sciences math, de
1905, p. 281-306.

a Consulter les divers volumes de L'Enseignement Mathématique.
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