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ETUDE ELEMENTAIRE DES FONCTIONS
HYPERBOLIQUES

AvANT PROPOS. — Les théories mathématiques s’éclairent
singuliérement quand on les examine d’un point de vue conve-
nablement élevé. Toutefois les méthodes analytiques moder-
nes, assimilables a des instruments d’une haute perfection,
demandent comme tels, une grande dextérité dans leur ma-
niement. D'un autre coté, l'esprit n’est complétement satisfait
que quand il est parvenu a établir ces mémes théories, en
n’utilisant que les propriétés strictement nécessaires a leur
démonstration. Aussi les exemples sont nombreux, de véri-
tés mathématiques trouvées d’abord comme corollaires de
propriétés trés générales et démontrées ensuite par leursau-
teurs d’'une maniére tout élémentaire

Si I'habitude de voir de haut élargit 'esprit et prépare les
découvertes, voir de pres ne lui est pas moins nécessaire, en
Paccoutumant a s’assurer a mesure de l'entiére rigueur de
chaque nouvelle déduction. En outre, bien des théories,
méme tres élémentaires, qu’on croyait comprendre, vues de
plus pres, doivent étre reprises a partir du début, et souvent
méme par une autre voie. Ces considérations témoignent de
'utilité de monographies n’empruntant leurs principes qu’au
sujet lui-méme, et d’ailleurs exposées aussi élémentairement
et aussi compléetement que possible.

La théorie des fonctions exponentielles, beaucoup moins
utile dans les applications que celle des fonctions circulai-
res, a en théorie une valeur égale; et, 4 ce pointde vue, elle
demanderait d'étre traitée de méme d'une maniére élémen-
taire. Or elle peut Pétre d’'une maniére on ne saurait plus
simple, par la méthode archimédienne des doubles inégalités
de plus en plus approchées, en partant de la seule connais-
sance de cette inégalité, due également & Archimede.
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1+ x)» >1+4 nx, (n,ent. pos., x> —1)

et de laquelle on déduit aisément la relation fondamentale

> 4+zm>14 mz, (m,rat.et>l,——’%<qz<1>.

1 — mz m

Cette théorie ainsi exposée, est une introduction naturelle
a la théorie des séries et a celle du calcul infinitésimal, au
lieu d’en étre un simple corollaire. On obtient ainsi, — direc-
tement et beaucoup plus rapidement que par les méthodes gé-
nérales — : une définition claire et rigoureuse des symboles
e* et Lx ; nombre d’exercices sur les approximations algé-
briques et numériques ; la démonstration trés simple de di-
versthéorémesouformulesdeNeper, Briggs, Kepler, Gregory,
Mercator, Halley, Stirling, Euler, Lagrange, de Stainville,
Cauchy, Realis, Underfinger, Catalan, Schlomilch, Laisant,
Cesaro, etc. ; enfin les séries logarithmiques, exponentielles
et binomiales. Il y a lieu de remarquer que pour ces dernié-
res, les conditions de convergence, si délicates a étudier avec
les méthodes artificielles ordinaires s’introduisent ici, pour
ainsi dire d’elles-mémes.

1. Désignons par m un nombre rationnel supérieur a I'unité,

, 1 1
et par z un nombre quelconque compris entre — — et - ; on
m m
a (P. M. 1900, p. 406) :
’ 1
(1) iy >1+zm>14+ mz.
2. Les deux expressions suivanfes, ouon a:— m<x
< m,

m m — x

(a) (m,x)z("““x)m, 8 (_m,x):( m )"‘,

tendent vers une méme limite & mesure que mtend vers l'in-
fini. En effet poura > 1, ona:

+ X\ =7
<1— >>1_m'

am
d’ou, en élevant a la puissance m et dédoublant.

(ma,x) > (m,x), (—ma,x)<(—m,x).
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Si m augmente constamment, la valeur de () augmente de

plus en plus, tandis que celle de (8) diminue. D’ailleurs leur
rapporf (1 — 5”_2>m toujours inférieur a 1, est, d’apres (1),

m3

4 . ’ . Y .%'2 b ot ’
toujours supérieur & 1 — =, et tend donc vers I'unité.

Par suite, en appelant /() la limite commune de (m, x) et de
(— m, x), on a: ,
(m, x) < flx) < (—m,2);

et, si on appelle e lalimite particuliére correspondanta x=1,
c’est-a-dire sion pose /(1) =e,

(2) e = lim (m, 1) = lim (— m, 1)
(3) (m,1) <e < (—m,1

Cette limite est d’ailleurs finie, car pour m = 2, (2) par
exemple, devient 2,25 < e < 4.

3. Les quantités (m, x), (m, y), (m, x + y) tendant en méme
temps vers des limites finies, on peut poser

flx) fly) ™ (m,x) (m,y) ‘m xy ]m
fety = ™ oty — 0 [1+m(m+x+y)

La partie entre crochets a une valeur supérieure a 1, et,
d’apres (1), inférieure aun nombre qui tend vers’unité, quand
m tend vers l'infini. On peut donc écrire

@ fla) ) = fle + )
d’ou aisément
O=1. felfi—a=1. flr=rue), ((2)'=/1e

et enfin

ce qui donne, en faisant x = 1, et pour toute valeur ration-
nelle positive ou négative de £.

¢f — f(E) = lim (m, £)
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4. Cette relation n'a de sens, au point de vue du calcul ha-
bituel, que si ¢ est commensurable. C’est pourquoi il vaut
mieux définir le symbole ¢* comme désignant la fonction f'(x)
= lim (m, x); cette fonction, appelée exponentielle de x dé-
finit donc un ensemble d’opérations en nombre infini, lequel
peut se réduire en exponentiation positive et une négative,
si x est rationnel.

Ainsi, x désignantunnombre quelconque, on poserad’apreés

cette définition

(5) e — lim (m, x) = lim (— m, x)
(6) (m, x) < ex < (—m,x)
(7) eCe¥ — TV

La relation (5) a été remarquée, pour la premiere fois, par
Halley (P. T. 1695) et la relation (6) par J. de Stainville (Meél.
d Anal. Paris 1815). Les relations (4) et (7) font voir que la
fonction e*est toujours croissante et continue.

5. Posons ¢* = y; x est dit le logarithme népérien de y,
ce qui s’indique par la notation x = Ly. De la les relations

8) IL1=0, Le=1, L(ab)=La + Lb, L(am) = mLa.

6. De (6) on tire a fortiori, a cause de (1)

1_x>e‘x>1+x (—1 <z <1
ou, si I'on veut, avec Cauchy (anal. alg. Paris, 1821).
(9) et S 1k, 0 <x<<1

Cor. 1. Faisons x — Ly, il viendra cette relation de Neper
(Mir. log. constr. Edinburg, 1617),

(10) ' y—1>1y> ‘73—.
ijui devient, en changeant y en 1 4 z et en 1 + i- ,

(11) Z>L(1+.z);>1—_:*_'—‘

L]
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~ L s , 1 B

II. De (9) on tire, en changeant x en % '

(13) m(\/;— ’l) >ax >m <[ J— \/e—x>

7. Posons pour abréger

ex + e=x _ex—ex —S;x
Co="T  Sa="T—  Ta=
Onaurzi
) 1 se—28%CE Ce=c sl
Gz —8x—1, Sx—QS—‘Z—Ci’ Cgc__.CQ—l-—b2
_—:2(‘2—';—1:262 41

Or la relation (9) donne
ex + e-x > 2 dou Cx>1, Sx>28§>21 §>lx

4T +sx>8'r§+2s”_”

2

ol ]

Car ceite derniére inégalité se réduit a C? % > 1. On peut

ainsi écrire :

mex——1>Sx>§<4ch2—+Sx>>2'[‘%>1—e—x.

X x X x
Changeons x en 5., . 3, 5.+

vement p'ar i, 4, 8, 16,...; les deux membres extrémes ten-
dront vers la limite commune x, a cause de (13). Il en sera de
méme des seconds, troisiémes et quatriéemes membres. Or,
comme on ’a vu plus haut, les seconds diminuent constam-
ment ainsi que les troisiémes, tandis que les quatrlemes aug-
mentent. On peut donc écrire:

et multiplions respecti-

(14) oS> ;; ('*T 5+ Sx) > > 2T~-3—§- > T .

8. Changeons x en L (z 4+ \/z® + 1), dans lé premier et
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. e 2 Z .
le troisiéme membres de (14), et en L 2:': - dans le troi-
siéme et le cinquiéme ; il viendra

2 2
(15) e P VAR 2> 2> 0)
Cor. 1. Prenons les inverses, il viendra

2 —z _ 1 ‘d

2 + =~ > e > + — 3 4 (1 )

et de la, en retranchant,
bz | .

(16) .4__*:;2 > Sz > z (id)

N ’ . ’ ‘ 4
d’ou, en élevant au carré et changeant z en 3,

8z a g7
(17) 1+<15 2>>Cz>1+—2— (4> z>0)
-_ 2
Ces deux derniéeres relations conduisent aux suivantes :
18 T (16 — &)= (2 0
(18) #2002 556 06 T e >=>0)
Mo) Iim e, bt ! mbe—t, i 1
_ x - xt 2 : x

II. Les 1dentités

2’ x 1 1 1 x &
— —C—=, m—m— —— = = Tx CEr_ (1 —T¢t-)=C
Sr=2gCs Z——F=3 " 2( 2) x
27T —
, 2
conduisent, en changeant successivementx €N 39705 16"

a ces formules

. Sa x x x
(20) = =C¢zC7C3g
1 1 1% 1.z 1., x
(21) = z—z atilztsglgt-

Tax
. x® Cx e X e X e X
e2) = <1—-1 2><1fr Z)(l I 8).

dont les deux: premiéres sont bien connues (voir, par exem-
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ple 'Essai de M. Laisant, Paris 1873). On en trouvera d’au-
tres du méme genre, en traitant de méme les identités.

2 \ 2
(Cx + Sx) (Cx — Sx) == C?x — S% , S*x — <2S -g:-) = (282 _.7"2_) ,

2. __9qz ¥ __ g X
Sz 282._.2(3.7082,

1 1
Tx—Tf: , —_—— = —

1
Sy — 2SxTx °’ 2 Cx x Tx Sx’ '

252

bO| &
[ 3]

I11. A cause dela premiére inégalité (16), de la seconde (17)
et de la suivante -

M4+a(l4+b..>1+a+b+ ...,
les formules (20), (21), (22) donnent celles-ci

P 23
‘”+Z+1‘6 +...>Sx>x+-6-
(23)

x> Tx > j_ x—‘%y:w—l—x—;——...
$C 4

et la derniére, cette autre trés approchée,

(25) . —_— = Cx .

Ces relations sont utiles dansle calcul des expressions hy-
perboliques Sx, Cx, Tx.

9.P0$ons
?(‘)=1+Ta+§k_2—1a2—{- +-]1i l‘_lli_'_l 3
1P(/f)=1+Ta+—?ké—1a2+ +% ]{+Z_1“n’
X('{):i—“'iib+—1-/c_2'_1b2— ——f— §n++1,2n+1
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ilviendra(l4-a) g (B)=9¢(k+1);et,si b <n,0<a<1, 0L
b <1, T
'\P(ﬁ)>;(1‘—a)?(ﬁ'+‘1) x()>(1—l—b) (k+1) .
Faisant k.—__ 0,1,2,... n—1et multlplnnt il vient, en po-
santa:%, b:?i%,

x?

(«) (n,x):l-{-—{%_{_(i_% Lo+
” (- ) QRENEY
8) (—nx)>1+1,+(1+1)2,+ o

| (1»-}- ;1;) ...(1{-”';1

x2

() (—2n, Ta)>1 +(+ [ F

2n — x2'l+ 1

. B (1+1) <+2n+1 @n £ 1

Si x est positif, («) et (8) donnent

(nx)<1+11+ D < (=)

d’ou
(26) ex:lim(l—]—%—{- +x” (n=co)
. 1 1 .
(27) e = lim (1 + T + ... + o (id.)

Le plmmpe de cette demonstlatlon est di a de Stainville
(1. cit.) .

10. La formule (26) a lieu également pour x négatif. En
\ effet, d’aprés («) et (8), la Valeur de I'expression

(
“ x2n
| ' 2[1+2'+4'+ +(2n)]

| est comprise entre celles des deux suivantes

(2n, x) 4 (25— x) “et (2n, x) 4+ (— 2n, x)
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qui tendent, 'une et l'autre, vers la limite e* 4 ¢* — 2Cx,
quand n tend vers oo. On a donc:

. x2n .
(28) | Cx_—_hm‘[ —}—2' + . +(2n) ] (n= o)
d’ou
B 2 2n
(29) e~z = lim | 1 _.‘;f 4+ ;—CT et (;n)!] (id.)
' T 4. xdn :

11. De (12), on tire, en changeant successivement z en

x x x
n—zx n—2x T n—i(n—1)x

’ ’

X
n
et additionnant, cette relation

k=n » n-1
x 1 1 x 2 1
;2/5:1 /lx>L1——x>7_z 0 kx’

d’ou, en développant les quantités sous les signes 3, et som-
mant a I'aide de la formule de Roberval?,

1 >1P+2P+3P-|-...-|-np 1

1

P+1 nP+1
il vient :
® /1 1 1 * ANk ok
_ — k —_ = ) —
21(n+/c)x>L1 x>21<1 n> k
Les deux membres extrémes different de
(1 1 Nk,
2, z+'z[1—<1—;>]€x">
Sl | 1 k 2 x
e O x E— 2
21[n+/f <1‘ 1—|_n>:|x T onl—=x

1 Cette .formule se déduit de la suivante

np+1~— (n—1)

n—(n—1)

p+1
tp+1) np‘>

>@p+1)n—1F

en y faisant successivement n =1,2, 3, ... n, additionnant et réduisant.
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et par suite ils tendent a se confondre quand n tend vers co.

Or ils comprennent toujours la série S — terme a terme,

1 1 1 1 1\#
z+z>z>z(1——>

car on a
n

On peut ainsi poser

1 \* xk
31 = £
o . o<e<
et de la .
1 1 ® xk ® x2k
L(1+x)—L1—x_L1——x2_217:_212_/i—
ou bien
2 2
(32) L(1—{—x):lim<’1—c—% +...—%) M=o, 0 < a<1)

Cauchy (Rés. Anal. Turin, 1835) et Schlomilch (Handb. der
Anal. lena, 1873) ont démontré cette formule par des moyens
analogues, mais leur marche est beaucoup moins élémen-
taire.

Les deux formules (31) et (32) peuvent se condenser en
une seule, qu'on appelle formule de Mercator (Log. Londres,
1668) et qui est

(33) L(1+x)="’%—%+‘f;_... (2 < 1)
Cor. 1. Les formules (31) et (32) donnent celle-ci, remar-
quée d’abord par Gregory (Ex. geom. Londres, 1668.)
L 14+ x

(34) -

E x3 e

=)

et qui pour x = Ty, devient
T Ts
(39) y = —11 —y + 24

II. « désignant un nombre quelconquie, on a, si 22 < 1,

x x? r  x® 2
(EoTil) ety
1+ o)=Y =g 4 <1 2 Lo\ 2 .
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Le coefficient de £7, dansle dernier membre, doit étre une
fonction entiére de «, du degré n; or ce coeflicient devant
se réduire a zéro, pour les valeurs 0, 1,2, 3,... n — 1, de
Iexposant «, et al'unité, pour « = n, il se confondra avec

a + 1) ... (& —~n 4 1)

n!

On a donc la formule du binome,

(36) (1+x)°‘:1+§1’fx+T — &+ .. (2 < 1)

Cette démonstration est due a Gauchy (l. cit.).

Exercices?

1. Soient z un nombre positif quelconque et » un nombre
rationnel tendant vers zéro; on a: ,

' B B )
¢ ‘U‘ » mzp' u.zp'

z

En demgnant par L z la limite commune, on peut la défi-
n1r par la relation -

m m .
‘,_llmm<\/——- >_11mm(fl—\/l m——oo).
‘ (Briggs)
De 14, la relation
m nte

@ ) s e (/1) e

. En déduire la relation (10) et la troisiém‘e des relations (8).‘:

- 2.1° De la définition de e®, déduire les formules suivan-
tes : ~

2.52 692> (14;17.2 & (30.332 \8
376/ \72.10/ \15.18/ \31.34

1 Voir J. S. 1899-1900, Th de la f. logj P ‘M. 1899, Rem. sur la série log. ; P. M. 1900,
Sur une id. d’Euler.

L’Enseignement mathém., 8¢ année; 1906. - 23
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g (Ph6.8\* (9%14.16\8 /172 30.32)10
e =%\72) \s10.152) \ 1618312

2,5< , <3 , <n+ ’[>h << nn+1

n en—1
) n
e —=lim ——
(/n! (n = o) (Unferdinger)
n
4
lim VirtNin+2) .. 20 = . (id.) (Laisant)
n e
4 8 27
_1_~VC2,1 §/ Ca,2 1/ Cs,4 ‘/Cﬁl C21‘/C93 Cs,3 }/Cer,9.Cis 0
e 2 2 2 3 3 3
4 8
2 4 /6.8 \/10.12.14.16
e — — — . Catal
1\/3 \/5.7 9.11.13.15 (CGatalan)

' 1 2 n '
etz = lim <1_“L‘f£) (1“'_"—3—6-) (1 "_l'__*-£> (n == o)
. n 2n nn

Vemtn(5) () (123)

'2° Dans un vase de contenance connue et plein de vin, on
falt tomber un filet d’eau d’un débit connu. Combien restera-
t-il de vin aprés un temps donné, en supposant que le mé-
lange se fait instantanément ? (Terquem )

3° Quelle est la valeur de l'intérét composé d’une somme

donnée, placée pendant un temps donnéa un taux également
connu ; les intéréts se capitalisant & chaque fraction infinité-
simale du temps ? (Jacques Bernoulli.)
- 4° Quel doit étre le profil générateur d’une tour ronde
pleine, chargée a sa partie supérieure d'un poids P, formée
d’une matiére de densité D, et telle que, dans une section ho-
rizontale quelconque, la pression verticale par unité de sur-
face soit constante ? (Poncelet.)

3. Démontrer les relations :

x X

Clim Z =, lim Lf\/x:o:. lim \/x: 1 (2 = oo)
Lx - o
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limi-—_-i ,  limaxx =1 (x =0)
xx

4. Si la somme x + y + ... tend vers une limite finie, il en
est de méme du produit (1 + x) (1 + v)... (Gauchy). Consé-
quence de (9.)

5. L’équation e* 4 x = 0 n’a aucune racine réelle. (id.)

ex .
6. La fonction — passe par un maximun pour x = m. (id.)

On appule sur la relation.

12 h
mn , + -
o > ¢ (l— m>
7. La fonction \/x passe par un maximum pour x = e
(Euler). On part de la relation.

. h
e ¢ >1+x7
8.0n a
- - h x + h h : . ,
(a\‘ ‘ ; > IJ p > i—ﬁ (l\eper)
x4 (1 4+ x) _ x ;
B - 5 - Lty 77 (Kepler]
a — a — mbd

(7) ea > ea ad > et . maLm > K_—in— > mb Lm (Realis)

m__ m at..+c
lim (a‘/z-_{i-— -—’I_—Cc‘/? ) = 4 ‘/ a® ... y¢  (m = o) (Laisant)

1 1 1 1

x4+ a2t + 2t 2%+ . > L ,1_1_T>x+-1‘3+x9+x27+

9. Substituer dans (11).les valeurs

1 2 1 4 21 -+ 3
n—1" n4+ 1" 2—1" n?—3n—2" nn4 28’

=
el ’

1
n

1430 - bnt — 4n% 1
(n* — 64) (n* —.25) (n? — 49) " n®(n* — &)
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z —=secw — 1, —sin’w, — cos20 . tgw, — tgtw,
et en dedmre des formules utlhsables pour le calcul des lo-

gamthmes et des lignes trigonométriques.
10. Dans (11) faisons successivement

1 1 1 .
ST kn T kn4+1" 7 kn+ A — 17
en tirer deux limites de L —n— Apprécier Perreur com-

. . n—+1
mise en prenant une de ces limites pour la valeur de L _: ,

(Gauchy).

11. Méme question en substituant.

2k + n 2k 4+ 3n n2/f—1—/m—n2
2 " kE " n Tk —np®

S=n
12. Des relations de 'exercice 10, déduire la quadrature
de I'hyperbole xy =1 (Schlomilch).
13. Tirer le méme résultat de la relation («) de I'exercice 1.
14. Sur une droite AOLN, prenons AO égalal’unité, et fai-
sons mouvoir le point L uniformément, et le pointN demaniére
que OL soit égal a LL (AN). Si la vitesse du premier point est
représentée par AO, celle du second l'est par AN (Neper.)

15. Considéronsla série dontles deux premiers termes sont
22 —1 ot 2 5o ] -

2z Tz 10
moyen géométrique et moyen harmonique des deux qui le
précédent immédiatement. Les termes de la suite oscillent
autour d’une limite finie, L z, dont ils se rapprochent de ma-
niere a en différer aussi peu qu’on veut. (Gregory.)

16. 1° De (14) déduire la relation suivante :

et chacun des suivants alternativement

22— 1 z —1
: 2 .
> Lz > P

1
m 4 1\m 3 m -+ \m—~
< m ) > ¢ ><m-—1

2° De (15) tirer la'suivante:

(Kepler et Gregory)

(o)

et de la

- r — 1 — 1
e ]:'].m ?_7—1 po— §—_ - - ’ ((l::()) ’
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dé“(M), celle-ci:

1 12m? 4+ 12m + 1 m+1_ - 2
(ﬁ} +2m+2>6m (m 4+ 1) (2m +.1 )>L m ,>2m+1’
et de la
i = 2m 41 2m

NS (1) > T e>(mt) > g0 ¢

2m + 2

17. De (16), (17) et (23), déduire cette inégalité

-8 xt

e>1+x+ % +“4W4.

18. De (f8), exercice 16, on déduit

-1>0

@ o> (s

d’ou, en appelant 3 la série obtenue en faisant m — 1, 2, 3,.
dans le second membre, et posant e!—% = ¢, nombre d’ail-

leurs fini puisqu’on a:
11

1
F>E>0,  dov  e>c>el?;

1

1
—n4 — n+-5-

12nn

; 1
8) ce-nn T3 < nl<ce

oliy 246 2n 1!
CETITE I —1V o

La formule () est ce qu’on appelle la formule de Stirling.
La démonstration indiquée est celle de M. Césaro (M. 1881),
sauf l'origine de la relation ().

19. Dans (a), exercice 16, faire

On tire de la

1 2 '
z = ;1 s T ,,1 — R ’
secew, LA ® 5 +n 1 n*—1" (n4+12n—2)°

1 D’'od; & cause de la formule de Wallis, ¢ = Varm ..
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et faire servir les relations trouvées au calcul des logarith-
mes .

20. Représentons par DF (x) la limite du rapport de l'ac-
croissement F (x == &) — F (z) de lafonction F (z), a I'accrois-
sement == & de la variable, limite dont 'existence n’est d’ail-
leurs pas certaine a priori. Onaura, a cause de () et (y), exer-
cice 8, | )

' - Dex — ex | Dm# — m*Lm , DLac_—_:1

21. Considérons les valeurs F (a), F (@ + &), F (e + 2 A),...

F(a + nh = 0), de la fonction F (x), et désignons par la no-

tation faF (x) dx, la limite, fixe ou indéterminée vers laquelle
tend l; somme » |
hF (a) + hF (a 4+ k) 4 ... 4 RF (b)
a mesure que & tend vers zéro, ou que n tend vers l'infini.
1° De (11) et de (12) on tirera, en faisant z = % et effectu-

ant la sommation,

b .
fd—@:Lé, d’ou ‘/'C—L—ﬂ-::1
, x a xX

a - 1
ensuite
(x + &) [L(x + k) — 1} — x (Le — 1) > hLx > «(Lx — 1)
w (# — k) [L{x — k) — 1]

b
fnxdx.—_- b(Lb — 1) — a(La — 1)
;

ou simplement

- fodxvz % (La — 1) .

1 Par exemple, la derniére transformation indiquée montre qu’en posant

=142 4
n4+13n—2) n(nt—3)’
16 . i f 3.
I’erreur est inférieure a mb . Ainsi, connaissant L7,L8 et L10, on déduira de la sorte

L11 avec huit décimales exactes. Le degré- d’approximation croit rapidement avec n.
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-2 Les identités .

5 ,
L('l—{-;)- x—l——h—i' I"x——‘l.
L(;;-}—kl'z)—-—LL:v:L["l"l"T]’ me_gx—f'i

—“L(i 2h
i + 2t 4+ xh — h — 1
_ 1 h? | 2hx
conduisent a : L - '
dx ) dx x +1 xdx \/
et P ; i P VO et - ———_—:’.—-:L .2+1.
xLx—LLx’ fxz——-"l L\/x———i’f‘/xzil S

3° Dans («), exercice 16, faisons

x—|—h—|—;/x+k +1, ‘ o
x+at 1 ’

on aura a fortiori

h h I
m > Lz > ‘/( + k : d’oun f‘/xl 1 = L {:x: +‘/x2 + /1)
4° De (11) on tire

(x 4+ k)2 [2L (x 4 k) — 1] — a? (2La — 1) > thaLa > a* (2Lx — 1) —
(x — h)? 2L (x — k) — 1] I

dou . . o | , .
. - xa
foxdx = % (2La — 1)
5° On a: |
' b+h —
" hat 4 hae+h + ... + kab:u
3 o ah — 1
h
d’ou, a cause de (y), exercice 8,
b
.. e/ 1’ ) . ) .
faxdx:—-, ;fexdx::eb——i.
La

0

Le principe de cette derniére démonstration est dii a Cau-
chy. Par des moyens analogues, Schlomilch a donné la valeur
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dx . A ,
de [ - T On pourrait en donner beaucoup d’autres, plus
ou moins simplement.

' 22. De la formule (36) revenir a (35), a I'aide de («), exer-
cice 1.

23. Développer en séries les expressions suivantes :

1 x 1 4+ =x i
L~1—x—L(1+x)~§L1—x (Thompson)
1+ x 2x 25 1 + 32 1 142z 1 4+ x
Li_x—9“<4+5_3x2>’ bimsm i tor—=-

24. Appliquer la formule (34) aux expréssionsﬂ suivantes :

3)? . — 12 (n 4 2)
T _{(_ni—)i;(n)_:- 5 (Miller) L {Z T 1)222 —3 (Borda)
5 3)10 1)8 ‘ 2 __ 49 2 __ ¢
L —(J; -{—)-(-4,1)5_’(—72 1}-(2,;1;: ) (Callet) 1, = —)—(;15)2 ) (Secrétan)
. = (_n; 2(225;216) (Haros) L (”2—6f'l)2(7i_492)25:1gn2—9 (Lavernéde)

AL (n 4+ 6) (n (:_i) g)l?':; 2)(n +1) (Lavernéde)

L =9 (r+8) (n 4 T)(n—5n—1)
9 (=8 (v —7) (n +5) (n + 1)

(id.)

' 95. Posons.
x x” o x
F(x’n):-fz—+n—{-x+n+2x+"'+ n+4+(n—1x ’
x x X
q)(x’n):n—l—x+n+9x+m+n+'nx"
| n___ Ve
/ fle,n)=n{/T+zx—1), q)(x,n):n(i—— 1+x);

De la relation (1) et de I'inégalité connue

n

Lai + - _l; - —'_ an > |/,a1ag oo An

on tire directement celles-ci: |

S (e, n)> flen) > Bl e) = fle, o) = b, o) =
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&
14 x

[n,F(x,n)] > [, Flr,o)] =14 x = [— o, @(x,oo)]>[—x,<l>(x,n)]

=p(z, ) > plz,n)> e, n) >

lim [F (%, n) 4+ Fly.n) — Flz +y + ay,n)] =0 (n=o)
De plus si x est rationnel, |
lim (m, 1)F@7) =1 4 x, (id.)
26. Considérons la série dont les deux premiers termes
sont Cz, 1, et:chacun des suivants alternativement moyen

arithmétique et moyen géométrique des deux qui le préce-
dent immédiatement. Les termes de la suite tendent vers la

limite %Z—c (Gergonne).
A. Ausry (Beaugency, Loiret).

EXEMPLE SIMPLE D'UNE FONCTION CONTINUE
, N’AYANT PAS DE DERIVEE
POUR UNE INFINITE DE VALEURS DE LA VARIABLE

Lorsque le professeur explique 4 des débutants la notion
de dérivée, il ne souléve pas devant eux la question de sa-
voir si toute fonction continue a une dérivée. Il lui suffit de
leur montrer que les fonctions qu’ils connaissent en ont
une.

Mais, un peu plus tard, il devient peut-étre temps de met-
tre en garde les éléves, qui faussement guidés par 'intui-
tion, s’imagineraient que toute fonction continue a une dé-

- 1 Cette relation s’obtient en cherchant l’expi'éssion de la limite de la quantité
o “ﬁtmmeanMﬂ—pzMx+y+x%ML
On en tlre, en écrivant par définition F (@ — 1 )= La,

La + Lb = Liab) .
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