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ÉTUDE ÉLÉMENTAIRE DES FONCTIONS

HYPERBOLIQUES

Avant propos. — Les théories mathématiques s'éclairent
singulièrement quand on les examine d'un point de vue
convenablement élevé. Toutefois les méthodes analytiques modernes,

assimilables à des instruments d'une haute perfection,
demandent comme tels, une grande dextérité dans leur
maniement. D'un autre côté, l'esprit n'est complètement satisfait

que quand il est parvenu à établir ces mêmes théories, en
n'utilisant que les propriétés strictement nécessaires à leur
démonstration. Aussi les exemples sont nombreux, de vérités

mathématiques trouvées d'abord comme corollaires de

propriétés très générales et démontrées ensuite par leurs
auteurs d'une manière tout élémentaire.

Si l'habitude de voir de haut élargit l'esprit et prépare les
découvertes, voir de près rie lui est pas moins nécessaire, en
l'accoutumant à s'assurer à mesure de l'entière rigueur de

chaque nouvelle déduction. En outre, bien des théories,
même très élémentaires, qu'on croyait comprendre, vues de

plus près, doivent être reprises à partir du début, et souvent
même par une autre voie. Ces considérations témoignent de
l'utilité de monographies n'empruntant leurs principes qu'au
sujet lui-même, et d'ailleurs exposées aussi élémentairement
et aussi complètement que possible.

La théorie des fonctions exponentielles, beaucoup moins
utile dans lés applications que celle des fonctions circulaires,

a en théorie une valeur égale; et, a ce point de vue, elle
demanderait d'être traitée de même d'une manière élémentaire.

Or elle peut l'être d'une manière on ne saurait plus
simple, par la méthode archimédienne des doubles inégalités
de plus en plus approchées, en partant de la seule connaissance

de cette inégalité, due également à Archimède.
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(1 -j- x)n ]> 1 + nx (n, ent. pos. x > — 1)

et de laquelle on déduit aisément la relation fondamentale

1 / l l \
j 2> (1 + z)m 1 + mz » m » rat- et "> 1

» — — <CZ<C — •
1 — mz

\ ^ \ \ ^ /w m)

Cette théorie ainsi exposée, est une introduction naturelle
à la théorie des séries et à celle du calcul infinitésimal, au
lieu d'en être un simple corollaire. On obtient ainsi, —
directement et beaucoup plus rapidement que par les méthodes
générales — : une définition claire et rigoureuse des symboles
ex et hx ; nombre d'exercices sur les approximations
algébriques et numériques ; la démonstration très simple de

divers théorèmesou formules deNeper, Briggs, Kepler, Gregory,
Mereator, Halley, Stirling, Euler, Lagrange, de Stainville,
Cauchy, Realis, Underfinger, Catalan, Schlömilch, Laisant,
Cesàro, etc. ; enfin les séries logarithmiques, exponentielles
et binomiales. Il y a lieu de remarquer que pour ces dernières,

les conditions de convergence, si délicates à étudier avec
les méthodes artificielles ordinaires s'introduisent ici, pour
ainsi dire d'elles-mêmes.

1. Désignons par m un nombre rationnel supérieur à l'unité,
l 1

et par z un nombre quelconque compris entre — — et — ; on
a (P. M. 1900, p. 406) :

(1) > (1 + z]m > 1 + mz

2. Les deux expressions suivantes, où on a : — m x
< m,

(m 4- x\m / m \m
(«) {m,x) (——j (ß, {-m,x) ^-—j

tendent vers une même limite à mesure que m tend vers l'infini.

En effet pour a > 1, on a :

/ _i_ x \a _ix1 ± — > 1 ± -\ am ] m

d'où, en élevant à la puissance m et dédoublant.

(ma x) (m x) (— ma x) (— ai, x)
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Si m augmente constamment, la valeur de («) augmente de

plus en plus, tandis que celle de (ß) diminue. D'ailleurs leur

rapportai — toujours inférieur à 1, est, d'après (1),

X2 1

toujours supérieur à 1 —— et tend donc vers 1 unité.

Par suite, en appelant f(x) la limite commune de (m, x) et de

(— m, x), on a :

(m, x) < f(x) (— m x) ;

et, si on appelle e la limite particulière correspondant à x— 1,

c'est-à-dire si on pose f(1) e,

(2) e lim [m, 1) lim (—- m, 1)

(3) (m, 1) < e < (— m,\)

Cette limite est d'ailleurs finie, car pour m 2, (2) par
exemple, devient 2,25 < e < 4.

3. Les quantités (/ra, x), (/?2, y), (t?2, + 2/) tendant en même
temps vers des limites finies, on peut poser

MM iim <"'*> _ iim [i ^ 1m
t(xJry) (>>x + y) L m(m + x + y)j

La partie entre crochets a une valeur supérieure à 1, et,
d'après (1), inférieure à un nombre qui tend vers l'unité, quand
m tend vers l'infini. On peut donc écrire

(4) f(x) f(y) f(x + y)

d'où aisément

m i - m f(-i, r(f)"= m
et enfin

f(x)ï
ce qui donne, en faisante 1, et pour toute valeur rationnelle

positive ou négative de £.

^—fit) lim (m, I)



346 A AUBR Y

4. Cette relation n'a de sens, au point de vue du calcul
habituel, que si £ est commensurable. C'est pourquoi il vaut
mieux définir le symbole ex comme désignant la fonction f{x)
— lim {m, x) ; cette fonction, appelée exponentielle de x
définit donc un ensemble d'opérations en nombre infini, lequel
peut se réduire en exponentiation positive et une négative,
si x est rationnel.

Ainsi, x désignant unnombre quelconque, on posera d'après
cette définition

(5) ex lim (m, x) — lim (— m x)

(6) (m, x) < ex <[ (— m x)

(7) èxey — ex^y

La relation (5) a été remarquée, pour la première fois, par
Halley (P. T. 1695) et la relation (6) par J. de Stainville (.Mél.
d'Anal. Paris 1815). Les relations (4) et (7) font voir que la

fonction e^est toujours croissante et continue.
5. Posons ex y ; x est dit le logarithme népérien de y,

ce qui s'indique par la notation x Ly. De là les relations

(8) Ll 0 Le 1 L (ab) — La + Lb L(am) mLa

6. De (6) on tire a fortiori, à cause de (1)

_J_ >ex> \ +x i- 1 < .r < 1|

ou, si l'on veut, avec Cauchy [anal. alg. Paris, 1821).

(9) e±x>\±x (0 < a; < 1)

Cor. I. Faisons x Ly, il viendra cette relation de Neper
{Mir. log. constr. Edinburg, 1617),

(10) J - 1 > Lj > -^-=-1

» 1
qui devient, en changeant yen 1 z et en 1 + -

(11) ;>!.,! + -, > —
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(12) -rî—. > L f-_ : > 1

3?

II. De (9) on tire, en changeant en¬

fla)

m m

s (y/ë* —i) > -r > '« (l — y/«-*)

7. Posons pour abréger

e* 4- e-x 0 e* — e-* rp
Sx

C* —T— S* — 2— ' ** Ci

on aura

C2x — S2# ml, Sx — 2S y C —'~, Cx m C2 — -j- S2 —

- 2C2 | — 1 2S2 | + 1

Or la relation (9) donne

_j_ e-x > 2 d'où C^c > 1 S.x > 2S ^ > 2T ~ > Ta;

4T | + Sir > 8T | + 2S |
Car cette dernière inégalité se réduit à C2| > 1. On peut

ainsi écrire :

__*» I > S.r > 1 (4T | > 2T f > 1 - e-*

Changeons x en j ^ multiplions respecti-
> • e

vement par 2, 4, 8, 16,...; les deux membres extrêmes
tendront vers la limite commune x, à cause de (13). Il en sera de
même des seconds, troisièmes et quatrièmes membres. Or,
comme on l'a vu plus haut, les seconds diminuent constamment

ainsi que les troisièmes, tandis que les quatrièmes
augmentent. On peut donc écrire :

(14) S* > 3- (4T ^ +: S*J > * > 2T | > Tx

8. Changeons x en L (z -(- \Zz2 -j- 1), dans le premier et
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2 -4- Zle troisième membres de (14), et en L ^~Z7~Z dans le
troisième et le cinquième ; il viendra

(15) 1±-| > ez > + 1 + s (2 > z > 0)

Cor. I. Prenons les inverses, il viendra

2 ^ 7 > e-2 > y/z4 + 1 — z (id)

et de là, en retranchant,

(16) riri2 > s* > * (id)

d'où, en élevant au carré et changeant z en ^

<17) 1 + [Ï6^r?) > Cz > 1 + i (4 > z > 0)

Ces deutx dernières relations conduisent aux suivantes :

/\ A s2\2-
<18» - > T* > 256 + 96z4 + z*

(2 > z > 0)

(19) lim ^ ~ 1 lim —- i lim Cx — 1 lim — =r 1 (x ~ 0)
\ x x2 2 x '

II. Les identités

s" !Sïcî'rè-,-^ îT-' c'f(,-T'f) c"
2

conduisent, en changeant successivement,!? en | » f » Të'"'
à ces formules

« ï-'f'H-
m Js-î i*i+i*î+JTï + "

dont les deux premières sont bien connues (voir, par exem-
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pie YEssai de M. Laisant, Paris 1873). On en trouvera d'autres

du même genre, en traitant de même les identités.

(C# + Sx) (Cx — Sx) C2x— S2xS2* — ^2S f)2= (zS2 f )*

S2a; — 2S2 | 2&rS2 |
T —

T«-TÏ= 2 1

2 x S2# 2S#T# ' 2 Cx ' x Tx Sa? '
2&

2
1

2

III. A cause delà première inégalité(16), de la seconde(17)
et de la suivante

(1 + a)(1+ b)...> 1 + a+ +
les formules (20), (21), (22) donnent celles-ci

« + + S + •" > s* > * +
(23)

3a;

3 + x2 3 1

9x>Tx>ë-r-* *- -+ Ö -
I2"

et la dernière, cette autre très approchée,

I»] 1=^.
Ces relations sont utiles dans le calcul des expressions

hyperboliques Sx, Cx, rïx.
9. Posons

17\ \ i
^ k k 1 _ k k — k -j— 1

(*) 1 + J « + ï —y— «2 + + y Y1— ak,

i tj\ a
& A* X: -j- 1 X k 4- n — 1

W l + + j —j— «2 + + j —îly a»,

*W i-T» + T
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ilviendra(l +a) <p (k) tp [k + 1) ; et, si k < n, o < a <1, 0 <
b< 1,

* (i) >.(1 - a) (A- + 1) z (A) > (1 + b) X ik + 1)

Faisant Zc 0, 1, 2,... n — 1 et multipliant, il vient, en po-
X | Xsant a - b ± —
« 7 2ra

(«) (n.ar) 1 + ~ +(l - i) ~+ +

1P) (_„,*)>!•+£ + (l + I)£ + ...+

..0 + D-0 + "-^)5'
(y) (— 2«, ± x) > 1 + ^ + (l + A)q= +

Aj_ L\ A +2«-A *2n+1

\ \ ^ 2n -f 1/ (2ra + 1)
*

Si # est positif, («) et (/3) donnent

(«.«) < 1 + < (- ».

d'où

(26) e* lim (l + ~+ + (« «

(27) e lim (l + £+ + 1) (id.)

Le principe de cette démonstration est du à de Stainville
(1. cit.)

10. La formule (26) a lieu également pour x négatif. En
effet, d'après (a) et (/3), la valeur de l'expression

2 !" 1 4- - A- - 4- 4- —L 21 4! +'"' + (2n) rl

est comprise entre celles des deux suivantes

(2/i, x) -}-• (2/ï ,— x) et (2n,x)^(—2n,x)



ÉTUDE DES FONCTIONS HYPERBOLIQUES 351

qui tendent, l'une et l'autre, vers la limite ex + ex= 2C.#,
quand n tend vers oo On a donc :

(28) Cxlim [l + |! + + (|!l] („ »

d'où

m * + +g,] (id.)

[/y*
-y>s -y2/i—1 ~1

f-3! +-±(sprïïTj (id->

11. De (12), on tire, en changeant successivement £ en

X X

n n — x n — 2x ' " n — (ft — 1) x

et additionnant, cette relation

x ^k=n i f l x 1

n 1 kx 1 — x n „ kx
1 1

rc ft

d'où, en développant les quantités sous les signes 2, et sommant

à l'aide de la formule de Roberval1,

1 1 ^ lp 4- 2p 4- 3^ -I- + nP ^ 1

« _1_ \ ^ r> -L 1n .p + 1 nP + i p -f 1 '

il vient :

Les deux membres extrêmes diffèrent de

+ !(*-< +;)>* ré-

1 Cette..fôrmule se déduit de la suivante

\p + \)np->-— — > +1) („ _ 1(r

en y faisant successivement n 1,2,3, ;t, additionnant et réduisant.
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et par suite ils tendent à se confondre quand n tend vers oo.

2 00

-j- terme à terme,
car on a

+ T>i>r(1-7V
On peut ainsi poser

l ^ri00 xk
(su 'rr,=ii ioo<»

et de là

- J
1

T
1 "%2°° Xk X2k

L + x) —L t xLt _ x2 f. ^ 2

ou bien

(32) L(l + *) lim(|-^ +... -Ç) (« », 0<x<l)
Gauchy (Rés. Anal. Turin, 1835) et Schlömilch (Handb. der

Anal. Iena, 1873) ont démontré cette formule par des moyens
analogues, mais leur marche est beaucoup moins élémentaire.

Les deux formules (31) et (32) peuvent se condenser en
une seule, qu'on appelle formule de Mercator (Log. Londres,
1668) et qui est

(33) L (1 + X) J - y + |8 - (*2 < 1)

Cor. I. Les formules (31) et (32) donnent celle-ci, remarquée

d'abord par Gregory (Ex. geom. Londres, 1668.)

m l«±;_.(Î + S +

et qui pour x Ty, devient

*+-•)

r=¥+?+î+...
II. a désignant un nombre quelconque, on a, si x2 < 1,

a olL(\4-X) _ _ _
(1 + x) e 1 + 1

2~i h---
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Le coefficient de xn, dans le dernier membrevdoit être une
fonction entière de a, du degré n ; or ce coefficient devant
se réduire à zéro, pour les valeurs 0, 1, 2, 3,... n — 1, de

l'exposant a, et à l'unité, pour a 77, il se confondra avec

a (a -f- 1) (a — n -f- 1)
' n\

On a donc la formule du binôme,

(36) (1 -f- x) 1 -f- — x -j- y —2— + ••• (x2 <C 1)

Cette démonstration est due à Cauchy (1. cit.).

Exercices 1

i. Soient £ un nombre positif quelconque et ^ un nombre
rationnel tendant vers zéro ; on a :

r /- i r /- t ^ ^-1/> iim Iim >
f* f* f* P-mzr uzr

En désignant par L z la limite commune, on peut la définir

par la relation

Ls — lim m

De là, la relation

m. m

y/s - l) lim m(l - y/ i)

m m

Wz - ')> l:>'" (1 — v/ê

[m — oo).

(Briggs)

(Lagrange)

En déduire la relation (10) et la troisième des relations (8).

« 2. 1° De la définition de ex, déduire les formules suivantes
:

_ Q é2-52V 6A2 V 30.33?,\8 „_
\32. 6/ \72.10/ Vl52.18/ \ 312. 34 /

1 Voir J. S. 1899-1900, Th. de la f. log. ; P; M. 1899, Rem. sur la série log. ; P. M. 1900,
Sur une id. d'Euler.

L'Enseignement mathém., 8e année; 1906. 23
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3 _ m 6.8YY92-1416V/"17Î'30-32V6e ~~ \4~6T7 \8TI07f57 V 16.18.317

n
e — Jim —

t / n\ [n —" 00) (Unferdinger)

lim ±2>-• <2"> 1 (id.) (Laisant)
n e

4 8 3 3 _____ 27 •

1 {/Cz,l [/Ci,2 [/Cs,i [/Cj3, 1 C2,1 \/C<è, 3 • Cß, 3 |/C27,9 .Ci8,9

7~ 2 2 2 •" ~ 3 3 3

•=fvT <c-»>

",±' (' ± ï)' ('± I )* - (' * s)" ", ="1

v^= "m (' ± j) (1+!)...(.+?) «
t

2° Dans un vase de contenance connue et plein de vin, on
fait tomber un filet d'eau d'un débit connu. Combien restera-
t-il de vin après un temps donné, en supposant que le
mélange se fait instantanément (Terquem.)

3° Quelle est la valeur de l'intérêt composé d'une somme
donnée, placée pendant un temps donné à un taux également
connu ; les intérêts se capitalisant à chaque fraction infinitésimale

du temps (Jacques Bernoulli.)
4° Quel doit être le profil générateur d'une tour ronde

pleine, chargée à sa partie supérieure d'un poids P, formée
d'une matière de densité p, et telle que, dans une section
horizontale quelconque, la pression verticale par unité de surface

soit constante (Poncelet.)
3. Démontrer les relations :

lim JL
Lx

lim L y/x — 0 lim y/x •=. 1 {x :
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1
lim — 1 lim Xx — 1 (x — 0)

xx

4. Si la somme x -f- y+ tend vers une limite finie, il en
est de même du produit (1 + x) (1 + y)... (Cauchy).
Conséquence de (9.)

5. L'équation ex + x 0 n'a aucune racine réelle, (id.)

6. La fonction passe par un maximun pour x — m. (id.)

On s'appuie sur la relation.

7. La fonction \/x passe par un maximum pour x
(Euler). On part de la relation.

S. On a :

±h h
e * > 1 ± T

h ^ _ x -f- h h

x >L ~ir> x~Th (NePer)

(fli .r il I- r. ^
I. il .»! x

(p > r=—-— > —-— ; Kepler
y1"1 + .'•) v:l -r X: y '

6® 6^ 772.05- ]-)\b
(y) ea /> — — eb maYm —- -— m^hm f Realis)

m m fl-f-.-.-f-c
/a{/a -j- -f- ci/y \m /n I

a
1 — 1/ 7e [m —<x>) (Laisant)

111 1 1

L/i -|- 1 > — -j- —
i. z 6 n n

X x2 X* Xs > L
i > 'x + .r8 + X-9 -f x21 -f

Substituer dans (11) les valeurs

1 2 n + 3

n n — 1 n -J- 1 n2 — 1 'n2 — 3/z — 2 '
/z // —j— 2)8 '

1440 6/24 — 4n2 -j- 1

(/z2 — 64) [n2 —.25) (n2 — 49) ' n6 [n2 — 4) '
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z — sec w — 1 — sin2 to — cos 2w tg2w — tg4to

et en déduire des formules utilisables pour le calcul des
logarithmes et des lignes trigonométriques.

10. Dans (11) faisons successivement

i 1 1

kn ' kn + 1 ' ' kn -f- k — 1

"

n 4-1
en tirer deux limites de L —2__ Apprécier l'erreur com-

• • • 71 I |mise en prenant une de ces limites pour la valeur de L —-—

(Cauchy).
11. Même question en substituant.

2k + n 2k -f 3n 2k -j- kn — n2
Z ~ n k'''n

(n + If'"• " + X- —

12. Des relations de l'exercice 10, déduire la quadrature
de l'hyperbole xy — 1 (Schlömilch).

13. Tirer le même résultat de la relation (a) de l'exercice 1.

14. Sur une droite AOLN, prenons AO égala l'unité, et
faisons mouvoir le point L uniformément, et le point N de manière

que OL soit égal à L (AN). Si la vitesse du premier point est

représentée par AO, celle du second l'est par AN (Neper.)
15. Considéronsla série dontles deux premiers termes sont

* 1
et 2 - j et chacun des suivants alternativement

2àZ z J j.

moyen géométrique et moyen harmonique des deux qui le

précèdent immédiatement. Les termes de la suite oscillent
autour d'une limite finie, L z, dont ils se rapprochent de
manière à en différer aussi peu qu'on veut. (Gregory.)

16. 1° De (14) déduire la relation suivante :

-2 ^ z |
(a) — > Ls > 2

^ ^ (Kepler et Gregory)

et de là

2° De (15) tirer là suivante :
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de (14), celle-ci :

1 1 ^ 12m2 + 12m + 1 ^ T + 1 ^ 2

2m + 2 m + 2 > 6m (m + 1) (2m +. 1) > m >2m+i'
et de là

2m +1 2m *

A" > • ££» ><"1»Jîn «

17. De (16), (17) et (23), déduire cette inégalité

/y»2 /y»8 y4«A/ «A/

e* > 1 + * + - + — + —

18. De (/3), exercice 16, on déduit

2m -{- 1

' m ,4 G -ïh)>L("4)~ -1 >0

d'où, en appelant 2 la série obtenue en faisant m 1, 2, 3,...
dans le second membre, et posante1-2 c, nombre
d'ailleurs fini puisqu'on a :

n

^ > 2 > 0 d'où e > c > e12 ;

(ß) ce~nnn^~ 2 n ce nJr vin n1^ ~2

On tire de là

öl- 2 4 ß 2" /r1c 21,raTÏ5-2^rîV»
La formule (ß) est ce qu'on appelle la formule de Stirling.

La démonstration indiquée est celle de M. Césaro (M. 1881),
sauf l'origine de la relation (a).

19. Dans («), exercice 16, faire

1 2
4

2 rt2- (^2_1)2/^ I 2)
z sec&>, 1 -4- x. —- ,14- — 1 —y LJ IL '

1—x n n n2 — 1 (ai -f- l)2 (n — 2) '

1 D'où, à cause de la formule de Wallis, c — l/27T
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et faire servir les relations trouvées au calcul des logarithmes
1.

20. Représentons par DF (x) la limite du rapport de
l'accroissement F (x du h) — F (x) de la fonction F (x), à l'accroissement

± h de la variable, limite dont l'existence n'est
d'ailleurs pas certaine a priori. On aura, à cause de (a) et (y), exercice

8,
1

Dex — ex Dm^ — mx hm DLas ~ —
x

21. Considérons les valeurs F (a), F (a -f- A), F [a + 2 A),...
F {a + nh è), de la fonction F (x), et désignons par la no-

a
tation / F (x) dx, la limite, fixe ou indéterminée vers laquelle

b

tend la somme
ÄF (a) -f- ÄF (a -f- h) -f- -f- hF (b)

à mesure que h tend vers zéro, ou que n tend vers l'infini.
1° De (11] et de (12) on tirera, en faisant z ~ et effectuant

la sommation,
b e

/dx _ b /» dx
— L — d'où / — 1
x a J x

« i
ensuite

(x -f- h) [L (x + h) — 1] — x (Lx — 1) \> hhx x [Lx — 1)

— (x — h) [L {x — h) — 1]

d'où
b

J*Lxdx b (Lb — 1) — a (La — 1)

a

pu simplement

j*Lxdx m x(Lx — 1)

1 Par exemple, la dernière transformation indiquée montre qu'en posant

V jn — 1)2 (n + 2) _ 4

- (n -f- l)a {n — 2)
— n (/i8 — 3) '

l'erreur est inférieure à —5-——Ainsi, connaissant L7,L8 et L10, on déduira de la sorte
(na — 4)5 -

LU avec huit décimales exactes. Le degré d'approximation croît rapidement avec n.
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2° Les identités

r L(1 + ^)l .'«-'I
LL (x+ h)— LLxL j

I 4 — J •
1

•
.> + 1

/ 2 h \^ \ x1 -4- xh — A — 1/

1 / A2 + 2A«r\

Ly (* + Ä')*-±1 — Ly ± 1
2 Lv + ~.x2 ± i~/

conduisent à

J xHc~ ' J x2—i~\/x-i'J[/x2±i V

3° Dans (a), exercice 16, faisons

1

_ * + A +- + 1
' -j- {/x2 -j- 1X

on aura a fortiori

* d'où f fr - L (as +l/^r+T)
1 J j/ar* + 1

k ^T \ k
> hz >+ 1 pv + Ä)2 -+-

4° De (11) on tire :

(x + A)2 [2L (x + A) — 1} — (2Lx — 1) > iAxL# > ** (2L* — 1) —

(a: — A)2 [2L (x — A) — 1]

d'où :

J*xLxdx (2L# — 1)

5° Or! a :

A«a 4- Aa« + A 4- 4- Aa& z= 7 1

a" —• 1

Ä

d'où? à cause de (y), exercice 8,

b

j*axdx j*exdx — eb — 1

o

Le principe de cette dernière démonstration est dû à Cau-

chy. Par des moyens analogues, Schlömilch a donné la valeur
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de J j~q~ • On pourrait en donner beaucoup d'autres, plus

ou moins simplement.
22. De la formule (36) revenir à (35), à l'aide de (a), exercice

1.

23. Développer en séries les expressions suivantes :

L --— L (1 -)- x)— | L (Thompson)

T
1 + « Ix25 \ T

1 + 3* ,T
1 „L - F l4 + 5^3^j • L -4L r^ïr +5L

1 -f- x
1 — #

24. Appliquer la formule (34) aux expressions suivantes :

(n -j- 3)272 _t - t (n — t)2 (n -J- 2)L -
2 -r- Muller) L 2 Borda

(72 -j- iy (72 + 4) (72 -f- l)2 (72 2)
s

(n + 5) (ti + 3)10 (72 + 1)6 (722 — 49) (t22 — 1)L £ + VT» + VV L
(»»-25)»

<Secrétan>

e

(„2 — 9) („S — 16) (n8 — 64) — 25) — 9
,TL

(n2 — 25) n8
,Har°S) L

(»» - 49)8n8
(Lavernede)

(Lavernède)
(72 -f- 6) (72 -f- 3) (72' -f- 2) (72 ~f~ 1)

(72 + 5)2 722

(72 — 9) (72 + 8) (n + 7) (n — 5) (72 — 1)

(n -f- 9) (72 — 8) (72 — 7) (72 -f- 5) (72 -f- 1)

25. Posons.

F [x, 72) - -J-

(id.)

72 72 + X 72 + 2x 72 -j- (72 1) X

X(*»«) TTTZ + 7TT-ÔZ + ••• +72 -j— X Jl -\- 2X 72 nx '
n

f(x, n)n(j7r+x — 1 (l — yZ-j-d— ;

De la relation (1) et de l'inégalité connue

ai -{- «2 -f- ••• + an \ //1 > V aia2 >" an

on tiro directement celles-ci :

* ' : ]>F (# 72) > f(x 72) > F\x', 00 =r f(x OO <P(X CG
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y (x, n > y (x, n) > (x, n) > /[ ^

t», F («, n)] > [oo,F (#-, oo 1] =1 + * [-», («,«)]> [-«,* (ä, «)]

lim [F (a?, n) + F (y, rc) — F (x + y + xy,n)\ 01 (* «

De plus si # est rationnel,

lim (m, l)F(x,n) — 1 _p a;, (id.)

26. Considérons la série dont les deux premiers termes
sont C.r, 1, et chacun des suivants alternativement moyen
arithmétique et moyen géométrique des deux qui le précèdent

immédiatement. Les termes de la suite tendent vers la
Sxlimite — (Gergonne).

A. Aubry (Beaugency, Loiret).

EXEMPLE SIMPLE D'UNE FONCTION CONTINUE

N'AYANT PAS DE DÉRIVÉE

POUR UNE INFINITÉ DE VALEURS DE LA VARIABLE

Lorsque le professeur explique à des débutants la notion
de dérivée, il ne soulève pas devant eux la question de
savoir si toute fonction continue a une dérivée. Il lui suffit de
leur montrer que les fonctions qu'ils connaissent en ont
une.

Mais, un peu plus tard, il devient peut-être temps de mettre

en garde les élèves, qui faussement guidés par l'intuition,

s'imagineraient que toute fonction continue a une dé-

- 1 Cette relation s'obtient en cherchant l'expression de la limite de la quantité
" [n, F (x, re)} [/i, F (y /i)] — [n, F (x + y + xy, n)]

On en tire, en écrivant par définition F (a — l,oo) La,

La Lb L (ab)
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