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290 E. BERTRAND

h et k étant deux conslantes fixes pour lous les points de la
~droite, tandis que p. g.... peuvent varier d'un point a l'autre.
On prouve alors facilement que 'on a

AB = h/‘f.p?)o' (arby — agby) = —LE_ (ab) .

En substituant dans l'identité de Pappus qui contient
chaque lettre A, B, C, D une fois dans chaque terme, on fait
disparaitre le facteur commun pg g’ g” el I'on a I'identité fon-
damentale de la théorie des formes binaires,

(da) (bc) 4 (db)(ca) + (dc)(ab) = 0 .

~ Mais toutes les identités du type (11) ont chaque lettre le
méme nombre de fois dans chaque terme et fournissent done
des identités analogues entre déterminants a deux lignes.

Ainsi toule identité entre points en ligne droile qui se
transporte sur le cercle par vecteurs réciproques donne aussi
une identité entre déterminants a deux lignes.

M. StuyvaerT (Gand).
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1. 04, 0r et o, représentant les vitesses absolue, relative et
d’entrainement d’'un point mobile, on a

Va:Ve—f—Vr,

et, le signe D indiquant la dérivée géométrique prise dans
'observatoire absolu :

D_Ja j— Dje + D—V.r .

Il reste a chercher les significations des trois termes com-

pris dans cette égalité.
2. Do, est I'accélération absolue j, du mobile.
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3. (fig. 1). A esl la position du mobile & l'instant £. A l'ins-
tant ¢ -~ At le mobile est venu en C etle point A-de l'obser-
valoire relatif en B ; le mouvement d'entrainement E'st défini
a Pinstant ¢ par la vilesse v, du point A etla rolation » passant
par A, qui deviennent ¢’ et o' a l'instant £ 4- Az,

L’accélération d'entrainement j, est celle du point A de
'observaloire relatif :

Jje = lim

Fig. 1.

La vitesse d’entrainement v, a 'instant ¢ 4+ At est celle du
point C de l'observatoire relatif : ‘

F — _
ve —= v/ -+ Mom¢ «’ .

La dérivée géométrique de la vitesse d’entrainement est

- J— p—

Ve — Ve .o — e

— lim

Dyve = lim 4+ lim 5 Momgw’ .
: y 3 1
Prolongeons BC jusqu’en H, tel que BH = - BC, nous
aurons

Dye = je + lim Momg o |

le vecteur moment continuant a avoir C pour origine. Or la
limite de o’ est o, celle de C esl A et celle de H esl l'extré-
mité V, de la vitesse relative. Il vient done :

D‘_V.g :76 + Momvr (-;)_ %

4. (fig. 2). A l'inslant ¢ I'observateur absolu meéne par un
point fixe O1 un vecteur O1H1 = o, et 'observateur relatif
méne un vecteur égal OV,, mais le mouvement d'entraine-
ment déplace ce dernier vecteur qui se trouve en O'H’ a
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I'instant ¢ 4 Af, auquel les deux observateurs ménent des
vecteurs O111 et O'l" équipollents a la nouvelle vitesse rela-
tive. Par définition

[

— . Hil - . HT
Dyr — lim Altl Jr = lim —
0
O
Fig. 2.
Menons O'K = O:1Hj ; il vient
oL KU KW’ n T
At At T At At

’

. .. ‘ . KH g
Passons a<la limite en remarquant que lim = D est autre

que la vitesse du point V, dans le mouvement de rotation de
I'observatoire relatif autour de O, c'est-a-dire Momy_w; nous
aurons

Dy, — Momvrc: —I—-; ;

5. Par conséquent
]—'; :7; —{—7,- + 2 Momvr_o; .

Mars 1906.
Emile BErTrAND (Bruxelles).
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