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les trois équations e se réduisent aux deux dernières du

groupe.
Ces groupes peuvent être permutés, mais ifs se réduisent

en définitive à trois relations, par exemple aux trois suivantes:

cos A 4- cos B cos C
S {a) ~ p —77 »

v sm B sm C

^ cos B -4- cos C cos A
S [b) r.sin L sin A

cos C + cos A cos B
'C' sin À sin B

Le cas de S (x) £E 1 donne la géométrie d'Euclide, mais
dans ce cas particulier les trois relations précédentes se

réduisent à une et il faut grouper autrement les relations si

on veut obtenir un groupe de 3 relations essentielles.
Mais dans tous les cas la réduction de Poinsot a fourni la

trigonométrie plane, comme l'étude du pivotement sphérique
nous avait donné, après la composition des rotations
concourantes, les formules de la trigonométrie sphérique.

Y. — Statique et Cinématique réunies.

Bien que seule l'interprétation des vecteurs comme axes
et vitesses de rotations relatives nous ait conduits à démontrer

l'existence de systèmes équivalents de vecteurs, la
méthode employée montre que tout mode d'équivalence entre
divers systèmes de vecteurs, qui satisfait aux conditions
logiques énoncées plus haut, entraîne 3 types possibles pour
les relations métriques dans l'espace ; mais, une fois adopté
le type d'espace, après particularisation des propriétés
métriques, il n'y a plus qu'un mode possible d'équivalence entre

les divers systèmes de vecteurs.
Ainsi donc les vecteurs forces se réduisent et se composent

exactement comme les vecteurs vitesses de rotations.
Voici des conséquences intéressantes de ces faits :

Nous avons vu plus haut que les moments des couples de
vecteurs possèdent à leur tour les propriétés essentielles
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de vecteurs simples ; mais ces vecteurs d'un nouveau genre
admettant aussi des couples, il y aura lieu de se demander
ce que représentent ces couples de couples par rapport aux
vecteurs du premier genre.

Voici la réponse très simple à cette question, réponse dont
la justification s'apercevra d'une manière intuitive par la théorie

des vecteurs perpendiculaires à une même droite. Ainsi
donc :

Théorème 25. — e désignant un nombre égal à 1 dans la
géométrie de la droite ouverte non euclidienne égal à — 1

dans la géométrie de la droite fermée, égal à zéro dans la
géométrie d'Euclide, et si on prend comme mesure du
moment le double produit du vecteur multiplié par la fonction
R du demi bras de levier, un couple de moments, dont le
moment nouveau est ^ équivaut à un vecteur V porté sur
l'axe du couple du second genre et l'on a

f* — — sV

en sorte que dans l'espace d'Euclide un couple de couples
équivaut à zéro.

Remarque. — Ce théorème fournit en Statique non
euclidienne une détermination très simple de l'axe central d'un
système de vecteurs.

VI. — La notion du travail et le moment mutuel
de deux systèmes de vecteurs.

On a vu que la vitesse de tout point d'un solide animé de
diverses rotations relatives est un vecteur égal au vecteur
résultant des vecteurs qui représentent les vitesses dues aux
rotations isolées ; considérons alors deux systèmes de
vecteurs S et S', faisons représenter à l'un d'eux un système
de forces, et à l'autre un système de rotations relatives et
considérons le déplacement infiniment petit 2 d'un solide
qui résulte de ces rotations relatives pendant le temps dt soit
F une des forces de S ; soit v dt le déplacement infiniment
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