Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 8 (1906)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES FONCTIONS ANGULAIRES DANS LA GÉOMÉTRIE DE

L'AJUSTAGE

Autor: Andrade, Jules

Kapitel: IV. — Rotations relatives autour d'axes quelconques.

DOI: https://doi.org/10.5169/seals-9270

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

l'angle α , soit l la longueur de l'arc de ce petit cercle intercepté, si r est le rayon de la sphère, on a :

$$\frac{l}{R(r)} = \sin\left(\frac{AP}{R(r)}\right) \alpha.$$

Si les rayons AP et PB deviennent infiniment petits on pourra donc écrire en vertu des résultats déjà acquis :

$$\lim \frac{l}{\operatorname{corde AP}} = \alpha.$$

Or si on projette la figure sur le plan du petit cercle, si P'A est la projection de la corde AP, on a :

$$\operatorname{Lim} \ \frac{\operatorname{corde} \ \operatorname{PA}}{\operatorname{P'A}} = 1 \ , \quad \operatorname{donc} \ \operatorname{aussi}, \quad \operatorname{Lim} \ \frac{l}{\operatorname{P'A}} = \alpha \ ;$$

or

$$l = H(P'A) \cdot \alpha \cdot m'$$

et comme $\frac{H(P'A)}{PA'}$ a pour limite 1 quand P'A tend vers zéro, on a

$$\lim \frac{l}{P'A} = \alpha \cdot m' ,$$

d'où, en comparant les deux limites de $\frac{l}{P'A}$, on conclut m'=1.

REMARQUE. — Dans la géométrie de la droite ouverte et dans un triangle plan qui a deux côtés infiniments petits le déficit de la somme des angles à 2 angles droits est infiniment petit.

IV. — Rotations relatives autour d'axes quelconques.

L'étude déjà faite d'un système de rotations relatives autour d'axes concourants fournit un lemme important qui nous permettra d'aller plus loin.

LEMME FONDAMENTAL. — Soient U_1 et U_2 deux droites actuellement données et ne se coupant pas ; considérons un premier corps solide S_1 animé d'une rotation uniforme de vitesse angulaire ω_1 autour de U_1 , considérons la droite Δ_2 de ce solide qui coïncidait avec U_2 à l'époque t, et envisageons par rapport au solide S_1 un second solide S_2 tournant sur S_1 avec une vitesse angulaire constante ω_2 ; soit un certain point

du solide S_2 , défini par sa position A à l'époque t; à l'époque t ce point coıncide avec un certain point du solide S_1 qui à l'époque t' sera venu en B, si on donne alors au point B la rotation relative qu'il doit éprouver autour de la position de Δ_2 à l'époque t' avec vitesse angulaire ω_2 le point B vient en C; C sera la position à l'époque t' occupée par le point du solide S_2 qui était en A à l'époque t.

Dautre part, considérons le vecteur issu de A qui représente la vitesse linéaire due à une rotation de vitesse angulaire ω_1 autour de U_1 ; considérons encore le vecteur issu de B qui représente la vitesse linéaire qu'aurait le point A s'il tournait autour de U_2 avec la vitesse angulaire ω_2 ; formons le vecteur résultant de ces deux vecteurs concourants et multiplions le par la durée t'-t, nous obtenons ainsi un vecteur A D; je dis que l'extrémité D de ce vecteur sera séparée du point C par un écart infiniment petit d'ordre supérieur à l'ordre de t'-t.

Démonstration. — Observons d'abord que si Ω_3 est le vecteur résultant de deux vecteurs concourants en O, Ω_1 et Ω_2 et que si M est un point de la perpendiculaire élevée de M au plan des trois vecteurs Ω la vitesse v_3 de M due à la rotation Ω_3 sera un vecteur égal au vecteur résultant des deux vecteurs v_1 et v_2 qui représenteraient les vitesses linéaires qui seraient dues aux rotations isolées Ω , et Ω_2 . (Conséquence des résultats déjà acquis et de l'invariance de l'opération vectorielle; soit alors dt = t' - t une durée infiniment petite; du mode d'équivalence des vecteurs concourants interprétés par des vitesses de rotation on conclut que le vecteur V_3 dt est la limite de la droite qui ferme le contour de deux vecteurs successifs MN et NN', lorsque ce contour se modifie à tout instant de la durée dt de la manière suivante:

N est la position occupée à l'époque t + dt par un point de S_1 qui était en M à l'époque t; le segment NN' est la corde d'un déplacement relatif de S_2 par rapport à S_1 , et tournant autour d'une droite Δ_2 . Cette corde variable est-elle même entraînée avec le solide S_1 pendant que le point de départ N de cette corde décrit d'un mouvement continu l'arc dont M N est la corde dans la rotation Ω_1 ; or pendant le déplacement

de S_1 nous pouvons envisager les segments NM et NN' comme issus du point mobile N et $rep\`er\'es$ par rapport à un trièdre de sommet N et qui serait invariablement lié au solide S_1 ; or la droite NM issue de N et ainsi $rep\`er\'ee$ tend vers une droite déterminée de S_1 qui est la tangente en N à l'arc M N, et de même la droite NN' issue de N et ainsi repèrée tend vers une droite déterminée de S_1 perpendiculaire au plan de N et de la droite Δ_2 qui à l'époque t porte Ω_2 ; ces deux droites limites coı̈ncident d'ailleurs à l'époque t avec les vecteurs distincts V_1 et — V_2 ; on conclut de là aisément par nos lemmes de continuité que:

- 1. le plan MNM' qui pivote sur M fait un angle infiniment petit avec le plan des vecteurs V_1 et V_2 ;
- 2. l'angle que fait la droite $\overrightarrow{NN'}$ avec le vecteur \overrightarrow{NM} est infiniment peu différent du supplément de l'angle de V_2 et de V_1 ;
- 3. l'écart entre le point N' et l'extrémité du vecteur V_3 dt est infiniment petit du second ordre;
- 4. l'extrémité du vecteur V_3 dt et le point où vient l'extrémité du vecteur V_2 dt par une translation V_1 dt d'axe V_4 sont séparés par un écart infiniment petit du second ordre.

Nous pouvons maintenant achever la démonstration du lemme.

Nous prendrons comme vecteurs V₁ et V₂ les vitesses linéaires dues aux rotations isolées ω₁ sur U₁ et ω₂ sur U₂.

Ces vecteurs V_1 et V_2 peuvent être réalisés comme vitesses linéaires dues à deux rotations concourantes Ω_1 et Ω_2 en un point O de la perpendiculaire élevée de M au plan de V_1 et de V_2 . D'autre part en considérant les positions relatives de S_1 tournant autour de U_1 puis de ∂_2 tournant autour de Δ_2 nous voyons que les cordes M_{ν} et ν_{ν} de ces deux déplacements relatifs peuvent encore être repèrées par rapport à un trièdre de sommet ν lié au solide S_1 , or bien que ce contour variable $M_{\nu\nu}$ soit différent du contour variable $M_{\nu\nu}$ envisagé tout à l'heure, il possède, dans ses déplacements de pivotement sur ν dans S_1 et de pivotement sur M dans l'espace fixe, les propriétés suivantes:

- 1. la droite M_{ν} pivotant sur M tend vers la droite du vecteur V_1 ;
- 2. La corde vv' pivotant sur v dans S₁ tend vers une droite de S₁ qui à l'époque t est dirigée suivant la droite qui porte le vecteur V₂;
- 3. enfin par les lemmes de continuité le plan de contour Muu' et le plan de V₁ et V₂ font un angle infiniment petit;
- 4. par les mêmes lemmes le point ν' est à un écart du second ordre du point où vient l'extrémité du vecteur V_2 dt subissant la translation dont l'axe est V_1 dt et dont l'étendue centrale est V_1 dt donc enfin le vecteur $\frac{\overline{M\nu'}}{dt}$ issu de M a pour valeur limite le vecteur V_3 issu de M. C. Q. F. D.

Remarque. — Le cas où les vecteurs V₁ et V₂ seraient dans un même plan exigerait une légère modification de la démonstration.

Corollaire. — Le vecteur lim. $\frac{Mv'}{dt} = V_3$ est indépendant de l'ordre dans lequel sont envisagés les vecteurs ω_1 et ω_2 portés par U_1 et par U_2 donc:

Théorème 15. — Dans le mouvement qui résulte de deux rotations relatives autour de deux axes donnés à l'époque t tout point du second solide défini par sa position à l'époque t a une vitesse indépendante de l'ordre des emboitements des solides entraînés.

Théorème 16. — Le théorème précédent se généralise de lui-même pour le cas de n rotations relatives quelconques.

Théorème 17. — La vitesse linéaire d'un point du solide S_n défini par sa position à l'époque t est le vecteur résultant des vecteurs qui représentent pour les mêmes points les vitesses linéaires dues aux rotations isolées ω_1 , ω_2 ,... portées par les axes U_1 U_2 ,... etc.

Définition des systèmes de vecteurs équivalents. — Le système des vecteurs vitesses de rotation, $\omega_1, \omega_2, \ldots, \omega_n$, portés par les droites U_1, U_2, \ldots, U_n définit donc, dans une composition de mouvements relatifs, une distribution des vitesses qui à l'époque t est indépendante de l'ordre dans lequel sont envisagés ces vecteurs, tout vecteur ω_i peut d'ailleurs, sans changer la distribution des vitesses dans l'espace envisagé à l'épo-

que t, être décomposé en vecteurs concourants, en l'un quelconque des points de la droite qui porte ce vecteur.

Enfin, par la nature même des vecteurs vitesses de rotation, une paire de deux vecteurs égaux et contraires, portés par une même droite, mais non immédiatement appliqués au même point, forment, au point de vue de la distribution des vitesses un ensemble équivalent à zéro, c'est-à-dire un ensemble en équilibre; une telle paire se nomme paire de vecteurs mutuels. Nous pouvons donc enfin énoncer le théorème intéressant que voici:

Théorème 18. — Il existe des systèmes de vecteurs équivalents et cette équivalence jouit des propriétés suivantes:

- 1. Tout système de vecteurs reste équivalent à lui-même quand on lui ajoute ou lui retranche un nombre quelconque de paires de systèmes de deux vecteurs mutuels;
- 2. un système de vecteurs concourants équivaut toujours à un vecteur résultant déterminé comme nous l'avons vu;
- 3. Un système de deux vecteurs ne peut équivaloir à zéro, (c'est-à-dire produire une distribution de vitesses nulles) que si ces vecteurs forment une paire de vecteurs mutuels.

Ces propriétés vont nous permettre d'achever la trigonométrie plane.

V. - Réduction de Poinsot et Trigonométrie plane.

Soient V un vecteur, et O un point particulier de l'espace d'ailleurs quelconque, soit H le pied d'une perpendiculaire abaissée de O sur V, et soit H' le point symétrique de H par rapport au point O. Considérons le vecteur V comme appliqué en H; remplaçons d'abord le vecteur V_H par les vecteurs $\left(\frac{1}{2}V\right)_H$, $\left(\frac{1}{2}V\right)_H$, puis appliquons au point H' deux vecteurs $W_{H'}$ et $W_{H'}$, perpendiculaires à OH dans le plan (O, V_H) et égaux respectivement à $\frac{1}{2}V_H$ et à $-\frac{1}{2}V_H$; c'est permis puisque $W_{H'}$ et $W_{H'}$ s'équilibrent. Soit w la distance OH.