Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 8 (1906)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES FONCTIONS ANGULAIRES DANS LA GÉOMÉTRIE DE

L'AJUSTAGE

Autor: Andrade, Jules

Kapitel: II. Rotations finies autour d'axes concourants. Rotations relatives.

DOI: https://doi.org/10.5169/seals-9270

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 04.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Théorème 6. — La longueur L d'un arc de cercle dont l'angle au centre est α , est déterminé, est une fonction continue du rayon r de l'arc et l'on peut écrire

(5)
$$L = \alpha R(r)$$
, la fonction R est continue.

Théorème 7. — Ce théorème s'applique aussi sur la sphère, en évaluant angulairement les longueurs d'arcs de grand cercle et l'on a

(6)
$$l = \alpha \psi(r)$$
, l et r étant évaluées angulairement.

REMARQUE. — Le rapport d'un arc infiniment petit à sa corde tend vers l'unité.

II. Rotations finies autour d'axes concourants. Rotations relatives.

Théorème 8. — Quand un solide éprouve un déplacement autour d'un point fixe, ce déplacement peut être obtenu par une rotation convenable autour d'un axe convenable passant par ce point fixe.

Théorème 9. — Quand un solide fixé par un point O éprouve une rotation α1 autour d'un axe U1 passant par ce point; puis une rotation α2 autour d'un axe U2 passant par ce point, le déplacement final du solide peut être obtenu par une rotation unique α3 autour d'un axe U3 passant par ce même point.

En représentant les axes par leurs images sphériques orientées, sur une sphère de centre O la combinaison des déplacements successifs (1) et (2) est définie comme il suit (toutes les rotations ne dépassant pas un demi-tour): Par le premier pôle P_1 menons un demi-arc de grand cercle P_1x faisant avec le demi-arc de grand cercle P_1P_2 un angle égal à la rotation $-\frac{1}{2}\alpha_1$; par le second pôle P_2 menons un demi-arc de grand cercle P_2y faisant avec le demi-arc de grand cercle P_2P_1 l'angle $+\frac{1}{2}\alpha_2$.

Ces deux demi-arcs de grand cercle se coupent au point P_3 et l'angle de $\overrightarrow{P_3P_2}$ avec le prolongement de $\overrightarrow{P_1P_3}$ est égal à $+\frac{1}{2}\alpha_3$.

Définition des rotations relatives autour d'un point fixe. — Soient U₁, U₂, U₃,..., des droites concourantes envisagées dans l'ordre précité; considérons un premier solide S₁ animé d'une rotation continue α_1 autour de U₁, puis, par rapport à ce solide S₁, considérons un second solide S₂ en mouvement relatif de rotation continue et décrivant α_2 par rapport à une droite de S₁ qui coïncidait avec U₂ à l'époque t; nous supposons que les rotations continues et simultanées α_1 et α_2 demeurent dans un rapport constant donné, on pourra poser par exemple $\alpha_1 = \omega_1$ (t' - t), $\alpha_2 = \omega_2$ (t' - t),

les constantes ω_1 et ω_2 seront alors les vitesses angulaires des deux rotations relatives considérées.

On considérera de même un troisième solide se détachant du solide S₂ par une rotation continue α_3 , à vitesse constante ω_3 autour d'une droite de S₂ qui à l'époque t coïncidait avec U₃ et ainsi de suite.

Nous définissons ainsi par des emboîtements successifs de solides le mouvement d'un dernier solide S_n en mouvement relatif de rotation continue par rapport au solide précédent S_{n-1} , cette rotation s'exécutant autour d'une droite de S_{n-1} , qui coıncidait avec U_n à l'époque t. Le temps t ne joue ici que le rôle d'une variable indépendante.

A l'égard de ces mouvements on a les théorèmes suivants : Théorème 10. — Dans un mouvement de rotation uniforme chaque point d'un solide possède une vitesse à l'époque t, c'est-à-dire que si on envisage le déplacement MM' d'un point du corps durant le temps dt=t'-t, la direction MM' émanée de M tend vers une direction limite lorsque dt tend vers zéro et en même temps le rapport $\frac{\text{MM'}}{dt}$ tend vers une valeur limite appelée vitesse actuelle.

Théorème 11. — Quand un solide pivote sur un point fixe, si deux points particuliers du solide ont l'un et l'autre une vitesse actuelle, tous les autres points du solide ont aussi une vitesse actuelle; celle-ci est la même que si le solide allait à partir de l'époque t continuer à tourner d'une rotation uniforme autour d'un axe convenable; ce théorème est une conséquence des théorèmes 8 et 10.

Les théorèmes précédents rapprochés de la notion des mouvements relatifs de pivotement et des lemmes de continuité conduisent à cette conséquence importante.

Théorème 12. — La combinaison de deux mouvements relatifs de rotation sur un même point pivot est au point de vue de la distribution des vitesses dans le dernier solide en mouvement, indépendante de l'ordre dans lequel on a envivisagé les droites U₁ U₂ pour définir le mouvement combiné; et la distribution des vitesses est la même que si le solide tournait avec une vitesse ω_3 autour d'un axe dont le pôle p_3 sur une sphère concentrique au pivot et sur l'arc p_1 p_2 qui joint les pôles séparés définis à l'époque t; de plus en faisant $x = p_1$ p_3 , $y = p_3$ p_2 , z = x + y, on aura

(7)
$$\frac{\omega_1}{\psi(y)} = \frac{\omega_2}{\psi(x)} = \frac{\omega_3}{\psi(z)}.$$

COROLLAIRE. — Si donc on considère les vecteurs ou segments représentatifs des rotations ω₁, ω₂, ω₃ portés sur ces axes, il existe une opération qui permet de déduire le troisième vecteur au moyen des deux premiers, et le vecteur ω₃ est dans le plan des deux premiers.

Théorème 13. — Lorsqu'un point M d'un solide éprouve par une rotation donnée un déplacement infiniment petit du premier ordre de M en M', un point m voisin de M par un écart d'ordre supérieur au premier viendra en m' et l'écart M'm' sera infiniment petit d'ordre supérieur au premier.

Théorème 14. - La combinaison de *n* rotations relatives concourantes définies plus haut est, au point de vue de la distribution des vitesses à l'époque *t*, indépendante de l'ordre qui a présidé à l'emboîtement des mouvements successifs.

COROLLAIRE. — Il existe une opération vectorielle définissant le vecteur résultant de plusieurs vecteurs donnés concourants, et cette opération jouit des propriétés suivantes :

- 1. L'opération est invariante (conséquence du théorème 9);
- 2. L'opération se réduit à l'addition algébrique des segments si les vecteurs sont portés par une même droite;
 - 3. L'opération est commutative (indépendante de l'ordre);

- 4. L'opération est associative (plusieurs vecteurs composants sont remplaçables par leur vecteur résultant);
 - 5. L'opération est continue;
- 6. L'ensemble de deux vecteurs n'est équivalent à zéro que si ces vecteurs, portés par une même droite, sont égaux et contraires.

III. — Composition des vecteurs.

Composition des vecteurs concourants d'un plan.

Nous allons indiquer l'interprétation analytique des faits qui précèdent. Soit F un vecteur, d'intensité f, émanant de O_1 et défini dans un plan en direction autour de ce point par l'angle orienté α que sa direction fait avec une droite OX.

Il résulte des propriétés de l'opération de composition des vecteurs que ce vecteur peut être décomposé en deux vecteurs X et Y agissant suivant Ox et Oy et que

$$X = f \cdot g(\alpha)$$
, $Y = f \cdot h(\alpha)$,

g et h désignant deux fonctions continues de l'angle α . L'invariance donne de suite les propriétés :

(I)
$$\begin{cases} g(-\alpha) = g(\alpha), & h(-\alpha) = -h(\alpha), \\ g(\alpha + 1^{dr}) = -h(\alpha), \\ h(\alpha + 1^{dr}) = h(\alpha), \end{cases}$$

enfin l'associativité et l'invariance combinées, nous donnent après une rotation arbitraire du système des axes de repère:

(E)
$$\begin{cases} g(u + v) = g(u)g(v) - h(u)h(v) \\ h(u + v) = h(u)g(v) + h(v)g(u) \end{cases} .$$

Les propriétés (I) et (E) nous donnent de suite l'équation fonctionnelle

(8)
$$\begin{cases} g(u+v) + g(u-v) = 2g(u)g(v), \\ \text{que nous associerons à la condition de continuité} \\ g(0) = 1. \end{cases}$$