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LES FONCTIONS ANGULAIRES

DANS LA GÉOMÉTRIE DE L'AJUSTAGE

I. — Quelques remarques sur la continuité.

Définition. — Un triangle sphérique dont aucun côté ne
dépasse un quadrant est dit un triangle sphérique réduit.

Lemme 1. Dans un triangle sphérique réduit tout angle
extérieur du triangle est plus grand que chacun des angles
intérieurs qui n'ont pas même sommet que lui.

Lemme 2.— Dans un triangle sphérique réduit la bissectrice
d'un angle intérieur partage le côté opposé en deux segments
dont l'ordre d'inégalité est le même que celui des côtés con-
tigus à ces segments.

Ce lemme^est une conséquence du précédent et de la
considération du triangle symétrique du proposé par rapport au

plan de l'arc de grand cercle bissecteur.
Théorème 1. — Dans tout triangle sphérique réduit, dont

les deux côtés de l'angle droit sont suffisamment inégaux et
suffisamment réduits, le rapport du plus petit y de ces côtés
au plus grand x de ces côtés est un nombre comparable au

/\nombre qui mesure l'angle C, opposé au côté y, lorsqu'on
prend l'angle droit pour unité.

En d'autres termes, on aura à la fois

Démonstration. — Considérons un triangle sphérique
ABC rectangle en A, dont AB est le côté le plus petit, soit C

ldroit x '
m et m' désignant deux

nombres finis.

L'Enseignement mathém., 8e année ; 1906. 17
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Tangle aigu opposé à ce côté ; sur AG portons ADi AB, et

joignons B et Di, par un are de grand cercle ; porlons
D1D2 BDi, et joignons B et D2 par un arc de grand cercle ;

et ainsi de suite ; soit D„ le dernier point obtenu sur AG dans
cette opération avant de franchir le point G.

Nommons in la valeur commune des angles de sommets
B et Di dans le triangle isocèle ADiB ; nommons de même 112

la valeur commune des angles de sommets B et D2 dans le

triangle isocèle B Di D2 ; et ainsi de suite. La considération
de l'excès sphérique dans ces triangles successifs nous donne

Ui Idroit

"» > 2—1 > TT
et par suite

ABD„ ut -|- u2 -f- us + -j- un > 1/1 (l + 2 4

ainsi donc :

(1) (!*•> CBA >2«1f l -V
2'v

Notons en passant cette conséquence :

L'angle aigu d un triangle sphérique rectangle et isocèle
dont les deux cotés de l'angle droit tendent vers zéro a pour
limite la moitié d'un droit.

Soit P le pôle de l'arc de grandeur AG, répétons à la suite

l'angle G autant de fois : q, qu'il est possible, dans l'angle
/\droit ACP; les bases opposées au sommet G et situées sur

AP dans ces triangles successifs vont en croissant ainsi que
les aires de ces triangles ; soit

/\ /\ACQ AGB x q
on a :

Kxyn ^ aire CQA
aire ABC <

<7

c'est-à-dire en prenant l'aire du triangle trireclangle comme
unité :

/\ /\
a un ^ - nr\ \ C ^ arc AC C

aire ABC < aire CQA a V., < 7 —r—ACQ 1 quadrant^ ACQ
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OU

/\
» arc AC C

(2) aire ABC <[ 1 quadrant ^ g
^

droit

0 désignant un nombre positif 1 ;

Fentier q sera supposé > 2.

D'ailleurs nous avons pour tirer parti de (2)

aire ABDn. <C a*re ABC

donc en vertu de (2)

^ ^ Un arc AC
un + ABD,* — ldr <

^ 01 quadrant
7

ou, à fortiori :

1 arc AC ~| / 1 \+ 2ut (i — -) — !* < i

1 arc AC "|
^ 01 quadrant I

El arc AC "I
% — I <

} 0 1 quadrant I

7

.m 1 arc AC "~| 2?/t 2^t
(3) «„ 11; - —A • -, I < idr - 2«, + ^- < 2^

Or nous avons

c'est-à-dire
x <i 2 w+i j

— < 2 —
2" a; '

donc en substituant dans (3) nous aurons celte limitation de un

y
Un 4?/j -

x M
1 arc AC

1 — 0 1 quadrant
7

et à fortiori
/\ L

BCA < y Ut —
j 1 .r ,x

1 — 0 1 quadrant
7
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et si

î < -1,
1 quadrant 3

(4) BCA < 12«, y-
X

Nous allons maintenant limiter le rapport ^ par l'angle C.

Sur AB prenons AD AC — x, et portons sur AB à partir
de A, AB -—y, autant de fois, soit /', que possible dans

AD ; AE (/• 4- 1) y > AD soit C"o l'angle EGA; et soit Co

l'angle DCA ;

ry < X < (r + 1) y

et en vertu d'une remarque précédente:

/\ /\<<(r+l|C
et à fortiori :

/\ /x \Co<(r + Ve '

d'où

/\
•y < £

x + c0

ce qui donne
/\

>

< '•
X ^ C0 — c

Théorème 2. — Extension du théorème précédent aux
triangles plans. Dans la géométrie de la droite fermée, le

plan est une variété de la sphère et la méthode précédente
s'applique alors sans modification. Nous n'avons alors qu'à
envisager le cas de la droite ouverte ; or, en laissant de côté
le cas classique d'Euclide, on sait que dans la géométrie de

la droite ouverte la somme des angles d'un triangle recti-
ligne est moindre que 2 droits d'une quantité qu'on appelle
le déficit du triangle.

Répétons alors la construction indiquée plus haut des

points successifs Di, D2,..., D/z situées sur AC et conservons
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les notations employées, nous aurons ici, en introduisant
x' — BG,

X 2 y ;

et
/\ 1 2r 2r
c < „» < 1**.. ^ < < —

ou
/\

— <-%-
1 droit \ r x

Telle est la limitation de l'angle G par le rapport ^ ; quant

à la limitation du rapport ~ par l'angle G elle ne souffre

aucune modification.
Remarque. — Les théorèmes précédents nous seront surtout

utiles en considérant des triangles rectangles dont le

plus grand côté de l'angle droit sera variable en tendant vers
zéro, c'est-à-dire infiniment petit.

On peut alors comme conséquence directe de ces
théorèmes énoncer ce résultat: si y est infiniment petit d'ordre
supérieur à l'ordre de x, l'angle G est infiniment petit avec x
et réciproquement.

De là encore les conséquences importantes qui suivent,
mais dont la démonstration est facile et intuitive :

Théorème 3. — Dans un cercle donné la corde qui est vue
du centre sous un angle infiniment petit est un infiniment
petit de même ordre et elle fait un angle infiniment petit
avec la perpendiculaire à l'extrémité du rayon.

Théorème 4. — Dans un triangle rectangle (sphérique ou
plan) dont le côté de l'angle droit x est fini et dont l'autre
côté y est infiniment petit, l'excès de l'hypoténuse z sur le
côté x est avec y dans un rapport qui est infiniment petit.

Théorème 5. — Sur le plan (ou sur la sphère) la longueur
d'un arc de cercle peut être définie comme la limite du
périmètre d'une ligne brisée inscrite dont les côtés tendent
simultanément vers zéro. (Remarque ; sur la sphère les éléments
de la ligne brisée sont évaluées angulairement par leurs
angles au centre de la sphère).
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Théorème 6. — La longueur L d'un arc de cercle dont
l'angle au centre est a, est déterminé, est une fonction continue

du rayon /• de l'arc et l'on peut écrire

(5) L aR(r) la fonction R est continue.

Théorème 7. — Ce théorème s'applique aussi sur la sphère,
en évaluant angulairement les longueurs d'arcs de grand
cercle et l'on a

(6) / — atp (7*) l et r étant évaluées angulairement.

Remarque. — Le rapport d'un arc infiniment petit à sa
corde tend vers l'unité.

II. Rotations finies autour d'axes concourants. Rotations relatives.

Théorème 8. — Quand un solide éprouve un déplacement
autour d'un point fixe, ce déplacement peut être obtenu par
une rotation convenable autour d'un axe convenable passant
par ce point fixe.

Théorème 9. — Quand un solide fixé par un point 0 éprouve
une rotation ai autour d'un axe Ui passant par ce point ; puis
une rotation a2 autour d'un axe U2 passant par ce point, le
déplacement final du solide peut être obtenu par une rotation
unique a3 autour d'un axe U3 passant par ce même point.

En représentant les axes par leurs images sphériques
orientées, sur une sphère de centre 0 la combinaison des

déplacements successifs (1) et (2) est définie comme il suit (toutes
les rotations ne dépassant pas un demi-tour) : Par le premier
pôle Pi menons un demi-arc de grand cercle Pi.r faisant avec
le demi-arc de grand cercle P1P2 un angle égal à la rotation

— olî ; par le second pôle P2 menons un demi-arc de grand

cercle P2y faisant avec le demi-arc de grand cercle P2P1

\
l'angle + jas.

Ces deux demi-arcs de grand cercle se coupent au point
Ps et l'angle de P3P2 avec le prolongement de P1P3 est égal à

,1+ 2 Äs'
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Définition des rotations relatives autour d un point fixe.
— Soient Ui, U2, des droites concourantes envisagées
dans l'ordre précité; considérons un premier solide Si animé

d'une rotation continue ai autour de Ui, puis, par rapport à

ce solide Si, considérons un second solide S2 en mouvement
relatif de rotation continue et décrivant ai par rapport à une

droite de Si qui coïncidait avec U2 à I époque t ; nous supposons

que les rotations continues et simultanées ai et «2

demeurent dans un rapport constant donné, on pourra poser par
exemple ai — wi (tr — t), «2 002 {tf — t),
les constantes coi et r,n seront alors les vitesses angulaires
des deux rotations relatives considérées.

On considérera de même un troisième solide se détachant
du solide S2 par une rotation continue «3, à vitesse constante
C03 autour d'une droite de S2 quià l'époque t coïncidait avec
U3 et ainsi de suite.

Nous définissons ainsi par des emboîtements successifs de

solides le mouvement d'un dernier solide S« en mouvement
relatif de rotation continue par rapport au solide précédent
S/i-i, cette rotation s'exécutant autour d'une droite de S7l_i, qui
coïncidait avec U„ à l'époque t. Le temps t ne joue ici que le
rôle d'une variable indépendante.

A l'égard de ces mouvements on a les théorèmes suivants :

Théorème 10. — Dans un mouvement de rotation uniforme
chaque point d'un solide possède une vitesse à l'époque t,
c'est-à-dire que si on envisage le déplacement MM' d'un point
du corps durant le temps dt tr — t, la direction MM' émanée

de M tend vers une direction limite lorsque dt tend vers
1 MM' Tzero et en meme temps le rapport tend vers une valeur

limite appelée vitesse actuelle.
Théorème 11. — Quand un solide pivote sur un point fixe,

si deux points particuliers du solide ont l'un et l'autre une
vitesse actuelle, tous les autres points du solide ont aussi
une vitesse actuelle ; celle-ci est la même que si le solide
allait à partir de l'époque t continuer à tourner d'une rotation

uniforme autour d'un axe convenable ; ce théorème est
une conséquence des théorèmes 8 et 10.
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Les théorèmes précédents rapprochés de la notion des
mouvements relatifs de pivotement et des lemmes de continuité

conduisent à cette conséquence importante.
Théorème 12. — La combinaison de deux mouvements

relatifs de rotation sur un même point pivot est au point de

vue de la distribution des vitesses dans le dernier solide en
mouvement, indépendante de l'ordre dans lequel on a envi-
visage les droites Ui U2 pour définir le mouvement combiné;
et la distribution des vitesses est la même que si le solide
tournait avec une vitesse «3 autour d'un axe dont le pole p%

sur une sphère concentrique au pivot et sur l'arc p\ p2 qui
joint les pôles séparés définis à l'époque t ; de plus en faisant

x=pi/?s, y — pzpz, z — x + y, on aura

to2 tos

ip(r) lp(a-) ~ ip(z)

Corollaire. — Si donc on considère les vecteurs ou
segments représentatifs des rotations &>i, w2, «3 portés sur ces

axes, il existe une opération quipermet de déduire le troisième
vecteur au moyen des deux premiers, et le vecteur G03 est
dans le plan des deux premiers.

Théorème 13. — Lorsqu'un point M d'un solide éprouve
par une rotation donnée un déplacement infiniment petit du

premier ordre de M en M', un point m voisin de M par un
écart d'ordre supérieur au premier viendra en m! et l'écart
M'm' sera infiniment petit d'ordre supérieur au premier.

Théorème 14. — La combinaison de n rotations relatives
concourantes définies plus haut est, au point de vue de la
distribution des vitesses à l'époque £, indépendante de l'ordre
qui a présidé à l'emboîtement des mouvements successifs.

Corollaire. — Il existe une opération vectorielle définissant

le vecteur résultant de plusieurs vecteurs donnés
concourants, et celte opération jouit des propriétés suivantes :

1. L'opération est invariante (conséquence du théorème 9);
2. L'opération se réduit à l'addition algébrique des

segments si les vecteurs sont portés par une même droite ;

3. L'opération est commutative (indépendante de l'ordre) ;



GÉOMÉTRIE DE L'AJUSTAGE 265

4. L'opération est associative (plusieurs vecteurs composants

sont remplaçables par leur vecteur résultant) ;

5. L'opération est continue;
6. L'ensemble de deux vecteurs n'est équivalent à zéro que

si ces vecteurs, portés par une même droite, sont égaux et

contraires.

III. — Composition des vecteurs.

Composition cles vecteurs concourants d'un plan.

Nous allons indiquer l'interprétation analytique des faits
qui précèdent. Soit F un vecteur, d'intensité f émanant de

Oi et défini dans un plan en direction autour de ce point par
l'angle orienté a que sa direction fait avec une droite OX.

Il résulte des propriétés de l'opération de composition des
vecteurs que ce vecteur peut être décomposé en deux
vecteurs X et Y agissant suivant Ox et 0y et que

x /"•#(«) • Y f-h{a)

g et h désignant deux fonctions continues de l'angle a.
L'invariance donne de suite les propriétés :

f g(— «)=#(«)> h{— ce) — h(fx)

(I) g [a + 1*') — h (a)
h (a + ldr) h\a)

enfin l'associativité et l'invariance combinées, nous donnent
après une rotation arbitraire du système des axes de repère:

(E)
s §(u -F v) ~ g(u)g(v) — h(u)h(v)
l h (u -f V) h(u)g(v) -f h(v)g(u) •

Les propriétés (I) et (E) nous donnent de suite l'équation
fonctionnelle

g(u + v) + g(u — V) 2g(u)gC)

(8) < que nous associerons à la condition de continuité

g(0) 1
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Nous aurons d'ailleurs ici la condition supplémentaire
g~(ldroit) 0. (8 bis). Or, j'ai démontré (Bull. Soc. Mathém. de

France, Année 1900) que toute fonction g continue, solution
de (8) doit admettre une fonction dérivée et que les seules
solutions continues de (8) sont alors :

j n oo

ou bien g(u)1 +2(-1)"0)2"1.2.31..2»= C°S I '

(9) {
ou bien

ou bien

'+2(-0,"r«br,= -^ï.
11= \

Dans le cas (jui nous occupe nous avons la condition
supplémentaire g (ldr) O et le premier type de solution convient
seul ici ; la constante k dépend du choix de l'unité d'angle.

k sera égal à 1 si on adopte une unité d'angle dans laquelle

l'angle droit'sera représenté par la plus petite racine y de

l'équation :

n co

1 (- 1)« —= i
1 ' 1.2.3...2n

Composition des vecteurs concourants dans l'espace. — En
décomposant un vecteur suivant les 3 arêtes d'un trièdre tri-
rectangle, on voit qu'on peut effectuer cette décomposition,
en apparence de trois manières différentes, et en exprimant
que ces trois modes sont : 1° compatibles, 2° uniques ; d'après
le 6rae caractère de la composition on obtient les relations
fondamentales qui existent entre les six éléments d'un triangle

sphérique.
Pour compléter l'étude du système (8), j'ajoute que si l'on

pose

H (<x) / s{z)dzJg[*V

on aura, en laissant de côté le cas de g (z) i, et après un
choix convenable de la variable z,
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g (et -f ß) g (a) g iß) — eH(a)H(ß)
H (a -f ß) g(a)E(ß) -f- giß) H (a)

e l si g(aj — cos a et en ce cas H (a) sin oc ;

(e — — 1) si g (a) — cos hyp oc et en ce cas H (a) — sin.hyp a

Composition des vecteurs d'un plan perpendiculaires à une
même droite et agissant d'un même côté. — Si on considère
2 rotations successives autour d'axes perpendiculaires à un

plan P et dirigés d'un même côté de ce plan, on voit que si elles
sont suffisamment petites, elles sont remplaçables par une
rotation unique perpendiculaire à ce plan; cette circonstance
va remplacer ici le rôle joué par le théorème 9 pour les
vecteurs concourants. De là et par les lemmes déjà utilisés on
conclut que :

Deux vecteurs d'égale intensité p, tous deux situés dans un
même plan, perpendiculaires à une même droite de ce plan,
et tirant d'un même côté de cette droite, admettent un
vecteur résultant perpendiculaire à la même droite et de plus
l'intensité de ce vecteur résultant a pour valeur 2 p S (x) ; x
désignant la demi-distance des points ouïes vecteurs composants

coupent la perpendiculaire commune, et S désignant
une fonction continue.

De plus, en considérant 2 paires de tels vecteurs dont les
pieds sur leur perpendiculaire commune sont distribués sur
cette droite symétriquement pa'r rapport à un même point,
on voit que le caractère continu et le caractère associatif de
la composition se traduisent encore par les conditions :

èm i s(*+j) + S(*—J) 2S (x) S (y)
1 ;

S (0) 1

Mais, cette fois la condition supplémentaire g (ldroit) — o de la

composition des vecteurs concourants n'a plus son analogue ;

en sorte que nous avons ici le choix entre les trois solutions
du problème 8, c'est-à-dire entre les trois déterminations :

ou S [x] ~ 1

ou S (x) COS éL
K

OC

ou S (x) — cos hyp —
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ce qui nous indique que la géométrie de l'ajustage va alors
bifurquer en trois variétés dont la géométrie d'Euclide est un
cas particulier.

La composition dans un plan de deux vecteurs inégaux
perpendiculaires de même sens sur une même droite
s'obtient d'ailleurs immédiatement en introduisant la fonction
R (r) de l'équation 5; il suffit de comparer les vitesses des

pieds A et B des deux vecteurs «1 et &)2 dans les mouvements
composants et dans le mouvement résultant, soit C situé entre

A et B le pied du vecteur résultantes; en faisant A G #,
C B =y.

Nous aurons de suite :

toi C*>2 tog

R (j) ~~ R(x) ~ R[x + y)

Comparons ce résultat qui concerne les vecteurs vitesses
de rotations à celui que fournit l'emploi de la fonction S; notre

argument de comparaison sera la généralisation d'une
méthode indiquée par Archimède. En effet, introduisons la
fonction H, définie plus haut; soit C' un point intermédiaire
entre A et B sur AB et soient C'A x\ C'B y', D le
symétrique de C' par rapport au pied A, E le symétrique de C'

par rapport au pied B.
Par le rôle de la fonction H ou par sa forme analytique déjà

indiquée, nous voyons que cette fonction est croissante dans
la géométrie de la droite ouverte, de même cette fonction est
croissante tant que la valeur de la variable n'atteint pas le

quart du tour de la droite, dans la géométrie de la droite
fermée, or on peut s'assurer en prenant la distance A B moindre

qu'un demi-tour de droite qu'il n'existe entre A et B

qu'un point C' tel que

toi 0>2

hF) H(7) '

Supposons le point C' ainsi déterminé, nous pourrons poser :

x'

^ — Iqfs(t) dt

0
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y'

<o2 — 2qJ S (£) dt — 2<jrH (y)
o

on peut alors considérer le vecteur toi comme le vecteur
résultant d'une infinité de paires de vecteurs chargeant
uniformément le segment CD avec la densité de charge q par
unité de longueur et en même temps le vecteur w2 sera le
résultat d'une charge de vecteurs infiniment petits chargeant
le vecteur C E avec la même densité de charge ; le vecteur
résultant de roi et de «2 sera donc un vecteur «3 perpendiculaire

à AB et dont le pied C" est au milieu de DE; ce
vecteur co3 est alors déterminé par la relation :

x' + y'

rog 2(f j*S (tj dt 2<r/H (x' -f- y')
o

d'ailleurs, si x" et y" sont les distances du point C" à A et B,
on a évidemment;

x" /, f — x'

en sorte que nous avons

Wj (*>2
-, i • •

HT7) H (x")
avec C0Ildltl0n x + y — ab s

comme nous avions tout à l'heure

fr-—- TT—T avec la condition x 4- r =z sR(j) R(x) J

mais de plus le point G" est le pied de vecteur résultant de
mi et de to2 comme le point C est le pied du vecteur résultant
des deux mêmes; donc G et C" se confondent et nous
concluons avec x" jj, et y" y

R Dj H (y)
R (oc) H (x)

et comme x et y peuvent être pris quelconques avec m et «2,
il en résulte que les fonctions J\(x) et H (m) sont proportionnelles

l'une à l'autre.
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La formule d'addition de la fonction H est donc applicable
à la fonction R et nous avons alors comme conséquence

des proportions
toi to2 to3

R j) R (a?) R [x -f- y)

la relation
tog rr: coi S [x) -f- to2 S (y)

Remarque. — Le raisonnement précédent eut pu s'appliquer

mot pour mot, par l'emploi d'une sphère, aux vecteurs
concourants et nous aurions trouvé alors pour la fonction
analogue de R (x) sur la sphère (a) la même proportionnalité :

ip [a) — h (a) m — sin a m

R (x) ~ H [x) 711'

Il reste à déterminer la constante m' car m est évidemment

égal à 1.

Pour y parvenir exprimons que la vitesse d'un point situé
sur le vectéur w3 résultant des vecteurs qui représentent les
vitesses des rotations concourantes coi et 002 est nul ; en nommant

x et y les distances d'un point de «3 aux droites &>i et «2

qui font avec on et 032 les angles ai et a2 nous aurons:

RM _ R (y)
sin at sin a2

car
toi R [x] — to2 R y)

et par la composition des vecteurs concourants

toi sin OLt — co2 sin a2

puisque
toi il (ai) to211 (a2)

par la méthode d'Archimède.
Rapprochons ce résultat du théorème fondamental sur le

dièdre.
Considérons une droite OA qui tourne d'un angle infiniment

petit autour d'un axe 01, soit OA' la position infiniment

voisine de OA; AA' est la corde d'un arc de cercle
de centre I ; soit de même B un autre point de OA qui vient
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en B' par la même rotation, BB' est la corde d un arc de cercle

de centre J situé sur l'axe 01 el d après la propriété du

dièdre, les angles AOA' et BOB' angles rectilignes d'un

même dièdre sont égaux.
D'autre part, dans le triangle isocèle AOA', et lorsque la

rotation considérée tend vers zéro, on a :

SÏEOT
R l0A| • Li" R |A'^

d'où, en divisant ces égalités membre à membre

Lim a"Sle AIA/
— R_19A1 — R(0B)

puisque AIA' BJB'.
angle AOA' R (Ol) R (01)

1 1

Ainsi donc le rapport R(QA (est une simple fonction de Lan-

/\
gle a AOI; désignons cette fonction par /'(AOI).

En rapprochant ce résultat de la proportion tout à l'heure
obtenue, savoir

R(x) R r)
sin «t sin a>

nous aurons:
/'(ai) _ f {a2)

sin sin a2

c'est-à-dire / (a) sin a.n, n élant constant.
Or, pour a ldroit, /(a) 1, comme sin a : donc n 1.

Démontrons enfin cpie m' 1, c'est-à-dire, en écartant le

cas euclidien, qu'une lois l'unité de longueur droite adoptée
de manière que

_ soit cos xSW= soit cos hyp. x

on aura
X

R (x) =R(x)=J'Sdz

0

il n'y a d'ailleurs besoin de démontrer le théorème que dans
la géométrie de la droite ouverte. Pour celà considérons sur
une sphère déterminée un petit cercle de la sphère dont 2

rayons sphériques PA et PB issus du pôle P font entre eux
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l'angle a, soit l la longueur de l'arc de ce petit cercle
intercepté, si r est le rayon de la sphère, on a :

l
RÛ — s i n 1 -— J a\R (r)/

Si les rayons AP et PB deviennent infiniment petits on

pourra donc écrire en vertu des résultats déjà acquis :

T.
I

Lim corde AP

Or si on projette la figure sur le plan du petit cercle, si
P'A est la projection de la corde AP, on a :

corde PA r /
Lim —— — 1 donc aussi, I.itn - zz: a ;

P A P A

or
l H (P'A) a .m'

H (P'A)
et comme a pour limite 1 quand P'A tend vers zéro, on a

Lim À
d'où, en comparant les deux limites de~^, on conclut m' 1.

Remarque. — Dans la géométrie de la droite ouverte et
dans un triangle plan qui a deux côtés infiniments petits le
déficit de la somme des angles à 2 angles droits est infiniment
petit.

IV. — Rotations relatives autour d'axes quelconques.

L'étude déjà faite d'un système de rotations relatives
autour d'axes concourants fournit un lemme important qui nous
permettra d'aller plus loin.

Lemme Fondamental. — Soient Ui et U2 deux droites
actuellement données et ne se coupant pas ; considérons 1111

premier corps solide Si animé d'une rotation uniforme de
vitesse angulaire «i autour de Ui, considérons la droite A2 de

ce solide qui coïncidait avec Ua à l'époque t, et envisageons
par rapport au solide Si un second solide S2 tournant sur Si

avec une vitesse angulaire constante m ; soit un certain point
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du solide S2, défini par sa position A à l'époque t; à l'époque

t ce point coïncide avec un certain point du solide Si qui
à l'époque t' sera venu en B, si on donne alors au point B la

rotation relative qu'il doit éprouver autour de la position
de A2 à l'époque t' avec vitesse angulaire «2 le point B vient
en C; C sera la position à l'époque /' occupée par le point
du solide S2 qui était en A à l'époque t.

Dautre part, considérons le vecteur issu de A qui représente

la vitesse linéaire due à une rotation de vitesse angulaire

&)! autour de Ui ; considérons encore le vecteur issu de

B qui représente la vitesse linéaire qu'aurait le point A s'il
tournait autour de U2 avec la vitesse angulaire C02 ; formons le

vecteur résultant de ces deux vecteurs concourants et multiplions

le par la durée t' — I, nous obtenons ainsi un vecteur
A D ; je dis que l'extrémité D de ce vecteur sera séparée du

point C par un écart inßniment petit d'ordre supérieur à l'ordre

de t1 — t.
Démonstration. — Observons d'abord que si Q3 est le

vecteur résultant de deux vecteurs concourants en 0, ûi et Û2

et que si M est un point de la perpendiculaire élevée de M

au plan des trois vecteurs û la vitesse V3 de M due à la rotation

Û3 sera un vecteur égal au vecteur résultant des deux
vecteurs vi et V2 qui représenteraient les vitesses linéaires
qui seraient dues aux rotations isolées Q, et Û2. (Conséquence

des résultats déjà acquis et de l'invariance de l'opération
vectorielle ; soit alors dt t' — t une durée infiniment
petite ; du mode d'équivalence des vecteurs concourants
interprétés par des vitesses de rotation on conclut que le vecteur
V3 dt est la limite de la droite qui ferme le contour de deux
vecteurs successifs MN et NN', lorsque ce contour se
modifie à tout instant de la durée dt de la manière suivante :

N est la position occupée à l'époque t + dt par un point de
Si qui était en M à l'époque t\ le segment NN' est la corde
d'un déplacement relatif de S2 par rapport à Si, et tournant
autour d'une droite A2. Cette corde variable est-elle même
entraînée avec le solide Si pendant que le point de départ N
de cette corde décrit d'un mouvement continu l'arc dont M N
est la corde dans la rotation Qi ; or pendant le déplacement

L'Enseignement mathém., 8° année; 1906. 18
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de Si nous pouvons envisager les segments NM et NN'
comme issus du point mobile N et repérés par rapport à un
trièdre de sommet N et qui serait invariablement lié au
solide Si ; or la droite NM issue de N et ainsi repérée tend
vers une droite déterminée de Si qui est la tangente en N à

l'arc M N, et de même la droite NN' issue de N et ainsi
repérée tend vers une droite déterminée de Si perpendiculaire
au plan de N et de la droite A2 qui à l'époque t porte Û2 ; ces
deux droites limites coïncident d'ailleurs à l'époque t avec
les vecteurs distincts Vi et —V2 ; on conclut de là aisément

par nos lemmes de continuité que :

1. le plan MNM' qui pivote sur M fait un angle infiniment
petit avec le plan des vecteurs Vi et V2 ;

2. l'angle que fait la droite NN' avec le vecteur NM est
infiniment peu différent du supplément de Tangle de V2 et
de Vi ;

3. TécarJ entre le point N' et l'extrémité du vecteur Y3 dt
est infiniment petit du second ordre;

4. l'extrémité du vecteur Y3 dt et le point où vient l'extrémité

du vecteur V2 dt par une translation Vi dt d'axe Vl sont
séparés par un écart infiniment petit du second ordre.

Nous pouvons maintenant achever la démonstration du
lemme.

Nous prendrons comme vecteurs Vi et V2 les vitesses
linéaires dues aux rotations isolées m sur Ui et «2 sur U2.

Ces vecteurs Vi etV2 peuvent être réalisés comme vitesses
linéaires dues à deux rotations concourantes et Ü2 en un
point 0 de la perpendiculaire élevée de M au plan de Vi et
de V2. D'autre part en considérant les positions relatives de
Si tournant autour de Ui puis de â2 tournant autour de Ä2

nous voyons que les cordes My et w' de ces deux déplacements

relatifs peuvent encore être repérées par rapport à un
trièdre de sommet v lié au solide Si, or bien que ce contour
variable Mvv' soit différent du contour variable MNN' envisagé

tout à l'heure, il possède, dans ses déplacements de

pivotement sur y dans Si,et de pivotement sur M dans

l'espace fixe, les propriétés suivantes:
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1. la droite Mv pivotant sur M tend vers la droite du

vecteur Vi ;

2. La corde w' pivotant sur y dans Si tend vers une droite
de St qui à l'époque t est dirigée suivant la droite qui porte
le vecteur V2 ;

3. enfin par les lemmes de continuité le plan de contour
Myy' et le plan de Vi et V2 font un angle infiniment petit;

4. par les mêmes lemmes le point v est à un écart du
second ordre du point où vient l'extrémité du vecteur V2 dt
subissant la translation dont l'axe est Vi dt et dont l'étendue

centrale est V., dt donc enfin le vecteur -^-issu de M a pour
valeur limite le vecteur V3 issu de M. C. Q. F. D.

Remarque. — Le cas où les vecteurs Vi et V2 seraient dans

un même plan exigerait une légère modification de la

démonstration.

Corollaire. — Le vecteur lim. V3 est indépendant

de l'ordre dans lequel sont envisagés les vecteurs on et 002

portés par Ui et par U2 donc :

Théorème 15. — Dans le mouvement qui résulte de deux
rotations relatives autour de deux axes donnés à l'époque t

tout point du second solide défini par sa position à l'époque
t a une vitesse indépendante de l'ordre des emboîtements
des solides entraînés.

Théorème 16. — Le théorème précédent se généralise de
lui-même pour le cas de n rotations relatives quelconques.

Théorème 17. — La vitesse linéaire d'un point du solide
S» défini par sa position cà l'époque t est le vecteur résultant

des vecteurs qui représentent pour les mêmes points les
vitesses linéaires dues aux rotations isolées coi, 012,... portées
par les axes Ui U2,... etc.

Définition des systèmes de vecteurs équivalents. — Le
système des vecteurs vitesses de rotation, 001,002..., 00», portés par
les droites Ui, U2 U„ définit donc, dans une composition
de mouvements relatifs, une distribution des vitesses qui à

l'époque t est indépendante de l'ordre dans lequel sont
envisagés ces vecteurs, tout vecteur go; peut d'ailleurs, sans changer

la distribution des vitesses dans l'espace envisagé àl'épo-
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que t, être décomposé en vecteurs concourants, en l'un
quelconque des points de la droite qui porte ce vecteur.

Enfin, par la nature même des vecteurs vitesses de rotation,

une paire de deux vecteurs égaux et contraires, portés
par une même droite, mais non immédiatement appliqués
au même point, forment, au point de vue de la distribution
des vitesses un ensemble équivalent à zéro, c'est-à-dire un
ensemble en équilibre; une telle paire se nomme paire de

vecteurs mutuels. Nous pouvons donc enfin énoncer le théorème

intéressant que voici :

Théorème 18. — Il existe des systèmes de vecteurs
équivalents et cette équivalence jouit des propriétés suivantes:

1. Tout système de vecteurs reste équivalent à lui-même
quand on lui ajoute ou lui retranche un nombre quelconque

de paires de systèmes de deux vecteurs mutuels;
2. un système de vecteurs concourants équivaut toujours

à un vecteur résultant déterminé comme nous l'avons vu ;

3. Un système de deux vecteurs ne peut équivaloir à zéro,
(c'est-à-dire produire une distribution de vitesses nulles) que
si ces vecteurs forment une paire de vecteurs mutuels.

Ces propriétés vont nous permettre d'achever la trigonométrie

plane.

V. — Réduction de Poinsot et Trigonométrie plane.

Soient V un vecteur, et 0 un point particulier de l'espace
d'ailleurs quelconque, soit FI le pied d'une perpendiculaire
abaissée de 0 sur V, et soit H' le point symétrique de H

par rapport au point 0. Considérons le vecteur V comme
appliqué en H ; remplaçons d'abord le vecteur VH par les

vecteurs (iv)H Qv) puis appliquons au point H' deux

vecteurs Wh' et — Whs perpendiculaires à OH dans le plan
1 1

(O Yh) et égaux respectivement à j VH et à — ^ VH ; c'est

permis puisque Wh' et — Wh' s'équilibrent. Soit x la
distance OH.
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Les vecteurs Y^ et + Wh' se composent en un vecteur

unique passant par 0 perpendiculaire à OH et égal à Y. S(#);
et il reste un groupe de deux vecteurs, perpendiculaires aux
extrémités d'une même droite, égaux, et de sens opposés
c'est ce que nous nommerons un couple; la droite menée

par 0 perpendiculaire au plan du couple est dite l'axe du

couple; si sur l'axe du couple on porte le produit 2VR (x)
dans un sens pour lequel la rotation que suscite l'idée du

couple soit orientée par une convention choisie une fois pour
toutes (rotation droite, gauche par exemple); ce segment se

nomme le moment du couple; oc est le bras de levier du

couple.
Moyennant ces définitions la transformation précédente

peut ainsi s'énoncer :

Théorème 19. — Tout vecteur Y équivaut à un certain
vecteur passant par 0 et à un couple dont l'axe passe aussi par
le point 0.

Théorème 20. — Deux couples de même axe et de sens
contraire équivalent à zéro si leurs vecteurs perpendiculaires

à une même droite sont en raison inverse des fonctions
R de leurs bras leviers.

Démonstration. — Soient Pi, Qi les vecteurs du premier
couple appliqués aux points respectifs At et Ri soient P2, Q2

les vecteurs du second couple appliqué respectivement aux
points A2 et B2. A2 et Ai sont d'un même côté de 0, mais Pi
et P2 sont perpendiculaires à ODi et de sens contraires, les
vecteurs Pi et P2 ont un vecteur résultant % passant par 0
car si x et y sont les demi bras de levier des deux couples
on a, par hypothèse :

Pi _ J\__ ©
R y) ~ R [x) ~ R {x -p j) '

or, par un demi tour exécuté autour de l'axe commun de leurs
couples le vecteur © résultant de Pi et de P2 se change dans
le vecteur ©' résultant de Qi et de Q2 ; mais © et ©', égaux et
directement contraires, s'équilibrent.

Théorème 21. — Deux couples qui ont même moment sont
équivalents.
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Théorème 22. — Si plusieurs couples ont des axes
concourants, ces couples se composent en un seul dont le
moment est un vecteur résultant des moments des couples
composants.

Theoreme 23. — Un système quelconque de vecteurs peut
toujours se réduire à un vecteur unique passant par 0 et à

un couple dont Vaxe passe par 0; et le système proposé ne
peut équivaloir à zéro que si ces deux derniers éléments se
réduisent séparément à zéro Y un et l'autre.

Ceci est une conséquence de la réduction même et du
caractère (3) de l'équivalence.

Telle est la réduction que nous appelons la réduction de

Poinsot; Poinsot le premier la fit connaître dans la géométrie

d'Euclide.
Théorème 24. La réduction de Poinsot renferme la trigonométrie

plane.
Démonstration. — Considérons un vecteur porté par la

droite A B, et soit C un troisième point quelconque de

l'espace ; si nous exprimons que le vecteur Y dirigé de B vers
A dans le triangle ABC fournit dans la réduction de Poinsot

les mêmes éléments, lorsque ce vecteur successivement
considéré comme appliqué en A puis en B, est préalablement

décomposé sur son point d'application en deux
vecteurs dont l'un est sur la droite qui réunit ce point d'application

au point C et dont l'autre est perpendiculaire à cette
droite ; soit B l'angle du triangle ABC qui a son sommet
en B, soit A l'angle du triangle qui a son sommet en A, soit
enfin C l'angle du triangle qui a son sommet en C, l'identité
des deux réductions de Poinsot, ci-dessus mentionnées, nous
donne, en désignant par a, b, c les côtes du triangle :

sinA.R(/;) sinB.R(#)

(e) < S (6) sin A — sin B cos CS (a) + sin C cos B

cos A sin B sin CS (a) — cos B cos C

Ce système e ne change pas par la permutation du groupe
{«, A) avec le groupe (£, B) ; de plus en vertu des identités

S2 (œ) — eR2(x') 1 sin2 a -f- cos2 a — 1
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les trois équations e se réduisent aux deux dernières du

groupe.
Ces groupes peuvent être permutés, mais ifs se réduisent

en définitive à trois relations, par exemple aux trois suivantes:

cos A 4- cos B cos C
S {a) ~ p —77 »

v sm B sm C

^ cos B -4- cos C cos A
S [b) r.sin L sin A

cos C + cos A cos B
'C' sin À sin B

Le cas de S (x) £E 1 donne la géométrie d'Euclide, mais
dans ce cas particulier les trois relations précédentes se

réduisent à une et il faut grouper autrement les relations si

on veut obtenir un groupe de 3 relations essentielles.
Mais dans tous les cas la réduction de Poinsot a fourni la

trigonométrie plane, comme l'étude du pivotement sphérique
nous avait donné, après la composition des rotations
concourantes, les formules de la trigonométrie sphérique.

Y. — Statique et Cinématique réunies.

Bien que seule l'interprétation des vecteurs comme axes
et vitesses de rotations relatives nous ait conduits à démontrer

l'existence de systèmes équivalents de vecteurs, la
méthode employée montre que tout mode d'équivalence entre
divers systèmes de vecteurs, qui satisfait aux conditions
logiques énoncées plus haut, entraîne 3 types possibles pour
les relations métriques dans l'espace ; mais, une fois adopté
le type d'espace, après particularisation des propriétés
métriques, il n'y a plus qu'un mode possible d'équivalence entre

les divers systèmes de vecteurs.
Ainsi donc les vecteurs forces se réduisent et se composent

exactement comme les vecteurs vitesses de rotations.
Voici des conséquences intéressantes de ces faits :

Nous avons vu plus haut que les moments des couples de
vecteurs possèdent à leur tour les propriétés essentielles
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de vecteurs simples ; mais ces vecteurs d'un nouveau genre
admettant aussi des couples, il y aura lieu de se demander
ce que représentent ces couples de couples par rapport aux
vecteurs du premier genre.

Voici la réponse très simple à cette question, réponse dont
la justification s'apercevra d'une manière intuitive par la théorie

des vecteurs perpendiculaires à une même droite. Ainsi
donc :

Théorème 25. — e désignant un nombre égal à 1 dans la
géométrie de la droite ouverte non euclidienne égal à — 1

dans la géométrie de la droite fermée, égal à zéro dans la
géométrie d'Euclide, et si on prend comme mesure du
moment le double produit du vecteur multiplié par la fonction
R du demi bras de levier, un couple de moments, dont le
moment nouveau est ^ équivaut à un vecteur V porté sur
l'axe du couple du second genre et l'on a

f* — — sV

en sorte que dans l'espace d'Euclide un couple de couples
équivaut à zéro.

Remarque. — Ce théorème fournit en Statique non
euclidienne une détermination très simple de l'axe central d'un
système de vecteurs.

VI. — La notion du travail et le moment mutuel
de deux systèmes de vecteurs.

On a vu que la vitesse de tout point d'un solide animé de
diverses rotations relatives est un vecteur égal au vecteur
résultant des vecteurs qui représentent les vitesses dues aux
rotations isolées ; considérons alors deux systèmes de
vecteurs S et S', faisons représenter à l'un d'eux un système
de forces, et à l'autre un système de rotations relatives et
considérons le déplacement infiniment petit 2 d'un solide
qui résulte de ces rotations relatives pendant le temps dt soit
F une des forces de S ; soit v dt le déplacement infiniment
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petit de son point d'application, le travail de la force F par
rapport à ce déplacement est

/\lYvdt cos (F, Y) pdt ;

ce travail est encore égal à la somme des produits des
rotations par le moment de chaque force par rapport à l'axe de

cette rotation, cette somme étant multipliée par clt ; cette
seconde définition devra donc être indépendante des rôles attribués

aux deux groupes de vecteurs; p s'appelle le moment
du groupe des deux systèmes de vecteurs.

Théorème 26. — Le moment d'un groupe de deux systèmes

de vecteurs demeure invariable quand on remplace l'un
ou l'autre des systèmes par un système équivalent.

Dernière remarque. — Pour terminer cette genèse
cinématique de la géométrie naturelle il resterait à établir que
tout mouvement continu quelconque d'un solide dont trois
points formant triangle ont à un moment donné des vitesses,
possède à ce même moment une distribution générale de
vitesses ; la démonstration est facile, et doit précéder c'est-
à-dire dominer l'emploi d'aucun système de coordonnées
spécialisé.

Mais je m'arrête ici, mon but était de préciser avec une
rigueur complète le rôle des fonctions angulaires dans la
géométrie naturelle. Ce rôle éclairé par l'idée d'Archimède
et l'idée de Poinsot, nous conduit avec la plus grande
simplicité à ce résultat : qu'il existe trois structures possibles
de l'espace et trois seulement, compatibles avec la symétrie
et les déplacements des solides.

Jules Andrade (Besançon).
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