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LES FONCTIONS ANGULAIRES
DANS LA GEOMETRIE DE I’AJUSTAGE

I. — Quelques remarques sur la continuité.

DgrinitTioN. — Un triangle sphérique dont aucun co6té ne
dépasse un quadrant est dit un triangle sphérique réduit.

LeMME 1. Dans un triangle sphérique réduit tout angle ex-
térieur du triangle est plus grand que chacun des angles in-
térieurs qui n’ont pas méme sommet que lui.

LemMME 2. — Dans untriangle sphérique réduit la bissectrice
d’un angle intérieur partage le coté opposé en deux segments
dont 'ordre d'inégalité est le méme que celui des cotés con-
tigus a ces segments.

Ce lemmeqest une conséquence du précédent et de la con-
sidération du triangle symétrique du proposé par rapport au
plan de l'arc de grand cercle bissecteur.

TaeorEME 1. — Dans tout triangle sphérique réduit, dont
les deux cotés de I'angle droit sont suffisamment inégaux et
suflisamment réduits, le rapport du plus petit y de ces cotés
au plus grand x de ces cotés est un nombre comparable au

o A
nombre qui mesure I'angle C, opposé au coté y, lorsqu’on
prend l'angle droit pour unité.

En d’autres termes, on aura a la fois

G ¥
—_ I =, m ; -
if il x m et m” désignant deux
, y 6\ nombres finis.
— r ., .
x — 1droit * m;
DemonstRATION. — Considérons un triangle sphérique

N\
ABC rectangle en A, dont AB est le coté le plus petit, soit C

L’Enseignement mathém., 8¢ année ; 1906. 17
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I'angle aiguopposé a ce coté; sur AC portons AD1 = ADB, et
joignons B et D1, par un arc de grand cercle ; porlons
Di1D2 = BDx, et joignons B et Dz par un arc de grand cercle ;
et ainsi de suite; soit D, le dernier point obtenu sur AC dans
cette opération avant de franchir le point C.

Nommons w1 la valeur commune des angles de sommets
B et D:1 dans le triangle isocele AD1B; nommons de méme wue
la valeur commune des angles de sommets B et D2 dans le
triangle isocéle B D1 Dz ; et ainsi de suite, La considéralion
de 'exces sphérique dans ces triangles successifs nous donne

g /1d1'oit

-1 > 920

Un > 2—71——

et par suite

A 1 | 1
ABDn = ws 4+ us 4+ s 4 ... 4 wn > wy (1 + 5 =+ i + -+ Qn-l> ’
ainsl done : |

~ .
(1) ‘ (19 >~ CBA > 2u <1 — Ql_) .

Notons en passant cette conséquence :
L’angle aigu d'un triangle sphérique rectangle et isocele
dont les deux cotés de 'angle droit tendent vers zéro a pour

limite la moitié d’un droil.
Soit P le péle de I'arc de grandeur AC, répétons a la suite

A
I’angle C autant de fois: ¢, qu’il est possible, dans l'angle

> A )
droit ACP; les bases opposées au sommet C et situées sur
AP dans ces triangles successifs vont en croissant ainsi que
les aires de ces triangles ; soil

N\ AN
ACQ = ACB x ¢ ,
on a :
aire ABC < M—é ,
q

c’est-a-dire en prenant 'aire du triangle trirevlangle comine

unité :
c ac C
arc 4 4
aire AB ir : .
aire C < aire CQA ACO < T quadrant A/C\() ;

~
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ou
AC ()
(2) aire ABC < ——¢ '

1 quadrant ’ L 9)‘1"0“ ’
q

6 désignant un nombre positif <1 ;

I'entier ¢ sera supposé > 2.
D’ailleurs nous avons pour tirer parti de (2)

aire ABD, < aire ABC ,

donc en vertu de (2)

>

Un arc AC
6 1 quadrant ’

1 — —

q

Un + ABD,L _ 1(1" <

ou, a fortiort :

‘ 1 arc AC ( 1 )
— . 2 —_— —_ A4dr
Un [1 Hh 1 quadrant] + 2us (1 on tar <0,

1 2
q

1 arc .AC . 2uy 2uy
; “nm[v; N 6 "1 qlladrzmt]< e 20 o

Or nous avons

x < 2",-'—1:),' ,
c’est-a-dire

1 ¥

5n <2 ol

donc en substituant dans (3) nous aurons celte limitation de u,

. 1
tun < 41114% 1 1 arc AC
1 — 6 1 quadrant
q
et a fortiori
VAN 1 )
BCA < 41(1 - o =

1 —E 1 quadrant
q
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et s1
x ‘ 1
‘1 quadrant < 3’
(4) - BCA <124, L.

Nous allons maintenant limiter le rapport J par 'angle C.
X

Sur AB prenons AD = AC =ux; et portons sur AB a par-
tir de A, AB =y, autant de fois, soit », que possible dans
AD ; AE=(r 4+ 1)y > AD soit C"o 'angle ECA; et soit Co
I’'angle DCA;

ry x < (r+ 1)y
et en vertu d’une remarque précédente :

/> N\
C, < (r+ 1)¢

et a fortiori

/L\<(f+1>/c\

d’ou
o
’y' i
: < -,
x4y C,
ce qui donne
T
g
.72<c ~C
0 W 4
TukoriMeE 2. — Extension du théoréme précédent aux

triangles plans. Dans ‘la géométrie de la droite fermée, le
plan est une variété de la sphére et la méthode précédente
s’applique alors sans modification. Nous n’avons alors qu’a
enviéager le cas de’la droite ouverte ; or, en laissant de coté
le cas classique d’Euclide, on sait que dans la géométrie de
-la droite ouverte la somme des angles d’un triangle recti-
ligne est moindre que 2 d1°01ts d une quantlte qu'on appelle
le déficit du triangle. = ‘

Répétons alors la construction 1ndlquee plus haut des
points successifs D1, De,..., Dn situées sur AC et conservons
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les notations employées, nous aurons ici, en introduisant
x' = BG,

a < 2n+ly
et |
A\ | 1 e 2 2y
C <”n</1dr01t_ §7L< 1 101_";.; < — ,
ou
N\
C 2
] droit < ¥ o

Telle est la limitation del'angle G par le rapport gg ; quant

a la limitation du rapport J par I'angle C elle ne souffre au-
o

cune modification. ﬁ

ReMARQUE. — Les théorémes précédents nous seront sur-
tout utiles en considérant des triangles rectangles dont le
plus grand coté de 'angle droit sera variable en tendant vers
zéro, c’est-a-dire infiniment petit.

On peut alors comme conséquence directe de ces théo-
remes énoncer ce résultat: si y est infiniment petit d’ordre
supérieur a l'ordre de @, I'angle G est infiniment petit avec x
et réciproquement.

De la encore les conséquences importantes qui suivent,
mais dont la démonstration est facile et intuitive :

TreEorEME 3. — Dans un cercle donné la corde qui est vue
du centre sous un angle infiniment petit est un infiniment
petit de méme ordre et elle fait un angle infiniment petit
avec la perpendiculaire a I'extrémité du rayon.

TukorEME 4. — Dans un triangle rectangle (sphérique ou
plan) dont le coté de I'angle droit x est fini et dont l'autre
coté y est infiniment petit, I'excés de I'hypoténuse z sur le
coté x est avec y dans un rapport qui est infiniment petit.

TutorkME 5. — Sur le plan (ou sur la sphére) la longueur
d’un arc de cercle peut &tre définie comme la limite du péri-
meétre d'une ligne brisée inscrite dont les c6tés tendent si-
multanément vers zéro. (Remarque; sur la spheére les éléments
de la ligne brisée sont évaluées angulairement par leurs
angles au centre de la sphére).
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TrEOREME 6. — La longueur L d’un arc de cercle dont
I'angle au centre est «, est déterminé, est une fonction conti-
nue du rayon r de 'arc et 'on peut écrire

(9) L=aR(r), la fonction R est continue.

TuEoriME 7. — Ce théoréme s’applique aussisur la sphére,
en évaluant angulairement les longueurs d’arcs de grand
cercle et I'on a

(6) [l = a}(r), l et r étant évaluées angulairement.

ReMARQUE. — Le rapport d'un arc infiniment petit a sa
corde tend vers l'unité.

II. Rotations finies autour d’axes concourants. Rotations relatives.

THEOREME 8. — Quand un solide éprouve un déplacement
autour d’un point fixe, ce déplacement peut étre obtenu par
une rotation convenable autour d'un axe convenable passant
par ce point fixe.

TueEorREME 9. — Quand un solide fixé par un point O éprouve
une rotation a1 autour d’'un axe U passant par ce point; puis
une rotation a2 autour d’un axe Uz passant par ce point, le
déplacement final du solide peut étre obtenu par une rotation
unique «s autour d’un axe Us passant par ce méme point.

En représentant les axes par leurs images sphériques
orientées, sur une sphére de centre O la combinaison des dé-
placements successifs (1) et (2) est définie comme il suit (toutes
les rotations ne dépassant pas un demi-tour) : Par le premier
pole Pr menons un demi-arc de grand cercle P1.x faisant avec

. —) , . .
le demi-arc de grand cercle PiP2 un angle égal a la rotation

1 . :
— 5 a1; par le second pole Pz menons un demi-arc de grand

. . e =
cercle Pzy faisant avec le demi-arc de grand cercle PzPi
. 1
Pangle + 5 a2

Ces deux demi- arcs de grand cercle se coupent au point

Ps et angle de PsP: avec le prolongement de P1Ps est égal a

1
+ 5 as
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Définition des rotations relatives autour d’un poi.nt fize.
— Soient Ui, Us, Us,..., des droites concourantes envisagees
dans I'ordre précité ; considérons un premier solide S animé
d’une rotation continue o aulour de Ui, puis, par rapport a
ce solide Si, considérons un second solide S2 en mouvement
relatif de rotation continue et décrivant «» par rapport a une
droite de Si1 qui coincidait avec Uz & I'époque ; nous suppo-
sons que les rolations continues et simultanées o1 et a2 de-
meurent dans un rapport conslant donné, on pourra poser par
exemple a1 = o1 (' — ). 02 = w2 (I’ — ¥),
les constantes o1 et w2 seront alors les vilesses angulaires
des deux rotations relatives considérées.

On considérera de méme un troisieme solide se détachant
du solide Se par une rotation continue «s, a vilesse constante
ws autour d’'une droite de Sz quia 'époque ¢ coincidait avec
Uz et ains1 de suite.

Nous définissons ainsi par des emboitements successifs de
solides le mouvement d’un dernier solide S, en mouvement
relatif de rotation continmue par rapport au solide précédent
S,-1, cette rotation s’exécutant autour d’une droite de S,_4, qui
coincidait avec U, a 'époque ¢. Le temps ¢ ne joue ici que le
role d’une variable indépendante.

A légard de ces mouvements on a les théorémes suivants :

TrtoremME 10. — Dans un mouvement de rotation uniforme
chaque point d'un solide posséde une vitesse a 'époque ¢,
c'est-a-dire que sion envisage le déplacement MM’ d'un point
du corps durant le temps d¢ =1 —t, la direction MM’ éma-
née de M tend vers une direction limite lorsque dt tend vers

’

tend vers une valeur

Sro et sme t 1 o
Zero et en meme emps c I'prOlt a1

limite appelée vitesse actuelle.

Tuekoreme 11. — Quand un solide pivote sur un point fixe,
si deux points particuliers du solide ont 'un et I'autre une
vitesse actuelle, tous les autres points du solide ont aussi
une vitesse actuelle; celle-ci est la méme que si le solide
allait & partir de I’époque ¢ continuer a tourner d’une rota-
tion uniforme autour d’'un axe convenable ; ce théoréme est
une conséquence des théorémes 8 et 10.
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Les théorémes précédents rapprochés de la notion des
mouvements relatifs de pivotement et des lemmes de conti-
nuité conduisent a cette conséquence importante.

THEOREME 12. — La combinaison de deux mouvements re-
latifs de rotation sur un méme point pivot est au point de
vue de la distribution des vitesses dans le dernier solide en
mouvement, indépendante de l'ordre dans lequel on a envi-
visagé les droites Uy Uz pour définir le mouvement combiné ;
et la distribution des vitesses est la méme que si le solide
tournait avec une vitesse o3 autour d'un axe dont le pole ps
sur une sphére concentrique au pivot et sur l'arc p1 p2 qui
joint les poles séparés définis a 'époque ¢; de plus en faisant

X=p1ps, Yy=pspz, 3=+ Y, ON aura

(7) (O3] L W2 . (O]
L AN JEVRE AT
CoroLLAIRE. — Si donc on considére les vecteurs ou seg-

ments représentatifs des rotations w1, w2, ws portés sur ces
axes, il existe une opération qui permet de déduire le troisiéme
vecteur au moyen des deux premiers, et le vecteur ws est
dans le plan des deux premiers.

TueorkEMe 13. — Lorsqu’un point M d’un solide éprouve
par une rolation donnée un déplacement infiniment petit du
premier ordre de M en M’, un point m voisin de M par un
écart d’ordre supérieur au premier viendra en m’ et 'écart
- M’'m’ sera infiniment petit d’ordre supérieur au premier.

TutorkME 14. -— La combinaison de n rotations relatives
concourantes définies plus haut est, au point de vue de la
distribution des vitesses al’époque ¢, indépendante del'ordre
qui a présidé a 'emboitement des mouvements successifs.

Cororraire. — Il existe une opération vectorielle définis-
sant le vecteur résultant de plusieurs vecteurs donnés con-
~courants, et celte opération jouit des propriétés suivantes :

1. Lopération est invariante (conséquence du théoréeme 9);

2. L’opération se réduit & I'addition algébrique des seg-
ments si les vecleurs sont portés par une méme droite ;

3. L’opération est commutative (indépendante de l'ordre);
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4. L’opération est associative (plusieurs vecteurs compo-
sants sont remplacables par leur vecteur résultant);

5. L’opération est conlinue;

6. L'ensemble de deux vecteurs n’est équivalent & zéro que
si ces vecteurs, portés par une méme droite, sont égaux el
contraires.

I1I. — CGomposition des vecteurs.

Composition des vecteurs concourants d’un plan.

Nous allons indiquer linterprétation analytique des faits
qui précedent. Soit F un vecteur, d’intensité /; émanant de
O: et défini dans un plan en direction autour de ce point par
I'angle orienté « que sa direction fait avec une droite OX.

I1 résulte des propriétés de 'opération de composition des
vecteurs que ce vecteur peut étre décomposé en deux vec-
teurs X et Y agissant suivant Ox et Oy et que

X=f.gle). Y=Ffhla,

g et i désignant deux fonctions continues de I'angle «
L’invariance donne de suite les propriétés :

g gl—a)=gla), hl—a)=—ha),
0 ) gle +1%) = — ha)
2 hioe 4 1%) = hia) ,

enfin 'associativité et I'invariance combinées, nous donnent
apres une rotation arbitraire du systéme des axes de repére:

glu +v) = glu)gly) — hlw)h(y) ,
w4 vy = h(u)g(v) + h(v)g(u)

Les propriétés (I) et (E) nous donnent de suite I’équation
fonctionnelle |

® )

g glu 4+ v) + glu — v) = 2g(u)gly) ,
(8) e que nous associerons a la condition de continuité

g0)=1.
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. Nous aurons d’ailleurs ici la condition supplémentaire

g1 = 0. (8 bis). Or, j'ai démontré (Bull. Soc. Matheém. de
France, Année 1900) que toute fonction g continue, solution
de (8) doit admettre une fonction dérivée et que les seules so-
lutions continues de (8) sont alors :

=
. ‘ w\2n 1 —_ u
ou bien glu)y =1 —1—2 (— 1y < ) (35 9, — % 7>
n=1
o) =
9 bi 1 . w\2n 1 _— Lo &
ou bien 8lu) = —}—2 <71> 133 9, — cos hyp ya
‘ n=1

ou bien glu)y=1.

Dans le cas qui nous occupe nous avons la condition sup-
plémentaire g (1) =0 et le premiertype de solution convient
seul ici; la constante & dépend du choix de 'unité d’angle.

k sera égal a 1 si on adopte une unité d’angle danslaquelle

. . s , . . '3
I’angle droit'sera représenté par la plus petite racine - de

lﬁ , e .
equation:
n=
x2en
1 g __ 1 no____
T 193, 2n
n_l
Composition des vecteurs concourants dans lespace. — En

décomposant un vecteur suivant les 3 arétes d’un triéedre tri-
rectangle, on voit qu’an peut effectuer cette décomposition,
en apparence de trois maniéres différentes, et en exprimant
que ces trois modes sont: 1° compatibles, 2° uniques; d’apres
le 6™¢ caractére de la composition on obtient les relations
fondamentales qui existent entre les six éléments d'un trian-
gle sphérique.

Pour compléter I’étude du systéme (8), j'ajoute que si l'on

pose
74

H («) :fg(z)dz ;

0

on aura, en laissant de coté le cas de g (z) = 1, et aprés un
choix convenable de la variable z,
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gla + B = gla)g(f) — el{w) H(f) .
H(a + 8) = g(«)H(B) + () H () ,
e=1s1gle) =cosu , et en ce cas Hla) = sin a ;
(e = — 1)sig(x) = cos hypa , etencecas H(a)=sinhypa.

Composition des vecteurs d'un plan perpendiculaires a une
méme droite et agissant d’un méme coté. — Si on considére
2 rotations successives autour d’axes perpendiculaires a un
plan P et dirigés d’un méme coté dece plan, on voit que si elles
sont suffisamment petites, elles sont remplacables par une
rotation unique perpendiculaire a ce plan; cette circonstance
va remplacer ici le role joué par le théoréme 9 pour les vec-
teurs concourants. De la et par les lemmes déja utilisés on
conclut que :

Deux vecteurs d’égale intensité p, tous deux situés dans un
méme plan, perpendiculaires a une méme droite de ce plan,
et tirant d'un méme co6té de cette droite, admettent un vec-
teur résultant perpendiculaire a la méme droite et de plus
lintensité de ce vecteur résultant a pour valeur 2 p S (x); x
désignant la demi-distance des points ou les vecteurs compo-
sants coupent la perpendiculaire commune, et S désignant
une fonction continue.

De plus, en considérant 2 paires de tels vecteurs dont les
pieds sur leur perpendiculaire commune sont distribués sur
cette droite symétriquement pdr rapport a un méme point,
on voit que le caractére continu et le caractére associatif de
la composition se traduisent encore par les conditions :

S(@ +y) + S(x — yl = 28 (x)S (y) ,

1) S(0)=1.

Mais, cette {ois la condition supplémentaire g (1) —=o0 de la
composition des vecteurs concourants n’a plus son analogue ;
en sorte que nous avons ici le choix entre les trois solutions
du probléme 8, c’est-a-dire entre les trois déterminations :




268 Jo ANDRADE

ce qui nous indique que la géométrie de 'ajustage va alors
bifurquer en trois variétés dont la géométrie d’'Euclide est un
cas particulier.

.La composition dans un plan de deux vecteurs inégaux
perpendiculaires de méme sens sur une méme droite s’ob-
tient "d’ailleurs immédiatement en introduisant la fonction
R (r) de I'équation 5; il suffit de comparer les vitesses des
pieds A et B des deux vecteurs w1 et w2z dans les mouvements
cowposants et dans le mouvement résultant, soit C situé en-
tre A et Ble pied du vecteur résultant ws; en faisant A C = x,
CB=uy. | |

" Nous aurons de suite :

(DT (A7) [OF]

R(y  Rix) Rz +g)

Comparons ce résultat qui concerne les vecteurs vitesses
de rotations a celui que fournit I’emploi de la fonction S no-
tre argument de comparaison sera la généralisation d'une
méthode indiquée par Archimede. En effet, introduisons la
fonction H, définie plus haut; soit C' un point intermédiaire
entre A et B sur AB et soient C'A = a', C'B =7, D le sy-
métrique de C' par rapport au pied A, E le symétrique de C’
par rapport au pied B.

Par le réle de la fonction H ou par sa forme analytique déja
indiquée, nous voyons que cette fonction est croissante dans
la géométrie de la droite ouverte, de méme cette fonction est
croissante tant que la valeur de la variable n’atteint pas le
quart du tour de la droite, dans la géométrie de ladroite fer-
mée, or on peut s’assurer en prenant la distance A B moin-
dre qu’'un demi-tour de droite qu’il n’existe entre A et B
qu’'un point C’ tel que

Supposons le point C’ ainsidéterminé, nous pourrons poser :

xl

Wy = 2qu (t) dt = 2qH.(x') ,
0
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’

- 2([J'S(t) dt = 2qH (y') ,

0

on peut alors considérer le vecteur w1 comme le vecteur ré-
sultant d’'une infinité de paires de vecteurs chargeant unifor-
mément le segment C'D avec la densité de charge ¢ par
unité de longueur et en méme temps le vecteur w2 sera le ré-
sultat d'une charge de vecteurs infiniment petits chargeant
le vecteur CG' E avec la méme densité de charge; le vecteur
résultant de w1 et de w2z sera donc un vecteur ws perpendicu-
laire 2 AB et dont le pied C* est au milieu de DE; ce vec-
teur ws estalors déterminé par la relation:

x'+y
dt = 2qH (x" 4 ') ,

0

d’ailleurs, si " et y” sont les dlstances du point C" a A et B,
on a évidemment;

en sorte que nous avons

Wy (O

H (y”) — H (xll)

avec la condition " 4 3" = AB = s, -

comme nous avions tout a ’heure

—— T ——— avec la condition x -+ y=-s,

o
o
)

mais de plus le point C” est le pied de vecteur résultant de
w1 et de w2 comme le point C est le pied du vecteur résultant
des deux mémes; donc C et C” se confondent et nous con-
cluons avec 2" = x, et y" =y

et comme x et y peuvent élre pris quelconques avec g1 cl w2,
il en résulte que les fonctions R(}c) et H () sont proportion-
nelles 'une a 'autre
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La formule d’addition de la fonction H est donc applica-
ble a la fonction R et nous avons alors comme conséquence
des proportions

(OF] Ws w3

Riy) — R{x) — Rz +y)

la relation
w; — w;S(x) + wS(y) .

REMARQUE. — Le raisonnement précédent eut pu s’appli-
quer mot pour mot, par 'emploi d’'une sphere, aux vecteurs
concourants et nous aurions trouvé alors pour la fonction
analogue de R (x) surla spheére ¢ (2) la méme proportionnalité :

Yia)= h(a).m = sin «.m
R(x)= H(x).m".

Il reste a déterminer la constante m' car m est évidem-
ment égal a 1.

Pour y parvenir exprimons que la vitesse d'un point situé
sur le vectéur ws résultant des vecteurs qui représentent les
vitesses des rotations concourantes w1 et w2 est nul ; en nom-
mant x et y les distances d’un point de ws aux droites w1 et w2
qui font avec w1 et w2 lesangles a1 et a2 nous aurons:

Rix) _ R{y)

sin a, sin ap

car

et par la composilion des vecteurs concourants

w; SIn @y — w,Sin oy
puisque
CA)1H (al) = OJZH (ag)

par la méthode d’Archiméde.

Rapprochons ce résultat du théoreme fondamental sur le
diedre.

Considérons une droite OA qui tourne d’'un angle infini-
ment petit autour d’'un axe OI, soit OA’ la position infini-
menl voisine de OA; AA" est. la corde d’'un arc de cercle
de cenlre 1; soit de méme B un aulre point de OA qui vient
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en B’ par la méme rolation, BB’ estla corde d'un arc de cer-
cle de centre J situé sur Paxe OI et d’apres la propriété du
diedre, les angles AOA’ et BOB’ angles rectilignes d’un
méme diedre sont égaux.
D'autre part, dans le triangle isocele AOA’, et lorsque la
rotation considérée tend vers zéro, on a:
AA’ AA’

T — im ———— — R(AL} ;
m angleAOA’ R0 . Lim angle ATA’ W]

Li
d’ou, en divisant ces égalités membre a membre

« 4 /\ /\
angle ATA R(OA) _ R(OB)j . puisque AIA" = BJB’.

Lim =222 -~ — =
angle AOA’ R (OI) R (OI)
Ainsi donc le rapporl R101) est une simple fonction de 1'an-
c R(OA] P

~
gle o = AOI; désignons ceite fonction par f(AOI).

En rapprochant ce résultat de la proportion tout & l'heure
obtenue, savoir

R(x) _ Ry

sin «;  sin o,
nous aurons:

flag)  [los)

siney;  sinog

c'est-a-dire f(z) = sin «.n, n élant constant.

Or. pour o = 17, f(a) =1, comme sin «; donc n = 1.
Démontrons enfin que m’ =1, c’esl-a-dire, en écartant le

cas euclidien, qu'une fois l'unité de longueur droite adoptée

de maniere que

solt cosx
S{x) =

soit cos hyp. x

on aura

R (x) = H («) :fS(:)dz .
0

il n'y a d’ailleurs besoin de démontrer le théoreme que dans

la géométrie de la droite ouverle. Pour cela considérons sur
une sphére déterminée un pelit cercle de la sphére dont 2
ravons sphériques PA et PB issus du pole P font entre eux
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I'angle «, soit /la longueur de 'arc de ce petit cercle inter-
cepté, si rest le rayon de la sphére, on a :

I (AP)
R(r)__..sm R_(7) % .

Si les rayons AP ¢t PB deviennent infiniment petits on
pourra donc écrire en vertu des résultats déja acquis :

: [ :
L rde AP — ©°
Or si on projette la figure sur le plan du petit cercle, si

P’A est la projection de la corde AP, on a:

corde PA : . [
IJ —_— T > B "v "' 57 — ;
1m PR 1, donc aussi [.1m PTA «
or
= H(P'A) . a.m,
H(P'A) .- / 4
et comme ——— a pour limite 1 quand P’A tend verszéro,on a
Lim P A —a.m,

d’ou, en comparant les deux limites del—)—f—A, on conclutm’ =1.

REMARQUE. — Dans la géométrie de la droite ouverte et
dans un triangle plan qui a deux cotés infiniments petits le
déficit de la somme des angles a 2 angles droits est infiniment

petit.

[V. — Rotations relatives autour d’axes quelconques.

L’étude déja faite d'un systeme de rotations relatives au-
tour d’axes concourants fournit un lemme important qui nous
permettrad’aller plus loin.

LeuMME FonpaMENTAL. — Soient Ui et Uz deux droites actu-
ellement données et ne se coupant pas; considérons un pre-
mier corps solide Si animé d’une rotation uniforme de vi-
tesse angulaire o1 autour de Ui, considérons la droite Az de
ce solide qui coincidait avec Uz a I'époque ¢, et envisageons
par rapport au solide Si un second solide Sz tournant sur S
avec une vitesse angulaire conslante w2 ; soit un certain point
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du solide Sz, défini par sa position A al'époque ¢; a I'épo-
que ¢ ce point coincide avec un certain point du solide S1 qui
a 'époque ¢’ sera venu en B, si on donne alors au point B la
rotation relative qu’il doit éprouver autour de la position
de Az a 'époque ¢’ avec vitesse angulaire wz le point B vient
en C; C sera la position a I’époque ' occupée par le point
du solide Sz qui étaiten A a I'époque ¢.

Dautre part, considérons le vecteur issu de A qui repré-
sente la vitesse linéaire due a une rotation de vitesse angu-
laire o, autour de Uz ; considérons encore le vecteur issu de
B qui représente la vitesse linéaire qu’aurait le point A s'il
tournait autour de Us avec la vitesse angulaire wz; formons le
vecteur résultant de ces deux vecteurs concourants et multi-
plions le par la durée ¢’ — t, nous obtenons ainsi un vecteur
A D; je dis que Uextrémité D de ce vecteur sera séparée du
point C par un écartinfiniment petit d’ordre supérieur a l'or-
dre de 1! — i. _ | '

DimonstraTION. — Observons d’abord que si Qs est le vec-
teur résultant de deux vecteurs concourants en O, Qi et Q=
et que si M est un point de la perpendiculaire élevée de M
au plan des trois vecteurs Q la vitesse ¢vs de M due a la rota-
“tion Qs sera un vecteur égal au vecteur résultant des deux
vecteurs o1 et ¢z qui représenteraient les vitesses linéaires
qui seraient dues aux rotations isolées Q, et Q2. (Conséquen-
ce des résultats déja acquis et de I'invariance de ['opération
vectorielle ; soit alors d¢ = ¢’ — ¢ une durée infiniment pe-
tite; du mode d’équivalence des vecteurs concourants inter-
prétés par des vitesses de rotation on conclut que le vecteur
Vs dt est la limite de la droite qui ferme le contour de deux
vecteurs successifs MN et NN’, lorsque ce contour se mo-
difie 4 toul instant de la durée dt de la maniére suivante:

N est la position occupée a I’époque ¢ + dt par un point de
S1 qui était en' M a I’époque ¢; le segment NN’ est la corde
d’un déplacement relatif de Se par rapport 4 Si1, et tournant
autour d’une droite Az. Cette corde variable est-elle méme
entrainée avec le solide Si pendant que le point de départ N
de cette corde décrit d’'un mouvement continu 'arc dont M N
est la corde dans la rotation Qi; or pendant le déplacement

L’Enseignement mathém., 8¢ année; 1906. 18
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de Si nous pouvons envisager les segments NM et NN’
comme issus du point mobile N et repérés par rapport a un
triedre de sommet N et qui serait invariablement lié au so-
lide S1; or la droite NM issue de N et ainsi repérée TEND
vers une droite déterminée de Si qui est la tangente en N a
arc M N, et de méme la droite NN’ issue de N et ainsi re-
pérée tend vers une droite déterminée de S1 perpendiculaire
au plan de N et de la droite A2 qui a 'époque ¢ porte Qz; ces
deux droites limites coincident d’ailleurs a 1'époque ¢ avec
les vecteurs distincts Vi et — Va; on conclut de la aisément
par nos lemmes de continuité que :

1. le plan MNM' qui pivote sur M fait un angle infiniment
petit avec le plan des vecteurs Vi et Vz ;

2. Pangle que fait la droite NN’ avec le vecteur NM est
infiniment peu différent du supplément de I'angle de Va et
de Vi;

3. I'écarf entre le point N’ et l'extrémité du vecteur Vs d¢
est infiniment petit du second ordre;

4. I'extrémité du vecteur Vs dt et le point ou vient I'extré-
mité du vecteur Vz d¢ par une translation Vi dt d’axe V, sont
séparés par un écart infiniment petit du second ordre.

Nous pouvons maintenant achever la démonstration du
lemme.

Nous prendrons comme vecteurs Vi et Vz les vitesses liné-
aires dues aux rotations isolées w1 sur Ui et wz sur Us.

Ces vecteurs Vi et Ve peuvent étre réalisés comme vitesses
linéaires dues 4 deux rotations concourantes Qi et {2 en un
point O de la perpendiculaire élevée de M au plan de Vi et
de Vz. D’autre part en considérant les positions relatives de

'S1 tournant autour de Ui puis de J=2 tournant autour de Az

nous voyons que les cordes My et w' de ces deux déplace-
ments relatifs peuvent encore étre reperées par rapport a un
triedre de sommet v lié au solide Si, or bien que ce contour
variable Myy’ soit différent du contour variable MNN’ envi-
sagé tout a l'heure, il possede, dans ses déplacements de
pivotement sur v dans Si.et de pivotement sur M dans I'es-
pace fixe, les propriétés suivantes:
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1. la droite My pivotant sur M tend vers la droite du vec-
teur Vi;

2. La corde vy’ pivotant sur v dans St tend vers une droite
de S, qui a ’époque ¢ est dirigée suivant la droite qui porte
le vecteur Vaz ; '

3. enfin par les lemmes de continuité le plan de contour
My’ et le plan de Vi et V2 font un angle infiniment petit;

4. par les mémes lemmes le point »' est a un écart du se-

cond ordre du point ou vient 'extrémité du vecteur Va2 di

subissant la translation dont I'axe est Vi dt et dont 1'étendue
.Vl
centrale est V, d¢ donc enfin le vecteur —dt——1Q5u de M a pour
valeur limite le vecteur Vs issu de M. C. Q. F. D.
REMARQUE. — Le cas ou les vecteurs Vi et Vz seraient dans

un méme plan exigerait une légére modification de la dé-
monstration.

. My’ . ,
COROLLAIRE. — Le vecteur lim. - = Vs est mdependant

de l'ordre dans lequel sont envisagés les vecteurs o1 et w2

‘portés par Up et par Uz donc:

TutoreME 15. — Dans le mouvement qui résulte de deux
rotations relatives autour de deux axes donnés a l'époque ¢
tout point du second solide défini par sa position a I’époque
¢ a une vitesse indépendante de l'ordre des emboitements
des solides entrainés.

TaeoreME 16. — Le théoréme précédent se généralise de
lui-méme pour le cas de n rotations relatives quelconques.
TuéoreME 17. — La vitesse linéaire d'un point du solide

S, défini par sa position a |’époque ¢ estle vecleur résul-
tant des vecteurs qui représentent pour les mémes points les
vitesses linéaires dues aux rotations isolées w1, me,... porlées

par les axes Ui Us,... etc.

Définition des systemes de vecteurs e’quimlem,‘s. — Le sys-
teme des vecteurs vitesses de rotation, wt, w2..., wn, portés par
les droites Ui, Uz..., U, définit donc, dans une compoqmon
de mouvements relatlfs, une distr Lbutwn des vitesses qui a
I'époque ¢ est indépendante de 'ordre dans lequel sont envi-
sagés ces vecteurs, tout vecteur w; peut d’ailleurs, sans chan-
ger la distribution des vitesses dans I'espace envisagé al'épo-
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que ¢, étre décomposé en vecteurs concourants, en l'un quel-
conque des points de la droite qui porte ce vecteur.

Enfin, par la nature méme des vecteurs vitesses de rota-
tion, une paire de deux vecteurs égaux et contraires, portés
par une méme droite, mais non immédiatement appliqués
au méme point, forment, au point de vue de la distribution
des vitesses un ensemble équivalent a zéro, c’est-a-dire un
ensemble en équilibre; une telle paire se nomme paire de
vecteurs mutuels. Nous pouvons donc enfin énoncer le théo-
reme intéressant que voici:

TueEoriEME 18. — Il existe des systémes de vecteurs équi-
valents et cette équivalence jouit des propriétés suivantes:

1. Tout systeme de vecteurs reste équivalent a lui-méme
quand on lui ajoute ou lui retranche un nombre quelcon-
que de paires de systémes de deux vecteurs mutuels;

2. un systéme de vecteurs concourants équivaut toujours
a un vecteur résultant déterminé comme nous l'avons vu;

3. Un systeme de deux vecteurs ne peut équivaloir a zéro,
(c’est-a-dire produire une distribution de vitesses nulles) que
si ces vecteurs forment une paire de vecteurs mutuels.

Ces propriétés vont nous permettre d’achever la trigono-
métrie plane.

V. — Réduction de Poinsot et Trigonométrie plane.

Soient V un vecteur, et O un point particulier de 'espace
d’ailleurs quelconque, soit H le pied d'une perpendiculaire
abaissée de O sur V, et soit H' le point symétrique de H
par rapport au point O. Considérons le vecteur V comme
appliqué en H; remplacons d’abord le vecteur Vy par les

1 1 ‘ ‘ .
vecteurs <§V>H, <§ V)H puis appliquons au point H deux
vecteurs Wy et — W, perpendiculaires a OH dans le plan
1 .
— 3 Vg cest

permis puisque Wy et — Wy s’équilibrent. Soit x la dis-
tance OH.

| ) : 1 \
(O, Vg) et égaux respectivement & 5 V, et a
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1 .
Les vecteurs (-2- V)H et + Wy se composent en un vecteur

unique passant par O perpendiculaire 4 OH et égal a2 V.S (z);
et il reste un groupe de deux vecteurs, perpendiculaires aux
extrémités d’'une méme droite, égaux, et de sens opposés
c'est ce que nous nommerons un couple; la droite menee
par O perpendiculaire au plan du couple est dite I'axe du
couple; si sur I'axe du couple on porte le produit 2VR (x)
dans un sens pour lequel la rotation que suscite 'idée du
couple soit orientée par une convention choisie une fois pour
toutes (rotation droite, gauche par exemple); ce segment se
nomme le moment du couple; x est le bras de levier du
couple.
 Moyennant ces définitions la transformation précédente
peut ainsi s’énoncer :

TueoreME 19. — Tout vecteur V équivaut a un certain vec-
teur passant par O et a un couple dont 'axe passe aussi par
le point O.
' Tuforime 20. — Deux couples de méme axe et de sens
contraire équivalent a zéro si leurs vecteurs perpendiculai-
res a une méme droite sont en raison inverse des fonctions
R de leurs bras leviers.
- DimonsTraTION. — Soient P1, Q1 les vecteurs du premier
couple appliqués aux points respectifs A, et Bi soient Pz, Q2
les vecteurs dusecond couple appliqué respectivement aux
points Az et Bz. Az et A1 sont d'un méme co6té de O, mais P;
et Pz sont perpendiculaires 4 OD1 et de sens contraires, les
vecteurs P1 et Pz ont un vecteur résultant ® passant par O
carsi x et y sont les demi bras de levier des deux couples
on a, par hypothése :

P, P, B

R{y) R Rty °

or, par un demi tour exécuté autour de ’axe commun de leurs
couples le vectenr © résultant de P1 et de P2 se change dans
le vecteur @ résultant de Q1 et de Qz; mais © et &, égaux et
directement contraires, s’équilibrent.

TuEoREME 21. — Deux couples qui ont méme moment sont
équivalents.
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TrneorEME 22. — Si plusieurs couples ont des axes con-
courants, ces coupies se composent en un seul dontle mo-
ment est un vecteur résultant des moments des couples com-
posants.

TuEorEME 23. — Un systeme quelconque de vecteurs peut
toujours se réduire a un vecteur unique passant par O et a
un couple dont I'axe passe par O; et le systéme proposé ne
peut équivaloir a zéro que si ces deux derniers éléments se
réduisent séparément a zéro I'un et 'autre.
~ Cecl est une conséquence de la réduction méme et du ca-
ractere (3) de I’équivalence.

Telle est la réduction que nous appelons la réduction de
Poinsor; Poinsot le premier la fit connaitre dans la géomé-
trie d'Euclide.

TueoreME 24. La réduction de Poinsot renferme la trigono-
métrie plane.

DiEmonsTrRATION. — Considérons un vecteur porté par la
droite A B, et soit G un troisiéme point quelconque de l'es-
pace; si nous exprimons que le vecteur V dirigé de B vers
A dans le triangle A B C fournit dans la réduction de Poin-
sot les mémes éléments, lorsque ce vecteur successivement
considéré comme appliqué en A puis en B, est préalable-
ment décomposé sur son point d’application en deux vec-
teurs dont I'un est sur la droite qui réunit ce point d’appli-
cation au point C et dont I'autre est perpendiculaire a cette
droite ; soit B l'angle du triangle A B C qui a son sommet
en B, soit A 'angle du triangle qui a son sommeten A, soit
enfin C I'angle du triangle qui a son sommet en C, l'identité
des deux réductions de Poinsot, ci-dessus mentionnées, nous
donne, en désignant par «, 0, ¢ les cotes du triangle:

sin A.R (b)) = sin B.R (a) ,
(e) ¢ S(b)sin A = sinB cos CS(a) 4 sin Ccos B ,

cos A — sin B sin CS (a) — cos Bcos C .

Ce systeme e ne change pas par la permutation du groupe
(a, A) avec le groupe (b, B); de plus en vertu des identités

S%(x) — eR2(x) = 1 ,‘ sin?a + cos’a =1

?
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les trois équations e se réduisent aux deux derniéres du

groupe. |
Ces groupes peuvent étre permutés, mais ils se réduisent
en définitive a trois relations, par exemple aux trois suivantes:

cos A 4 cos Bcos C

Sla) = sin B sin C ’
cos B 4+ cos Ceos A

Shy = sin C sin A ’
cos C 4+ cos A cos B

S(c) = .

sinA.sinB

Le cas de S (x) = 1 donne la géométrie d’Euclide, mais
dans ce cas particulier les trois relations précédentes se ré-
duisent a une et il faut grouper autrement les relations s1
on veut obtenir un groupe de 3 relations essentielles.

Mais dans tous les cas la réduction de Poinsot a fourni la
trigonométrie plane, comme 'étude du pivotement sphérique
nous avait donné, aprés la composition des rotations con-
courantes, les formules de la trigonométrie sphérique.

V. — Statique et Cinématique réunies.

Bien que seule l'interprétation des vecteurs comme axes
et vitesses de rotations rélatives nous ait conduits & démon-
trer 'existence de systémes équivalents de vecteurs, la mé-
thode employée montre que tout mode d'équivalence entre
divers systémes de vecteurs, qui satisfait aux conditions lo-
giques énoncées plus haut, entraine 3 types possibles pour
les relations métriques dans 'espace ; mais, une fois adopté
le type d’espace, aprés particularisation des propriétés mé-
triques, iln’y a plus qu’'un mode possible d’équivalence en-
tre les divers systémes de vecteurs.

Ainsi donc les vecteurs forces se réduisent et se composent
exactement comme les vecteurs vitesses de rotations.

Voici des conséquences intéressantes de ces faits :

Nous avons vu plus haut que les moments des couples de
vecteurs possédent & leur tour les propriétés essentielles
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de vecteurs simples ; mais ces vecteurs d’'un nouveau genre
admettant aussi des couples, il y aura lieu de se demander
ce que représentent ces couples de couples par rapport aux
vecteurs du premier genre.

Voici la réponse trés simple a cette question, réponse dont
la justification s’apercevrad’une maniére intuitive par lathéo-
‘rie des vecteurs perpendiculaires a une méme droite. Ainsi
donc: |

THEOREME 25. — ¢ désignant un nombre égal a 1 dans la
géométrie de la droite ouverte non euclidienne égal a — 1
dans la géométrie de la droite fermée, égal azéro dans la
geométrie d'Euclide, etsi on prend comme mesure du mo-
ment le double produit du vecteur multiplié par la fonction
R du demi bras de levier, un couple de moments, dont le
moment nouveau est p équivaut a un vecteur V porté sur
I’axe du couple du second genre et I'on a

@ — ¢V ,

€

en sorte que dans l'espace d’'Euclide un couple de couples
équivaut a zéro.

REMARQUE. — Ce théoreme fournit en Statique non eucli-
-dienne une détermination trées simple de "axe central d’un
systeme de vecteurs.

VI. — La notien du travail et le moment mutuel
de deux systémes de vecteurs.

On a vu que la vitesse de tout point d’un solide animé de
diverses rotations relatives est un vecteur égal au vecteur
résultant des vecteurs quireprésentent les vitesses dues aux
rotations isolées ; considérons alors deux systémes de vec-
teurs S et S', faisons représenter a I'un d’eux un systéme
de forces, et 4 l'autre un systéme de rotations relatives et
considérons le déplacement infiniment petit 2 d’un solide
qui résulte de ces rotations relatives pendant le temps d soit
F une des forces de S; soit ¢ d¢t le déplacement infiniment
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petit de son point d’application, le travail de la force F par
rapport a ce déplacement est

VAN
2Fvdt cos (F, V) = pdt ;

cetravail est encore égal a la somme des produits - des rota-
tions par le moment de chaque force par rapport a I’axe de
cette rotation, cette somme étant multipliée par di; cette se-
conde définition devra donc étre indépendante des roles attri-
bués aux deux groupes de vecteurs; p s'appelle le moment
du groupe des deux systémes de vecteurs.

- TuEoriME 26. — Le moment d'un groupe de deux syste-
mes de vecteurs demeure invariable quand on remplace 'un
ou l'autre des systémes par un systeme équivalent.

DERNIERE REMARQUE. — Pour terminer cette genése ciné-
matique de la géométrie naturelle il resterait a établir que
tout mouvement continu quelconque d'un solide dont irois
points formant triangle ont 4 un moment donné des vitesses,
posséde a ce méme moment une distribution générale de
vitesses; la démonstration est facile, et doit précéder c’est-
a-dire dominer 'emploi d’aucun systéme de coordonnées
spécialisé. |

Mais je m'arréte ici, mon but était de préciser avec une
rigueur complete le role des fonctions angulaires dans la
géométrie naturelle. Ce role éclairé par I'idée d’Archimede
et I'idée de Poinsot, nous conduit avec la plus grande sim-
plicité &4 ce résultat: qu’il existe trois structures possibles
de I'espace et trois seulement, compatibles avec la symétrie
et les déplacements des solides.

Jules AxprADE (Besancon).
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