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MÉLANGES ET CORRESPONDANCE

Règle mnémonique pour retenir les analogies de Delambre.

(Extrait d'une lettre de M. d'OcagneL

«... En interrogeant les élèves sur l'Astronomie, je me suis
aperçu de la difficulté qu'ils ont, en général, à écrire de mémoire
au tableau les analogies de Delambre dont le secours est indispensable

pour la résolution logarithmique des triangles sphériques.
J'ai été ainsi amené à leur proposer la règle suivante :

Les analogies de Delambre rentrent toutes dans la forme

KAI).m r(î)»m
où cp, ip sont des sin et cos. En outre :

1° fet ip sont toujours différents ;

2° on a, sous cp, le signe -f- ou le signe —, suivant que f est sin
ou cos ;

3° on a, sous iff le même signe que sous 93, ou non, suivant que
ip est le même que 9), ou non.

Cela permet d'écrire sans hésitation :
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Remarque. — La très intéressante observation de M. d'Ogagne
peut se résumer symboliqjuement, d'une façon encore plus concise.

Si on assimile, dans chacun des membres, les signes sin et -f-,
cos et —, -f- et +, — et —, chaque relation est caractérisée, dans
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le premier membre, par trois signes a, ß, y et dans le second par

On a toujours y — a, c'est-à-dire que le symbole du premier
membre est aßa ; et dès lors, celui du second [arß'yr)est ß — a — ß.

Si on écrit trois fois a-, ß et si on change le signe du dernier
groupe

a ß a ,ß — a — ß

il suffît de diviser cette suite en deux moitiés

(a ß a) (ß — a — ß)

pour obtenir les deux symboles caractérisant l'une quelconque des

quatre relations. C.-A. L.

Un théorème sur la Géométrie moderne.

Voici un théorème de Géométrie moderne qui, je crois, est
nouveau.

Théorème. — Etant donnés deux triangles perspectifs ABC et
A'B'C', tels que les sommets A', B', C' soient situés un à un sur
les côtés du triangle ABC, on a

BX.CY.AZ B'X'. C'Y'. A'Z'
CX.AY.BZ C'X'. A'Y'. B'Z'

1

X,X' étant les points d'intersection avec BC et B'C' d'une droite passant par A.
Y,Y' » )> » » CA et C'A' » » B,
Z,Z' » » » » AB et A'B' » » C.

Démonstration. — Soit D le point d'intersection des droites AX
et BB'. Si l'on considère AX comme transversale par rapport aux
triangles BB'C, C'BB', on a

1
BX.CA.B'D
CX.B'A.BD

d'où l'on déduit

,t _ AC'.CA.BX.B'X'
— AB'.AB.CX.C'X' '

On a de la même manière

BA'.AB.CY.C'Y'

BD. B'X. C'A
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