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SUR LES ELEMENTS DE LA THEORIE
DES ENSEMBLES ORDONNES

Au moment ou la théorie des ensembles tend a constituer
le fondement méme des mathématiques, il ne paraitra peut-
étre pas sans intérét de rechercher s’il ne serait pas avanta-
geux de modifier légérement le point de vue auquel s’est
placé G. Cantor pour 'exposé des éléments de la théorie des
ensembles ordonnés. Cet exposé gagnerait a notre avis, une
allure plus naturelle si I'on rapportait la notion d’ordre, qui
en est la base, a la notion plus générale d'inclusion.

Pour effectuer cette transposition, il suffit de remarquer
qu’il est équivalent de dire qu’un élément déterminé 71 d’un
ensemble M précede un autre élément déterminé ms ou que
I'ensemble des éléments qui précedent mi est inclus dans
Iensemble des éléments qui précedent mz. Il résulte de cette
remarque que « ordonner un ensemble M, c’est définir des
« ensembles formés d'éléments de M (ou sous-ensembles de
« M), tels que deux quelconques de ces ensembles donnent
« toujours lieu a une relation d’inclusion ».

Soit S un ensemble de sous-ensembles de M satisfaisant
a la condition qui vient d’étre énoncée (ces sous-ensembles
seront dits les termes de S). A tout élément m de M corres-
pond un ensemble G(m) (évidemment fonction de m) formé
de tous les éléments qui apparliennent a I'un au moins des
termes de S n'admettant pas m comme élément; on peut éga-
lement distinguer '’ensemble F(m) formé par les éléments
de M qui appartiennent aux mémes termes de S que m. En-
fin on peut en outre considérer I'ensemble G'(m) composé
des ensembles G(m) et F(m). Ces divers ensembles sont par-
faitement "définis ; car chacune des qualités: qui les caracté-
risent appartient ou n’appartient pas 4 tout élément déter-
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miné de M. L’ensemble F(m) correspond a l'idée de coupure,
(qui ne saurait étre concue en dehors de l'idée d'ordre; les
ensembles G(m) ou G’ (m) représentent la grandeur, a laquelle
donne lieu toule relation d’ordre.

Sil'on exprime par le signe ' < la relation d’'inclusion sans
identité d’'un ensemble dans un autre, on démontre que la
condition nécessaire et suffisante pour que deux éléments
déterminés mi et mz de M soient tels qu’il existe un terme
au moins de S admettant n1 et non pas mz est:

G (my) < G (my)  ou G’ (my) < G’ (my) .

De méme, la condition nécessaire et suffisante pour que
deux éléments mu et mz appartiennent aux mémes termes de
S consiste dans l'identité de G(mi) et G(m,) ou bien encore
de G'(m1) et G' (me). | |

La relation exprimée dans la théorie de l'ordre par les
mots « compris entre » est évidemment directement appli-
cable. Les ensembles G(m) et G'(m) sont toujours des termes
de la suite? S si celle-ci est partout disjointe, c’est-a-dire si
les termes compris entre deux quelconques des termes de S
sont en nombre fini (sans exclusion du nombre zéro). Dans
le cas ou la suite S est partout compacte, c’est-a-dire ou deux
termes quelconques en comprennent toujours d’autres, G(m)
et G'(m) ne peuvent pas faire partie a la fois de cette suite;
mais ces derniers ensembles n’en sont pas moins parfaite-
ment définis.
~ Si 'on appelle champ d'une suite d’ensembles I'ensemble
formé par les ¢léments qui appartiennent & un au moins
des termes de cette suite, il est clair que toute suite d’en-
sembles, méme dépourvue de dernier terme, donne lieu a
un champ, et I'on obtient ainsi la définition la plus naturelle
de la limite d’une suite sans dernier terme: la notion de
limite se trouve ainsi établie d'une maniére plus générale
et surtout plus directe que par la méthode habituelle, et il

1 La signification habituelle de ce signe n’est qu’un cas particulier de celle-ci par suite de
I’équivalence des idées d’ordre et d’inclusion. :

2 Nous dirons, pour abréger le discours, que des ensembles tels que deux quelconques
d’entr’eux donnent toujours lien & une relation d’inclusion forment une suize.
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suffit de démontrer la propriété qui, dans cette méthode, sert
de définition. On se trouve ensuite naturellement amené a
la considération des notions introduites par G. Cantor: en-
sembles enchainés, parfaits, etc., en adjoignant au besoin,
aux termes de la'suite S, d’autres ensembles dont chacun
doit posséder la propriété de contenir les ensembles G'(m)
relatifs 4 tous ses éléments. G. ComBEBIAC (Bourges).

SUR UNE EXTENSION POSSIBLE DE LA NOTION
DE VRAIE VALEUR

Toute collection de faits analytiques conduit a un essai de

coordination et cet essai peut quelquefois aboutir & 1'établis-

sement d’une théorie. C’est ainsi que des faits analytiques
relatifs aux séries divergentes ont conduit tout récemment
d’illustres mathématiciens a poser les premiers fondements
d’une théorie des séries divergentes.

Je me propose de montrer, dans cette note, comment quel-
ques faits analytiques semblent indiquer une extension pos-
sible de la notion de vraie valeur.

[.—Prenonsd’abordle probléme ordinaire dela vraievaleur.

Considérons une fonction définie par une certaine expres-
sion analytique F (). Il peut arriver que pour une certaine
valeur £ = a, de la variable, I'expression analytique F (x)
cesse d’avoir un sens: la fonction n’est donc pas définie au
point x = a. Pour la définir on regarde si I’expression ana-
lytique F () tend vers une valeur limite lorsque « tend vers
a. Si cette valeur existe et si elle est égale & A on convient
de poser, par définition,

F(a): A

ét c’est ce nombre A qu’on’ appelle orate valeur de:F (x) au
point x = a. '

On voit donc que pour définir la fonction considérée au
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