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196 ’ V. JAMET

une idée juste. Il n'est peut-étre pas inopportun de rappeler
ici que les membres de la Société mathématique de France
ont connu sur ce sujet les scrupules d’'un de leurs anciens
confréres. Malheureusement, 'auteur s’obstinait & voir dans
'incorrection du langage une idée fausse de Cauchy. Par son
manque de mesure et de perpicacité, il a sans doute éloigné
ses auditeurs d'une observation qui avait quelque chose de

juste.
E. Carvarro (Paris).

SUR UN DEVELOPPEMENT EN SERIE ENTIERE

Quand on veut donner aux éleves, antérieurement a toute
notion sur les dérivées, 'exemple du développement d'une
fonction en série entiére, on recourt tout naturellement a
I'identité.

(1) 1 —x) ' =14+ 22+ a8+ ...

(pour x < 1), qui résulte, soit de la théorie de la division,
soit des progressions géométriques. Je me propose de géné-
raliser cet exemple, et jattache une certaine importance a
cette généralisation, a cause de I'application dont elle est sus-
ceptible, et par laquelle je terminerai cet article. Pour le mo-
ment je veux montrer comment la formule (1) entraine,
comme conséquence, la formule suivante

I T
4 m(m 4+ 1) ..P.!(m—[—p—’l) 2

pour toutes les valeurs entieres de m.
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Soient, en effet, deux séries entiéres

S :a;+a1x—l—aax"—|—_.--
T = by + byx + bya? + ...

convergentes pour une méme valeur de . Je dis que le pro-
duit ST est égal a la somme de la série

E (aobp + a,l)p At s Fapby) P,

dont la convergexnce résultera de la démonstration ci-apres.
Désignons par S, la somme des n + 1 premiers termes de
la série S, par T, la somme des n 4+ 1 premiers termes de la
série T, posons

S:Sn-*-a, T:T,z—}-—ﬁ
et observons que
ST = Sn T + aTy -+ ﬁsn -+ O!ﬁ .

Nous en déduisons que, n croissant au dela de toute limite
S, T, apour limite ST.
Mais

) p=n
Sll ’1‘,L :E ((Iol)P + all)p_I + § e + (lp()o);l-p.
p=0

Donc le second membre de cette égalité a pour limite ST.
Admeltons maintenant que 1'égalité (2) soit vraie pour une
certaine valeur de m et proposons-nous de démontrer qu’elle
est vraie pour la valeur suivante. A cet effet, multiplions les

| egahtes (1) et (2) membre 4 membre. Nous trouvons:

(1 — x) ‘“("1+1) __2 ( L m + m(m -{— 1) L

' 1 ... Y
mn e p o),
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et il reste 4 démontrer que le coeflicient de x? est égal a

(m 4 1)(m +2) ... (m 4 p)

P L
Soit donc
= v _(m 4+ 1m 4 2) .. (m 4 p
: ' A}n,p —_ 7 s
p §
On trouve, successivement
< « m N ’
Am,p = Am,p—1 ('l ~+ }—)’> — Al)l,p-i -+ Am—l,p .

De méme
Am,p-1Z Am,p—z+ Am—:,p-1 ’
Am.p—z'————-Am,p—g +Am-1,p—2 )

Am,g — Am,1 + Am—1,2 ,
Am,7 = m + 1

of , L » .
En ajoutant ces égalités membre 4 membre, et supprimant
les termes communs aux deux membres de 1'égalité résul-
tante, on trouve

nm

Am,}’ = A”l-i;P‘l + A"l—i,p-—a "i‘ e + Am—1,2 + 71— + 1,
ou bien :

lm+f1)(m+2l)o‘.!. (rllv+P—1):1+%f+m_(%__2M+ L+

mim 4 1) .. (m 4+ p—1)
p!

c.q. f. d.

Application. 1l résulte de ce qui précéde que pour toute
valeur de m, entiére et positive, le nombre

1\-m
-3y
m,

est égal a la somme de la série

, 1 mim-4 1) 1. m(m 4 1)(m 4+ 2) 1
l-—l-_Tf + 1.2 cor T 1.2.3 " m

m




SUR UN DEVELOPPEMENT EN SERIE ENTIERE 199

Or le terme général de cette série, savoir

m(m+1)(m+2) ... (m+p—1) }_
p' " mP

est égal a

1 2 —1
<1+‘}71> <1+;l> (1+Pm >

On en conclut

o # 1 —m\l L_
(3) (1_E> /1—1—2})!_6.
1

D’autre part :

m !

. szll(l——> <1—2>...<1—-P_11>

y m n n

<1+—>:1+2 ' <e.
rp=1

J’aurai donc démontré que, m croissant au dela de toute
limite, les deux nombres ‘

1\m 1T \-m
m m

ont pour limite e, si je fais voir que leur différence a pour
limite zéro. Or

—mn nt
(1= ) "= (2 ) (1+5=)"
m m — 1 m— 1

et, en vertu de l'identité :

m__ am: (x _ a) M1 + ax™? + aly™® "I_ L + am—l) ,

( l) ( + m/ nz(lnl_T‘l) [(1 + m _1_ '1\)"1—1 +
<’1 & 1;—1—_1 m—2( T m) Tt (1 T m m_l}
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On en conclut :

( L+ m — l) ( + 32 m/ m(m — 1) m( b+ m — 1>m_1<m 1’

et cetle inégalité démontre la proposition.

V. Jamer (Marseille).

P.S. — Au moment de corriger |'épreuve, je m’apercois
que la derniére partie-de ce travail est susceptible d'une
grande simplification. En effet, la relation (3) entraine la sui-

vante :
1 — (m+$1)
= o)
( m+ 1 > e
ou bien
‘ - 1\m+1
Ve ' (1 + - > e .
m
Mais :
1 m+1__( 1)))1 1 1)/;1
(“L;; =U+5) tU+0)
Done :
m 41 m 1 . 1N\m
1 (l - (’1 —) :
( + m + m m + m
donc

(1 m+1 (1 1 m/ e ’
"l Hl

m

et 'on est conduit a la méme conclusion que ci-dessus.
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