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196 V. JA MET

une idée juste. Ii n'est peut-être pas inopportun de rappeler
ici que les membres de la Société mathématique de France
ont connu sur ce sujet les scrupules d'un de leurs anciens
confrères. Malheureusement, l'auteur s'obstinait à voir dans
l'incorrection du langage une idée fausse de Cauchy. Par son

manque de mesure et de perpicacité, il a sans doute éloigné
ses auditeurs d'une observation qui avait quelque chose de

juste.

SUR UN DÉVELOPPEMENT EN SÉRIE ENTIÈRE

Quand on veut donner aux élèves, antérieurement à toute
notion sur les dérivées, l'exemple du développement d'une
fonction en série entière, on recourt tout naturellement à

l'identité.

(pour x < 1), qui résulte, soit de la théorie de la division,
soit des progressions géométriques. Je me propose de
généraliser cet exemple, et j'attache une certaine importance à

cette généralisation, à cause de l'application dont elle est
susceptible, et par laquelle je terminerai cet article. Pour le
moment je yeux montrer comment la formule (1) entraîne,
comme conséquence, la formule suivante

E. Carvallo (Paris).

(1 — x)
1

—= 1 -f- X -f- X2 -f" XS -f-

(2)
m (m -j- 1

+
m (m -f- 1) [m -f- p 1) p

i x -r

pour toutes les valeurs entières de m,
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Soient, en effet, deux séries entières

S m a0 -f- atx -}- a2x2 -f-

T =: -f- ^ -j— b2x2 -j-

convergentes pour une même valeur de x. Je dis que le produit

ST est égal à la somme de la série

P= co

(ci0bp -j- ct-ibp-1 -f- -f- ap b0) xp,
P u

dont la convergence résultera de la démonstration ci-après.
Désignons par Sn la somme des n \ premiers termes de
la série S, par Tw la somme des n -j- 1 premiers termes de la
série T, posons

S ~ S« -j- a T zz: 1 n -f- ß

et observons que

ST m S a T/i —}— kT// ßSn -j- aß

Nous en déduisons que, n croissant au delà de toute limite
S„Tn a pour limite ST.

Mais
p — n

S n 1/i — (û0 bp -f- citbp-i -f- (tpb0)xP.

p= o

Donc le second membre de cette égalité a pour limite ST.
Admettons maintenant que l'égalité (2) soit vraie pour une

certaine valeur de m et proposons-nous de démontrer qu'elle
est vraie pour la valeur suivante. A cet effet, multiplions les
égalités (1) et (2) membre à membre. Nous trouvons :

il - *ri-+» =2i(i + j+ +... +
p 0

111 (771 + 1) (7?l + p — j)\
fi )X
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et il reste à démontrer que le coefficient de est égal à

[m + 1) (m 2) [m 4* p)

Soit donc
/>!•

_ (111 + (m + 2) • • • ("l •+ p)
-&m,p ;

p

On trouve, successivement

A m,p — Am,p-i f 1 -}- —j — Am,p-i -f- E,n - i.p

De même
Am,p-i zsrz Am,p-2 H- A ?n -1, p -1

Am.p-t — A?n,p-s -j- Afn-i,p-2

Em, i — m ~f" 1

En ajoutant ces égalités membre à membre, et supprimant
les termes communs aux deux membres de l'égalité résultante,

on trouve

Am p — Ani -1, p - î 4" Am - i, p — a -f" 4~ A m -1, 2 + T+1 '

ou bien :

\m + 1) (m 4- 2) (m +/? — !)__, >» m (m 4-1)
p-\ ~ ^ 1 + 1.2 "T " ' -î-

777 m 4"1) • • ("* + p — 1)

c. q. f\ d.
P

Application, Il résulte de ce qui précède que pour toute
valeur de m, entière et positive, le nombre

1 \-m
m)

est égal à la somme de la série

1 4- 1) '1- m (w 4- 1) (m 4- 2) 1

+ 1 + 1.2 *
7M4 + J .2.3 *

771
® +
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Or le terme général de cette série, savoir

est égal à

ï(m 1) (m + 2) [m + p — 1) 1

~p~\!
'

mP

On en conclut

D'autre part :

+ =)"=1+2 —=~L < «ii. îsrC-è) O'-â)
P

p 1

J'aurai donc démontré que, m croissant au delà de toute
limite, les deux nQtnbres

1 \m [ l \ ~m
1 + -) et 1 -• X

m

ont pour limite e, si je fais voir que leur différence a pour
limite zéro. Or

et, en vertu de l'identité :

xm—am— (x — a) x711'1 + axm-% + a2xm~* + + aM'x)

0 + JT="i) ~ (' + i) 1
I '1 /" ' +

o+dnrv+=)++0+=)"-]
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On en conclut

V. JA ME T

(• + ^r- (• + i)"< -o >

et cette inégalité démontre la proposition.

V. Jamet (Marseille).

P. S. — Au moment de corriger l'épreuve, je m'aperçois
que la dernière partie de ce travail est susceptible d'une
grande simplification. En effet, la relation (3) entraîne la

suivante :

/ t X_(W + 1)

V1 - >e

ou bien

(a + 0 >«•
Mais :

/ i\w + i / i y« î / IV"(t +-) (i + -) +- (î + -)\ m/ \ m/ m \ m/

Donc :

(1+iyi+i_(1 + i)"!=i(1 + i)m ;
V m/ \ m/ m \ m/

donc

\ m/ \ m/ \ m

et l'on est conduit à la même conclusion que ci-dessus.
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