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MÉTHODE EXPÉRIMENTALE DANS LA SCIENCE DES

NOMBRES ET PRINCIPAUX RÉSULTATS OBTENUS

Parmi les nombreux cas d'emploi de la méthode
expérimentale dans la littérature mathématique de l'antiquité,
arrêtons-nous sur un cas exposé dans le papyrus Rhind1 qui
consiste dans l'application simultanée de la méthode
expérimentale et d'une forme particulière de cette méthode, à savoir
la méthode du calcul successif de l'inconnue cherchée en

s'appuyant sur les conditions du problème. Placé dans l'édition

Eisenlohr sous le n° 40, c'est le 2me problème de la
section insérée à la fin du XIV1110 tableau. Complété pour la
clarté de l'exposition par des mots placés entre parenthèses,
l'exposé du problème et de sa solution se présentent de la
manière suivante :

« 100 pains en 5 personnes. La 7me partie de la part des
trois premières personnes (est égale à la part entière) des deux
dernières. Quelles sont les différentes parts »

23

»i
ldifférence 5^ fais comme il arrive

12

4
1 total 60

1 Le papyrus Rhind est une œuvre mathématique égyptienne, trouvée par l'égyptologue
anglais Rhind et écrite en l'an 17Ö0 avant J.-C.par l'écrivain Aiimiîs. Il se trouve actuellement
au British Museum. Une traduction allemande en a paru sous le titre: August Eisenlohr. Ein
mathematisches Handbuch der alten /.Egypten (Erster Band. Commentai*, 4°, Zweiter Band,
Tafeln In-f'ol.), Leipzig, 1877..

L'Enseignement mafchém.. 8e année : 190G. 12
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2 .1Multiplie 1 - par 23, cela donne maintenant 38 -

17 — 23-ï 6

12 20

n 1 ja21
2 3 6

1 total 60 1 total 100».

L'objet du problème — former une progression arithmétique

de 5 termes dont la somme soit égale à 100 et telle que
la somme des deux plus petits nombres soit égale au 7me de
la somme des trois autres— n'est pas exprimée d'une manière
suffisamment claire.

Mais la solution suivante ne laisse aucun doute sur cet
objet. Elle se compose de deux parties. Dans la première,
comme cela se présente constamment dans le papyrus Rhind,
on se donne la raison ^5 ^ de la progression cherchée, sans

aucune autre explication que ces mots fais comme cela arrive
(mache wie geschieht) et on constate que cette progression
satisfait ä la condition du problème relative au rapport de la

somme de deux des nombres à celle des trois autres.
Seulement la somme de cinq termes de la progression est égale
à 60, nombre inférieur au nombre donné 100. Cela montre
que dans la méthode des essais on avait seulement en vue
la seconde des deux conditions, la première restant
provisoirement de.côté.

En toute vraisemblance on a dû considérer tout d'abord la

progression formée par les nombres entiers

1,2,3,4,5.
Or le rapport de la somme des deux premiers à la somme

des 3 derniers est égal à ^ il est plus petit que le rapport
ldonné -. Considérons de même les progressions

1 3 5 7 9

1, 4 7 10 13

1, 5 9 13 17

1 6 11 16 21
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dans lesquelles le rapport considéré a respectivement pour

valeur ^, i-, ~.Orce dernier diffère très peu de y

^la différence est On est donc conduit à augmenter la

raison non plus de 1 comme on l'avait fait jusqu'ici mais de
1

2
et on a la progression

1 <;i 12 23

\
et cette fois le rapport est exactement égal à

y

La seconde condition est remplie, mais non la première
car la somme totale est 60 au lieu de 100.

La 2rne partie de la solution commence en cherchant la

différence entre 100 et 60, soit 40. Ici, la méthode des essais

n'intervient plus. Il s'agit de modifier les nombres trouvés,
sans détruire le rapport de la somme des deux premières à

celle des deux dernières, de façon à augmenter la somme

totale de 40. Or le rapport de 40 à 60 est égal à; il faudra

donc multiplier les nombres de la progression trouvée par
11 et le problème sera entièrement résolu.

En comparant les deux parties de la solution du problème,
sous le rapport de l'exposition, il est impossible de ne pas

remarquer entre elles une différence essentielle. Dans la

première — on donne sans aucune indication la raison de la
progression et cette progression elle-même, comme nous
l'avons remarqué plus haut. Dans la seconde— toute la suite
du calcul est expliquée avec détail. On peut expliquer cette
différence par le point de vue duquel on étudiait la question.
Sous le rapport du calcul, la seconde partie seule est résolue.
Dans la première, un résultat défini a paru sur le seuil de
la conscience; le reste est demeuré plus bas que ce seuil.

Ainsi dans l'ancienne Egypte la formation du papyrus Rind
s'est accomplie plus ou moins clairement pour la conscience,
de même que chez les calculateurs extraordinaires de notre
temps quand ils appliquaient la méthode de la formation
graduelle de l'inconnue d'après les conditions du problême.
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L'emploi de la méthode des essais s'est fait inconsciemment,
de sorte que cette méthode n'a pas tardé à se refléter sur
la forme même de l'exposition des solutions acquises par
elle. Ces résolutions comme il est possible de le voir par le

cas examiné, ont suivi immédiatement l'énoncé comme il
arrive. Après la résolution, est placée la vérification dont
les détails contrastent singulièrement avec le laconisme de

l'exposition.
Comme exemple de la méthode de la formation graduelle

de l'inconnue d'après les conditions du problème on peut
citer dans la littérature mathématique de l'antiquité la règle
de fausse position (régula falsi simplicis positionis). Dans
Liber Abbaci de Leonard de Pise se rencontre le problème
suivant, résolu par cette règle :

Déterminer la hauteurd'un arbre sachantque la partie
souterraine égale à 21 empans, constitue le^- -f- ^-de sa hauteur.

Il esjt naturel de prendre pour hauteur le nombre 12 qui
est à la fois divisible par 3 et par 4. En essayant ce nombre,
on trouve que la partie souterraine est égale à 7 empans
/l 1 \^ X 12 + - X 12 7j • Donc le nombre 12 est inexact.

Mais comme 7 est le ^-de 21, le nombre cherché est 12 X 3

ou 36.
Ce problème et les problèmes semblables ont conduit les

calculateurs à l'idée de la proportionnalité des grandeurs.
C'est d'ailleurs ainsi qu'est résolu le problème dans Leo-

.712nard de Pise, en utilisant la proportion - — ce qui donne

la valeur de x, x 21^12.

Le lien ; créé par l'étude delà proportionnalité entre la
méthode des essais et la méthode de l'expression du nombre
en d'autres nombres est devenu plus étroit dans une des
méthodes de la résolution des problèmes par la règle de deux
fausses positions. Si après la résolution par la méthode des
essais de chaque problème, on compare les différences entre
la véritable grandeur de l'inconnue et chacun des essais, ou
ce qui revient au même, si l'on compare les erreurs des essais
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avec les erreurs dévoilées par la vérification, il. est alors
possible de découvrir la proportionnalité qui existe entre éux.
Si ensuite on prend deux de ces essais, et si on forme avec
eux une proportion entre les grandeurs susdites, il sera
facile d'établir un schérrfa de règlededeux fausses positions,
exprimant l'inconnue cherchée en fonction d'autres nombres.

Pour éclaircir ces considérations générales par un exemple,
examinons un problème inséré dans les manuscrits russes
du XVIIe siècle :

Trouver un nombre tel que si on le multiplie par 14, et si
2

on divise le produit par 4^-on obtienne 18.

Si on essaie successivement 10, 9, 8, 7, 6, en vérifiant on
reconnaît que lès erreurs commises sont respectivement 12,
9, 6, 3, 0; ce qui montre que 6 est le nombre cherché.

Ayant pris ensuite la différence entre ce nombre et chacun
des essais, et les avant comparés avec les erreurs
correspondantes, nous obtenons les rapports égaux

12 _ 9 _ 6 _ 3

4
~~~

3 ~~ 2 ~~ T ;

d'où l'on conclut qu'il y a proportionnalité entre les
différences et les erreurs.

Si ensuite on prend en particulier la proportion formée
par les deux derniers rapports, et si on l'écrit sous la forme

6 _ 3

8-0 ~ 7—0
'

[ë] désignant l'inconnue cherchée, on obtient le schéma sni-
vant de résolution

i=6AAT-8 -

trouvé probablement par les Hindous et étant passé ensuite
chez les Arabes et en Europe.

Et ceci peut se généraliser pour tous les autres problèmes
de même genre. Si l'on désigne par et z2 deux essais, par
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9! et (f2 les erreurs correspondantes, obtenues par la
vérification, l'inconnue x sera donnée par la formule

'fl fi

d'où l'on tire

* —
?1 z'2 ?2 Zl

~~
fl ~ fi

Outre cette forme de la règle de deux fausses positions,
utilisée plus tard, il en existait une autre, qui semblablement
à la règle d'une seule fausse position, apparaît comme le
résultat direct de la méthode de la formation graduelle de
l'inconnue d'après les conditions du problème.

Si en appliquant la règle de deux fausses positions, on fait
deux essais différant d'une unité, la difference des erreurs
est constante; et il est facile de voir que cette constante est
le coefficient de l'inconnue dans l'équation qui conduit à la
solution du problème. En effet, soit l'équation

ax ho -

Remplaçons x par deux nombres zl et zt + 1 différant de
1, les erreurs <p1 et <p2 sont définies par les égalités

'

asx + h — ft

ft (~i — t) + h —

d'où
—a ?i — ft

De là, il résulte que pour calculer le nombre des unités
dont doit être modifié le nombre essayé pour avoir l'inconnue,
il suffit de connaître combien de fois l'erreur contient le
nombre constant qui représente la modification de l'erreur
pour deux essais différant d'une unité. En ce qui concerne
ce nombre constant, il peut être déterminé immédiatement
en faisant deux essais différant d'une unité, ou moins
rapidement en faisant tout autre essai. Alors le nombre constant
cherché est le quotient de la division de la différence des

erreurs par la différence des nombres essayés.
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C'est ce qu'on peut représenter de la manière suivante

<h

a

- — x

azi — ?i

az2 ?2

azi — ?1 ciz2 —

a (s, — z2)?1 — <f2

" Z2

Appliquons ces deux méthodes au problème considéré
plus haut. En prenant les deux essais 10 et 9 qui diffèrent
d'une unité, le nombre contact est la différence des erreurs
correspondantes 12 — 9 3; si bon prend les deux essais
10 et 7, auxquels correspondent les erreurs 12 et 3, la cons-

12 3
tante est donnée par le quotient ^ y 3. Divisons maintenant

l'erreur 12 (correspondant à l'essai 10) par la cons-
12

tante 3, nous obtenons ~=4, et en retranchant ce quotient
de l'essai 10, nous avons le nombre cherché 10 — 4 6.

Cette façon d'opérer, sans utiliser les proportions a été
beaucoup plus ancienne que l'autre. Ce n'est que plus tard
qu'a été mise en pratique la troisième méthode, qui conduit

d'ailleurs aux mêmes calculs. Désignons en effet par
zi et z2 deux essais quelconques, par et ®2 les erreurs
correspondantes, et par Y le nombre dont doit être modifié
l'essai zx pour donner la solution. En appliquant la règle
ancienne des deux fausses positions on est conduit au calcul
suivant

y _ y» — fj_<'•! - ~a>

1 '
Zl - Z2 ?1 — '

'
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c'est ce que donne immédiatement la proportion

?1 — ?2 fl
*1 -Z2~V-

Cette troisième méthode a été exposée dans les traités
arithmétiques des XVIIe et XVIIIe siècles.

L'application des règles de une et de deux fausses positions
à la résolution d'équations non seulement du 1er degré, mais
encore du 2rae et 3mo degré a été transmise à l'Europe par les
Arabes et s'est propagée dans le cours non seulement du

moyen âge mais aussi des temps modernes jusqu'au
commencement du XIXe siècle. De l'Europe occidentale, ces
méthodes sont passées en Russie d'abord dans les manuscrits
arithmétiques du XVIIe siècle, et ensuite dans 1 "Arithmétique
de Magnitsky et dans d'autres traités arithmétiques imprimés
au XVIIIe siècle et au premier quart du XIXe siècle.

On lés retrouve dans l'un d'eux, imprimé pour la première
fois en 1794 « Arithmétique élémentaire à l'usage des
enfants » de Michel Memorsky, et elles se sont maintenues dans

l'enseignement grâce à la diffusion de ce traité qui a eu de
nombreuses éditions dans tout le cours du 19e siècle et qui
en a encore de nos jours.

Les problèmes résolus par la règle de deux fausses
positions dans les manuscrits arithmétiques russes du 17e siècle
se rapportant à une équation du 1er degré à une inconnue, et
à des systèmes d'équations du 1er degré à 2, 3 et 4 inconnues.

Les illustres auteurs de la littérature mathématique à

l'heure actuelle• semblent ignorer l'histoire de leur objet et

ne pas comprendre les besoins des élèves de l'école populaire,
car ils ont supprimé complètement dans leur enseignement la

règle des fausses positions. Sous ce rapport ils doivent être
placés plus bas que l'illustre auteur, très connu au 18e siècle,
Kourganoff qui dans son arithmétique disait : « Bien que par
l'invention de l'algèbre, la règle des fausses positions n'est

pas nécessaire, néanmoins, cette méthode a été exposée ici

pour ceux qui ignorent l'algèbre ou pour ceux qui ne
désirent pas la connaître, attendu qu'on peut s'en passer dans
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les calculs ordinaires (édition de 1776, p. 200). D'ailleurs le
succès sans exemple en Russie du livre de Memorsky qui a

surpasse-le succès de tous les traités d'arithmétique, et qui
seul consacre un chapitre à l'exposition de la règle des
fausses positions n'est-il pas une éclatante leçon pour tous
ceux qui feignent d'ignorer les véritables besoins des
écoliers

Outre l'étude de la proportionnalité, autre découverte
importante acquise à la science, par la formation graduelle de

l'inconnue d'après les conditions du problème, on employa
dans la nouvelle algèbre un procédé pour résoudre les équations

du 1er degré à une inconnue. Le papyrus de Rhind nous
offre un tableau très clair du développement de ce procédé
qui consiste dans la division dû terme connu de l'équation
par le coefficient de l'inconnue. Les quatre premiers problèmes
des Hau s'occupent de la détermination de l'inconnue
connaissant la somme de cette inconnue et d'une de ses parties.
Gomme ils se résolvent tous de la même manière, nous
prendrons le N° 24 de l'édition de Eisenlohr.

Tas. Sa 7e partie et son entier font 19.

,.7 .8 *12 * 2ii
1 1 11*4-1 * ..16 1 * 4 Ci

' f4 * 4 9±

!• 2 y Ç ensemble 19.
J Li O

1 1
Fais, comme il arrive, inconnue 16 - -2 o

La première des quatre colonnes représente la description
du problème en essayant le nombre 7, qui paraît le plus
commode. La deuxième et la troisième sont consacrées à la
division de 19 par 8 et la quatrième à la multiplication de la
fraction trouvée par 7.

La vérification montre que le nombre essayé 7 ne convient
pas; le calcul a du conduire le calculateur égyptien cà des
considérations semblables à celles qui ont trouvé place dans
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le problème exposé plus haut de Léonard de Pise sur la

règle de fausse position. Puisque le nombre donné 19 est la

somme deTineonnoe et de sa septième partie, la diminution
de ce nombre jusqu'à 8 ne^peut provenir que de la diminution
dans le même rapport de l'inconnue elle-même. Or le quotient

'
: '

* 'Ilde 19 par 8 est représenté par le nombre fractionnaire 2 ^
Par conséquent l'essai 7 est le résultat de la diminution de

l'inconnu dans le rapport 2 et par suite, pour avoir
11l'inconnue il faut multiplier 7 par 2 ^ g

c'est ce qu'indique
la quatrième colonne.

Nous trouvons des problèmes du même genre, mais un
peu plus compliqués dans les nos 31-34 de l'édition Eisenlohr.
Il s'agit de déterminer l'inconnue connaissant la somme de

cette inconnue et de plusieurs de ses parties.
Par exemple, voici le problème N° 34.

l 1

Tas. Son — son son entier : tout cela donne 10.

1 1

T 28

1_ J_*
2 14

1

1

*47
~ vllOv HI Kr JL vy III I I IIUO U ä ~ 7774 2 y 14

Commencement de la vérification:

* i 9 L _i __ _L
2^ 2 4 14 28

1.1 1 1 1

* 4 4 8 28 56
ensemble 94- reste i 4

L o ^ o

1 11^111 14 Î4 28 28 56

8 4 4 2 2 1 i 7 ensemble 21.
o
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L'exposition de la solution du problème paraît beaucoup

plus courte que précédemment. Les deux colonnes qui la

composent comprennent une seule opération, la division de 10

par 1 ~ -i
; dont le résultat est l'inconnue cherchée. La

vérification qui suit ne s'occupe plus de l'essai, mais de la solution

elle-même.
Nous voyons apparaître ici l'unité comme nombre essayé,

et non seulement dans ce problème, mais dans les trois autres
qui l'accompagnent et qui sont du même genre. Grâce à cet

emploi, les opérations qui déterminent l'inconnue sont beaucoup

plus simples, puisqu'une seule division suffit. Cependant

les calculateurs égyptiens ne paraissent pas avoir eu

une idée très nette des avantages que présentait l'emploi de

l'unité, puisque dans les solutions de problèmes analogues,
ils ont.fait des essais différents de l'unité.

En connaissant la solution des problèmes du deuxième

groupe Eisenlohr et Kantor ont été conduits à considérer
ce groupe comme un recueil de problèmes relatif à la
résolution d'équation du 1er degré à une inconnue, suivant
les méthodes de l'algèbre moderne; et la solution des
problèmes du deuxième groupe n'a pas suffi à les retenir dans
cette erreur, qui d'aillenrs n'a pas passé inaperçue. Elle
a été signalée par un orientaliste français Léon Rode dans
un travail. « Les prétendus problèmes d'algèbre du manuel
du calculateur égyptien (papyrus Rhind) » paru en 1882 dans
le Journal Asiatique de Paris. D'après ses propres paroles,
il a été conduit à la découverte de l'erreur de Eisenlohr et
de Kantor, » « après une étude très approfondie des chiffres
et des explications qui les accompagnent quelquefois »

(p. 5). Il ne faut donc pas considérer les solutions de ces
problèmes comme résolutions d'équations dans le sens de

l'algèbre moderne, mais comme de simples a applications du
procédé de la fausse position » (p. 6).

L'importance et les avantages de l'emploi de l'unité comme
nombre à essayer ont été remarqués seulement par les Egyptiens,

parmi tous les peuples civilisés de l'antiquité. Aussi
après plus de 2000 ans, nous trouvons dans les œuvres ma-
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thématiques de Finde (12e siècle après J.-G.) des problèmes
du même genre que ceux du papyrus Rhind, qui sont résolus
en essayant des nombres quelconques. Dans le livre de

Siddhantaçiroman par Bhâskara on trouve, par exemple, le
problème suivant :

On multiplie un certain nombre par 5 ; on retranche le

^ du produit, on divise le reste par 10 et au quotient onil lajoute successivement le - la - et le du premiernombre.
On trouve 68. Quel est le certain nombre?.

La solution est obtenue par le procédé utilisé dans le
premier des deux problèmes considérés plus haut du papyrus
de Rhind.

Ayant pris pour essai le nombre 3, et ayant calculé le
résultat de la vérification par les conditions du problème,
l'auteur indien trouve la valeur de rinconnue 48 en divisant

*

17le nombre donné 68 par le résultat de la vérification-r et

en multipliant le nombre trouvé 16 par Fessai 3.

C'est par cette méthode qu'opéraient les mathématiciens
arabes quand ils n'utilisaient pas la règle des deux fausses

positions. Ainsi dans un ouvrage du moyen âge composé
d'après les sources arabes ou emprunté directement à ces
sources « Liber augmenti et diminutionis vocatus nu me ratio
divinationis ex eo. quod sapientes lndi posuerunt, quem
Abraham compilavit et secundum librum qui Indorum dictus
est composuit » se trouve le problème suivant :

Si d'un certain nombre on retranche son tiers et son quart
il reste 8. Quel est ce nombre

L'auteur donne la solution suivante : ilPrends 12 pour nombre inconnu, en enlevant le ^ et le —

il reste 5, ensuite demande-toi par quoi il faut multilier 5
2 2

pour avoir 12? cela donnne 2 - et ensuite multiplie 2 par

8, et tu obtiens 19 ^
Cette solution diffère de la solution donnée plus haut du

premier problème du papyrus Rhind par la transposition des
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moyens dans Iâ: proportion on a désigné a le résultat

de la vérification de l'essai, b le nombre donné et c l'essai
lui-même.

D'une manière claire ou confuse la méthode de la formation

graduelle de l'inconnue d'après les conditions du
problème devait reposer sur les considérations suivantes :

Chaque nombre doit être le même nombre de fois plus
grand ou plus petit que le nombre qu'on en déduit par les
conditions du problème. Donc, autant de fois l'essai 12

surpasse le nombre 5, autant de fois l'inconnue cherchée devra

surpasser le nombre 8. Il faut donc pour avoir l'inconnue
2

multiplier 8 par le nombre 2 j que donne la division de 12

par 5.

Dans l'Europe occidentale le développement du procédé
employé en algèbre moderne pour la résolution de l'équation
du premier degré à une inconnue s'est déduit de la méthode
des essais par cette voie de généralisation dans laquelle se
sont avancé les mathématiciens de l'Europe occidentale.
Ceux-ci ont été conduits tout naturellement à remplacer les
essais numériques et définis par des essais indéterminés,
figurés d'un manière symbolique, et ensuite la. découverte de

Viete et venue généraliser le procédé, en permettant de
résoudre les équations du 1er degré et du degré supérieur à

une ou plusieurs inconnues.
Les opérations que l'on faisait jadis sur les essais furent

étendus à des symboles plus généraux. Cette extension, en
algèbre élémentaire, donna naissance aux méthodes de
substitution et de comparaison dans la résolution des équations,
et au procédé trouvé par les Hindous et Haschet de Meziriac
pour la résolution des équations indéterminées au premier
degré.

Si, comme beaucoup le fout, on forme le domaine de
l'algèbre à la seule théorie des équations, alors, en nous
appuyant sur l'historique que nous venons de présenter
de l'origine des moyens employés dans l'algèbre moderne
pour former et résoudre les équations du premier degré à

une inconnue, nous pouvons dire avec certitude que l'algèbre
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est déduite de la méthode des essais, ou d'une manière plus
précise de la méthode de la formation graduelle de l'inconnue
d'après les conditions du problème.

V. Bobynin (Moscou).

(Traduction de M. E. Papelier, Orléans.)

GÉOMÉTRIE APPLIQUÉE

LA THÉORIE DES ROTATIONS ET LE NIVEAU A BULLE

Théorème 1. (Principe des deux demi-tours). — Soient OVi
et OV2 deux axes concourants. Pour déplacer un solide par
un demi-tour sur l'axe OVi, on peut déplacer le solide par
un demi-tour sur Taxe OV2 suivi d'une rotation égale à 2 fois
l'angle V2OV1 exécutée autour d'une perpendiculaire au plan
des axes.

Remarque. La démonstration est immédiate; on peut aussi

regarder cette proposition comme un cas particulier de la
combinaison de deux rotations successives finies.

Soit à composer ces deux mouvements d'une figure sphé-
rique : 1° une rotation h exécutée autour du pôle P2 ; 2° une
rotation h. exécutée autour du pôle Pi.

On construit un triangle sphérique de base P2P1 dont le
côté P2 M issu du pôle de la première rotation, est sur l'arc
de grand cercle obtenu en faisant tourner l'arc P2 Pi autour

1
de P2 de l'angle — ^

et dont le côté Pi M issu du pôle Pi

est sur l'arc de grand cercle obtenu en faisant tourner l'arc
P1P2 de l'angle + j h autour de Pi.

M est le pôle de la rotation équivalente aux deux rotations
successives et son amplitude est l'angle extérieur <jC érMPi
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