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206 M. -F DANIELS

Questioni che riguardano la geometria elementare, M. Boxora
donne aussi une démonstration de la proposition que la somme
des angles d'un triangle sphérique est plu% grande que deux an-
g,les d101ts en ayant cependant recours a la notion extensive de
laire dutr 1an(rle qu’il est certainement utile d’éviter. Au contraire,
des le 1895, M.’\hxsmx a donné, dans un supplément de Maz/wals,
une construction de la Géométrie et de la Trigonométrie sphé-
riques, indépendante des hypothéses sur les droites paralleles et
sur l'infinité de la droite. Sil'on confronte avec celle-ci la nouvelle
construction on verra, je 'espere, que l'intérét méthodologique
n’est nullement diminué.

Plaisance, 12 Février 1905.

LES COORDONNEES PROJECTIVES SUR LA SPHERE

1. Des coordonnées sphériques non-homogenes ont été in-
troduites par C. GUDERMANN 1, qui, pour déterminer la position
d’un point M par rapport a un triangle sphérique VXY dont
deux cotés VX et VY sont droits, mene parle point en question
les droites sphériques XM et YM. La premiere rencontre le
coté VY en , la seconde rencontre le coté VX en P. Ce sont
les tangentes trigonométriques des arcs VQ et VP, qu'il con-
sidere comme les coordonnées du point M (Awxenkoordinate).
Quelquefois il emploie aussi un systeme de coordonnées po-
laires: P'arc VM et 'angle X'VM, qu’il appelle les coordon-
nées centrales du point M (Centralkoordinate). Les proble-
mes ordinaires de la droile, des coniques, de la cycloide et
de la chainette sphériques qui sont traités dans ces systémes
de coordonnées donnent lieu a4 des déductions et des for-
mules d’une extréme longueur, ce qui explique suflisamment
I'oubli dans lequel les recherches de Gudermann sont tom-
hées.

1 (. GUDERMANN. Grundriss der analytischen Sphdrik. Koln, 1830.
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Indépendamment de lui, un géometre anglais, Ch. Gra-
vEs !, arrivait, quelques années plus tard, aux mémes sys-
temes de coordonnées. Pour I'emploi des coordonnées po-
laires sphériques il avait été devance par son compatriote
S. T. Davies?2. ,

On doit & MéBius® un premier essai d’introduire un sys-
teme de coordonnées homogeénes sur la spheére. Il y arrive -
en étendant a cette surface le calcul barycentrique, et voicl
comment il procede. Si A, B, C sont trois points de la
sphére, on peut, pour tout autre point ) de la surface sphé-
rique, trouver des nombres a, b, ¢ tels que

acos VA 4 bcos VB 4+ ccos VC = gcos VQ

le point V étant un point de la sphére lout a fait quelconque.
Pour arriver 4 une sphérique analytique, nous voulons, dit
Mobius, par abréviation, laisser de coté les signes cos et V
et écrire, au lieu de I'équation précédente :

aA + 0B + ¢C = ¢Q

Les coeflicients @, b, ¢ sont alors les coordonnées homo-
génes du point Q, et Mobius démontre ensuite que cette
maniére de traiter analyliquement la surface sphérique est
au calcul barycentrique comme la sphérique est 4 la plani-
métrie. Le centre de gravité des poids a, b, ¢ en A, B, G
ne sera pas dans la surface sphérique, mais on peut ajouter
au centre de la sphere M un poids m, tel qu’il est ramené au
point de la sphere aA + 0B + ¢C.

G. Sarmon %, procédant autrement, arrive a des meilleurs
résultats. Si l'on substitue les coordonnées d’un point P de
la sphére dans le premier membre de I’équation normale
« =0 d’un plan passant par 'origine (qui est en méme temps
le centre de la sphere), on obtient la normale abaissée du

Y Two geometrical Memoirs on the general properties of cones of the second degree and of the
spherical conics by M. Chasles, translated from the french, with notes and additions, and an
appendix on the application of analysis to spherical Geometry, by the Rev. Charles GrAves.
Dublin, 1841.

2 Transactions of the Royal Society of Edenburgh, Vol. XII.

3 MOBius. Gesammelte Werke, 1ter Band, S. 1-54.

4 Saumon-FiepLER. Analytische Geometrie des Rawmes, 1. Teil, 3. Auflage, X. Kapitel.
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point P sur le plan « = 0 ou encore le sinus de l'arc sphé-
rique compris entre P et le grand cercle déterminé sur la
sphere par le plan. Les valeurs «, 8, y qu'il obtient ainsi
pour 1irois plans différents passant par le centre sont les
coordonnées du point P par rapport au triangle sphérique
que ces trois plans déterminent sur la sphere.

Nous allons développer un systeme de coordonnées pro-
jectives sphériques, qui permet de passer de deux maniéres
différentes aux cas spéciaux des coordonnées projectives
planes et aux coordonnées cartésiennes. Le traitement des
probléemes sphériques, dans ce systeme de coordonnées, se
trouvera étre plus simple et plus symétrique que celui des
problémes analogues pour le plan, et il ne nécessitera nulle
part I'intervention de la connaissance des coordonnées car-
tésiennes. Sous ce rapport, I’exposition ordinaire des coor-
données projectives, qui présuppose déja la connaissance
de ce qui en est un cas spécial, laisse certainement a dé-
sirer.

Nous nous servons, dans l'exposition des ¢léments de la
sphérique analylique qui va suivre, de quelques relations
trées simples du calcul des vecteurs qui se trouvent dans un
article de L’Enseign. Mathématigue (mavs 1902, p. 111-113).

2. Le rayon de la sphere étant I'unité, chaque point de sa
surface est déterminé par un vecteur-unité r partant du cen-
tre. Chaque multiple positif de ce vecteur détermine le méme
point; chaque multiple négatif détermine le point diamétra-
lement opposé.

Une droite sphérique, son sens positil étant fixé, est dé-
terminée par un vecteur-unité 1 partant du centre, normal au
plan de la droite sphérique, et a gauche lorsque celle-ci est
parcourue dans le sens positif. Un multiple négatif de 1 dé-
termine la méme droite parcourue dans le sens inverse.

3. Le triangle sphérique rirars a les angles extérieurs
A1, Az, As ou Ass, As1, Asz, lescOtés ar, «a, as ou aes, asi, az
et les hauteurs /u, fa, /is. Si, en parcourant les cotés dans
le sens indiqué par les fleches, on prend les vecteurs 1y, lz, Is
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des droites a gauche, on obtient le triangle po]air‘e dont les
angles extérieurs sont aes, ast, aiz et les cotés Ass, Ast, Atz

Les propriétés des produits scalaires nous donnent d’abord
les relations suilvantes entre les vecteurs des sommets
ri, T2, s et ceux des cotés i, Iz, Is du triangle sphérique

r,r, = cosay r,r;, = rL-2 =1 lL. r, = sin lzL.
(1) (2) (3) :
1,1, = cos A, Ll = 12 — 1 I,r, = 0

tandis que celles des produits vectoriels nous fournissent les
cgalités :

(4)  Vrars — sinai. by Vrar: = sinas.le Vrir: — sinas.ls

(5) Vl2ls — sinAi.11 Vlsli — sinA2.12 Vlil: — sinAs.13 .

[’Enseignement mathém., 7¢ annde ; 1905. 15
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Les deux premieres des équations (4) et (5) nous donnent

ensuite :

Vrars . Vrsri — sinaisinaz.1l1le

Vizls . VIsli — sinAisinAe.rir2

qui, pouvant s’écrire

TeIs.Tsl1 — TeIn — sinaisinaz2. i 12

Ils . 1sli — Lkl =

sin A1sin A2.r1r2

sont les formules fondamentales de la trigonométrie sphé-

rique :
COS @11 ¢COS (12 — COS @3

cos A1 cos A2 — cos A,

En outre, la multiplication
ri.rz, r, donne

— sin a1 sin az cos As

— sin A1 sin A2 cos as

scalaire des équations (4) par

(6) sin @i sinhy — sinazsin he — sinaszsinhs

de méme celle des équations (5) par 11, 12, Is

(7) sin A1 sin 21 = sin Agsin ke == sin Az sin ks

d’ou nous tirons encore

(8) sinai @ sin @z : Sin ag —

4. Le vecteur d’un point, qui
en général n’est pas un vec-
teur-unité et que nous écrirons
done x,r, décomposé d’apres
les trois vecteurs non-coplanai-
res, qui déterminent les som-
mets du triangle de référence,
donne

x24T == nuT1 -+ ma¥2 + mar;

ou, s1 nous introduisons trois
constantes w, différentes de zéro

24T = p121T1 + peaeTe - psasTs .

sin A1 : sinAg : sin As

Le vecteur d’'une droite, qui
en général n’est pas un vec-
teur-unité et que nous écrirons
done w,1, décomposé d’apres
les trois vecteurs non-coplanai-
res correspondant aux sommets
du triangle polaire, donne

sl = mli + n2le 4+ nsls

ou, si nous introduisons trois
constantes v, différentes de zéro

usl = viwrlh + vauels + vsusls
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Les coeflicients x,, 2,, x,

sont les coordonnées du point,
tandis que le point

piT1 4 p2T2 + upsls
dontlescoordonnées sont égales
a 'unité, est le point-unité.
5. Equation d’une droite. Pour
que le point
prailn -+ paasTe 4 wzxsTs
soit sur la droite donnée

vivili + vevels 4 wvswsls

il faut et 1l suffit que la distance
sphérique de ces deux vecteurs
soit = , ou que leur produit sca-
laire

pivisin by, v 4 pevesin he.v2 x

+ psvssinhs.vsas

soit nul.

Les coefficients w,, u,, 1, sont
les coordonnées de la droite, tan-
dis que la droite

vili 4 vele + vsls

dontlescoordonnées sont égales
a P'unité, est la droite-unite.

Equation d’un point. Pour que
la droite

vitalt + vauzle 4- vsusls
passe par le point donné
p1)1T1 + peyeTe - p3)srs

il faut et 1l suffit que la distance
sphérique de ces deux vecteurs

. T .
soit 3 > 0u que leur produit sca-
laire

v1p1sin by yrur 4 ve e sin ke, yz ue

+ vspasinhs. ys us

soit nul.

Ces conditions se simplifient considérablement si nous
choisissons les constantes y, et v, de maniére a ce que

(9) prvisinhy = povesin bz — psvssinhe = A

Dans ce cas I’équation de la droite devient en coordonnées

ponctuelles sphériques

vy + v2ax2 + vsaz = 0

et celle du point en coordonnées tangentielles sphériques

yrur + yeus 4 ysus = 0

L’équation de la droite-unité est

x1 4+ x2 + xs = 0

et celle du point-unité

ur 4+ ue + us —= 0
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6. Le tenseur 2, du point
X4 = p1x1T1 - pe2Xel2 + p3asTs
se trouve, en prenant le carré:

X3l — f"llez + (“-21.22 + ..
2pipexra2 COS a3+ ...
Nousreprésentons cetteforme

quadratique, qui revient sou-
vent, par

DANIELS

Le tenseur «, de la droite
usl = wiurl 4 vewele 4 vsusle
se trouve, en prenant le carré:

ws? = 2w ? 202 L
2viv2 iy cos As 4+ ...
Nous représentons cette forme

quadratique, qui se rencontre
souvent, par

wl(x1xzxs) ou  w(rx) Q(uruzus) ou Q(ww)

7. Si lor1 = 0 et lor: = 0, c’est-a-dire si les poinls Pi(ry)
et P2/r2) sont situés sur la droite lo, tout point

P=r —Iir:

est également sur lo, parce que son produit scalaire par lo
est nul. En outre, nous avons

(P1PeP) = ——

car si = est la valeur absolue ou le tenseur de ri — irz, les
propriétés du produit vectoriel nous donnent

| Virt —2rz)rn | =2 | Vrirz | = rsin P Py
; et | Viri — Are)re | = | Vrire | = tsinP Pz ;
donec
A = (P1P:2P)

De méme on démontre que la droite sphérique
p=hL—12k

passe par l'interseclion des droites sphériques pi(li) et pz(lz)
et que ‘
A= (p1p2p)

Le rapport anharmonique des poinls

i, I'n, 't — ATl et rn — pr2
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est :u, et, si on fait passer par ces qualre points les qua-
tre droiles sphériques concourantes

L. 1o, I — Yol

on aura les égalités

et L — pole

Lhri—=0 lere=0 (i —Xole) (r1 —Ars)=0 (L — pole) (r1 — pr2) =0,

dont les deux derniéres, simplifiées & 'aide des deux précé-
dentes, donnent le théoreme de Pappus

A= 1lo: po

8. Les droites joignant le
point

P=uwmaxiri  pexars 4 psasrs
aux sommets du triangle ren-

contrent les cotés opposés en

P1 = poaxete 4 psasrs;

Po=psasrs +pixiri; Ps=.

car P’ est aussi bien sur la droite

qui relie P, au sommet A, que

sur celle qui relie P, a A, , etc.
Pour le point-unité

E = piri 4 pere 4 psrs
nous avons de méme!

Ei = uere 4 psrs ;

Les points d’intersection de
la droite

p=wwli 4 vouzle 4 vsusls

et des cotés du triangle déter-
minent avec les sommets oppo-
sés les droites

pr =vauzle + vsusls

pr =vsusls + viw by ;

ps = ...
car p passe aussi bien par I'in-
tersection de p, et du coté a,
que par celle de p, et a,, etc.
Pour la droite-unité
e =vili + vols + wsls

nous avons de méme

cer = vele + wsls

Ee = pars + paTn ; Es = ... e2 = wls 4+ vl ; €3 = ...
1 Les points conjugués harmoniques Iy = p2l2 — usTs , E's = ®wsrs — pir:,
E; = par1 — eIz sont sur une droite (polaire trilinéaire de E), dont I'équation — dans

la supposition toutefois que les g; et v, aient été choisis tels que BV, sin ki est une cons-~

tante — peut s’écrire

x1 + xa + a3 =0

La polaire trilinéaire du point-unité est done, dans cette supposition, la droite-unité.
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Nous en concluons, d’apres
§ 7, que

(A2 AsP1) = — e X8
fl-? X2
et (A2AsEy) = — £
F-:l
c’est-a-dire que
(A2 AsEy Py) = 22
X8

De la méme maniére on trouve
naturellement

(As A1 E2 P2) = g , ete.

a1

Nous en concluons, d’apres
§ 7, que

( ) Y3 US
a as p1) — —
P v2 U2
vs
et (azazer) = — —

”
c’est-a-dire que
ug

(as ase1 p1y — —
P us

De la méme maniere on
trouve
Us

(as a1 ez p2) = — , ete.
U1

9. Ceci nous permet de démontrer les théorémes suivants:

Si, du centre de la spheére,
les sommets A, A,, A,; et les
points E; P; E,, P,; ete., se
projettent sur un plan quelcon-

/ A7 r. /. .
que ¢ en A’ A’y A, B P
E’,, P’,; etc., les coordonnées
projectives &', du point P’ par
rapportautriangleplan A", A’ ',
seront les mémes que celles du
point P par rapport au triangle
sphérique A, A, A,, pourvu que
la projection E’ du point-unité
E devienne point-unité dans le
triangle plan.

En eflet, nous avons vu que,
dans le triangle sphérique:

NS

(AsAsE1Py) = 2,

Nous avons de méme, comme
cas spécial dansletriangle plan:

x

(5]

(A2 A3 B P) =

a’s
D’apres le théoreme de Pap-

pus, les deux rapports anhar-

moniques sont égaux; nous

Si, du centre de la sphere,
lescotés a,, a,, a,; et les droites
e; P ey py, ete., se projettent
sur un plan quelconque & en
a'ya'y,alsyel sy plielyp'y, ete.,
les coordonnées projectives «’,
de la droite p’ par rapport au
trilatere plan «', a’,a’;, seront
les mémes que celles de ladroite
p par rapport au trilatere sphé-
rique a,a,a,, pourvu que la
projection ¢’ de la droite-unité
e devienne droite-unité dans le
trilatere plan.

En effet, nous avons vu que,
dans le trilatere sphérique:

_ uz
(az ase1p1) = ”

Nous avons de méme, comme

cas spécialdansletrilatere plan:
S w'e
(a’ea’s e’y p'1) = "

D’apres le théoréeme de Pap-
pus, les deux rapports anhar-
moniques sont égaux : nous
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’
/ /, u ue A
X2 x'2 . .
avonsdone —= ==, etde méme avonsdonc — = —-, et de méme
X8 X 3 us uws
’ ’
X X8 . . us __ ws 5 Lo,
2 =" clest-a-dire — — —; c’est-a-dire
't X1 Ui Ui
Y S
xicaeaxs — x1:ax'sx's Wi uzius = uwiiuw2:u's
. 3 ’ 5. 3 ’ Q .
ce qu’il fallait démontrer. ce qu'il fallait démontrer.
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10. Prenons comme application (fig. 2) le triangle sphérique
'
7

tandis que le point-unité E coincide avec le point d’inter-
section des médianes, les projections se faisant sur le plan

T T T
tangent en As. Dans ce cas on a As it = Az B2 =— — et, par
*

A1 A2 As, dont les cotés As A1, A1 Az, A2As sont -723, 6,

conséquent, le rayon de la spheére étant 'unité, Ask's
— ;\3 E’z =1 .

Pour trouver E', les points E’t et E2 doivent élre reliés &
A1 et A’z mais, comme ceux-ci sont a4 I'infini sur les « axes »

As X et AsY, il suflira de mener par E'1 et E's des paralleles
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a-ces axes; leur point d’intersection sera le point-unité E
de la figure plane. De méme on trouve la projection P’ d’un
point quelconque P comme intersection des paralleles a
As X et A3 Y menées par P’y el P's.

Si nous appelons maintenant As P'1 et As P’z les coordon-
nées cartésiennes Y et X du point P’ par rapport aux axes
obliques AsX et AsY, le théoreme démontré nous fournit
les relations

X1 A1 122 As P2 As P’e .
— = (A1 A — (A1 A3 E’s Py = . — — X
oy — (Brfsba P = (ATASEL DY) = G v = 0,

xe , A En As P’y As P’ .

— — (A2 AsE — (A2 A E P4 = . — =Y,
o (Ml Br PO = (ARASEN DY) = G - e = A

ou encore

x1 a2 ras = XY :1

de sorte que, si flriaxzxs) = 0 est ’équation en coordonnées
trilinéaires d'une courbe sphérique par rapport au triangle
sphérique de la fig. 2, le point-unité étant I'intersection des
médianes, 'équation de la courbe plane correspondante en
coordonnées cartésiennes par rapport aux axes obliques de
la méme figure sera

AX, Y, 1) =0

11. Nous pouvons trouver des relations analogues entre
les coordonnées tangentielles d’'une droite sphérique p et
celles de sa projection p’. En effet, la droite-unité e étant la
polaire trilinéaire du point-unité E, il faut que!

131}11:]22}12:%r

si Hi et He sont les points d’'intersection de e avec les cotés
a1 et a2 du triangle sphérique. Il s’ensuit que leurs projec-
tions H1 et H'z seront déterminées par

Az H'1 — As H'z — —1

Une droite quelconque p donne, avec les deux premiers

! Car on a E2 =r1 +4 r3, par conséquent Hz =r1 — r3, ct, comme le produit scalaire de

. ot T
ces deux vecteurs est nul, leur distance sphérique est 5
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cotés, les points d’intersection IT: et Ilz, tandis que sa pro-
jection p’ rencontre les «axes» correspondants en II's et I1'z.
Nous avons donc

, AsH’s ALY AsH’ —1
— (a1 as e2pe) = (AsAi He M) = (_A3A'1 Helly) = AZ ”,z : A'I H'Z - ‘3&: ﬂ/z — —

' AsH't A»Dln AsHY  —1
= (azaseipr) = (As A2 Hi ) = (As A2 H 1) = AZ ﬂ'i 1 H'i = ﬁ\: H'_i =

ou encore
1

1
uy cug Uy — — —: — —: 1
a

~
~
<
>

si nous désignons AsIl'z et AsIl'1, c'est-a-dire les distances
de l'origine aux points de rencontre de la droite p’ avec les
axes A3 X et AsY par « et b, et si, avec Plicker, nous rempla-

1 1
cons — — et — — par u et ¢.
v a I

Si donc 'équation d’'une courbe sphérique par rapport au
triangle sphérique de la fig. 2 est en coordonnées trigonales

flur, uz, us) = 0

I'équation de la courbe plane correspondante en coordon-
nées de Pliicker par rapport aux axes obliques de la méme
figure sera
flu. v, 1) =0
Application. L'équation d’une droite sphérique p étant

uraxy 4+ uzx2 + usaxs = 0

celle de la droite p’ dans le plan est, par conséquent
‘;_}_[)—1:0 ou ur + vy +1 =20

12. Pour trouver une autre signification géométrique des
coordonnées ponctuelles et tangentielles introduites, reve-
nons aux expressions

X4T == p1X1T1 + paxel2 + psasTs et wal = viwrlt + vowsle - vausls

et rappelons-nous (fig. 1) que la distance sphérique du point
r als est le complément de I'arc £, tandis que la distance
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de 1a rs est le complément de ds. Multipliant done les deux
équalions par Is et rs, nous obtenons

xasin &y = ps as sin ks ua sin 03 — v3 ug sin fis

d’ou nous concluons facilement

singi  sinf  sin&s

X1 . X9 X8 — - : rum—
g1 sin hu pesin hg  pssin kg

el

sin d1 sin 03 sin ds

s = S f  vasin ke vs sin /i3

si £, sont les dislances sphériques du point P aux trois cotés
et d, les distances sphériques de la droite p aux trois som-
mets du triangle de référence.

En faisant coincider le point-unité avec l'intersection des
médianes, c’est-a-dire en prenant p, = 1, nous devons pour
satisfaire aux équations (9) prendre les coeflicients ¢, de ma-
niére a ce que ¢ ;sin/k, devienne constant. Nos proportions se
simplifient par ces suppositions, et si nous passons encore
de la sphére au plan, ou le rapport de deux sinus devient le
rapport des arcs correspondants, nous aurons

o Er &2 &
1 Xyt A3 = — D

hi  he ks
Wi uzius — O1: O : ds

de sorte que I’équation d’une droite plane (et d’un poinl) en
coordonnées trilinéaires devient

o1 d2 ds
E§1+E§2+E§3—O

13. Passons au cercle sphérique.

Toutes les droites «; qui ont Tous les points 2, qui ont la

la méme distance ¢ d'un point méme distance # d’une droite
fixe y, enveloppent .un cercle sphérique v, sont sur un cercle

sphérique dont I'équation est sphérique dont I'équation est

(1y1T1 - poyeTe - psysTrs) (viuwrls +vauzle + vsusls) = ysuasing ]
[ (vivrln + vewzle —}— vsUsls) (g1 21Tt - pexaTe 4 psarsTs) — vaxscosp ;
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ou encore :

10) (y1ui—+ y2uz 4 ysus)A—ysussing=0,

car les tenseurs des deux vec-
teurs dont nous avons formé le
produit scalaire sont y, et w,,

tandis que leur distance sphé-
. T
rique est 5 — 0.

L’équation (10) du cercle en
coordonnées tangentielles u, est
en réalite du second degré, parce
qu’elle contient

s = |/.Q.(u1 ug us)

Si 'on y pose 9 = 0, on re-
tombe sur 1’équation bien con-
nue du point y, .

14. 11 est évident que réci-
proquement toute équation en

coordonnées tangentielles de la

forme?:

Biuir + Bsuz +Bsus +Bsus = 0

représente un cercle sphérique
dont on détermine le centre y,
et le rayon ¢ par la comparai-
son avec ’équation (10), donnant

y14 = B1; y2A =Bz ; 34 = Bs;
yasinp = — Bs
ce (ui nous permet de dire que

p1Birs 4+ peBere + psBsrs

est le centre, et que le rayon se
trouve par

Bs A
~ V/w[BiB:Bs]

sinp::

ou encore:

(11)  (vs a1+ v2x2+vsxs)d —vaascosp=0,

car les tenseurs des deux vec-
teurs dont nous avons formé le
produit scalaire sont v, et x,,
tandis que leur distance sphé-

. s
rique est @ = g5 — 0 .
L’équation (11) du cercle en
coordonnées ponctuelles ; est
en réalité du second degré, parce
qu’elle contient

xrs = ‘/w(m X2 xs)
Si 'on y pose 9:72:—9:0,

on retombe sur 1'équation bien
connue de la droite v,

Il est évident que toute équa-
tion en coordonnées ponctuellés
de la forme*:

brar + beaxe + bzxs + baay = 0

représente un cercle sphérique
dont le centre et le rayon se
trouvent par la comparaison
avec ’équation (11), donnant
V1A =0b1; 1WA = b v3d = b3:
vacosp = — ba ;
ce qui nous permet de dirve que?
vibili + vebele + vabsls

est le centre, et que le rayon se
trouve par

bs A

Cosp— — ——
g V/ Qb1 b2 bs)

t Il est & remarquer que, dans cette équation, les cocfficients sont indépendants entre eux
B4 ct b4 ne sont donc nullement V Q. (Bs Bz Bs) et Ve (b1 b2 b3)

% Si nous appelons _Q'(bi) la dérivée de () (0152 b3) par rapport a b;, cette expression pour
le centre peut encore s’écrire p &).'(171). r1 + 2 Q’(bz). r2 + s ,Q.’(ba). r3 .
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15. En partant des équations (10) et (11), il est facile de voir
que les équations des circonférences sphériques tangentes
aux trois droites non-concourantes ¢, 4., 7/, ou passant par
trois points ¥., z., £, qui ne sont pas sur la méme droite

12 14 14
sphérique, seront

Ui u2 U3z U4 X1 a2 A8 X4
1 vz Us V4 Y1 Y2 Y8 e
= 0 — 0
(S 55 T S €0 T O T £ J1 52 Z8 Z4
reorz rg ra tv &2 I3 1
16. Exemples. — Cercle ins- Cercle circonscrit. Dans ce

cas, les trois points donnés sont
les sommets du triangle, dont

crit. Dans ce cas, les trois droi-
tes données sont les cotés du

triangle, dont les coordonnées
sont (1, 0,0), (0,1, 0), (0,0, 1),
tandis que les éléments corres-
pondants dans la derniere co-
lonne du déterminant devien-
nentv,,v,,v,. [.’équation du cer-
cle inscrit en coordonnées tan-

les coordonnées sont (1, 0, 0},
(0,1,0), (0,0, 1), tandis que
les éléments correspondants
dans la derniere colonne du
déterminant deviennent p, , g,
w, . [équation du cercle cir-
conscrit en coordonnées ponc-

gentielles est, par conséquent :  tuelles est done

w1 U2 us u4 X1 X2 a8 X4
1 0 0 v 10 0 w@m
= vy U1+ u2-Fvsus = 1 x14-u2re 4+pars
0 1 0 1o et 001 0 wl| © e
— Uy —0 . : — axs— 0 .
0 0 1 wv; 0 0 1 wps

Il est évident que ces équations peuvent encore s’écrire
(viwrtveuz +vsus)i— Q(uruwsus)=0; (prxi4-vaxetpsxs)’ — w(xrazas) =0

ce qui, développé, donne

usus . Ay uswy m% As w1 e 5 As
sin® — — — sin® — = 0 ;
V1 2 v2 2 V3 2
Xexs . . xrsxy ., as Xixe . o, s
sin? — — sin? — + sin? — =0
1 2 51.8 4

Les centres sont

piviTL - peveTe 4 psvsTs et viptl 4 vepele —{—va psls ou

1 Q)T+ w2 Q (pe) T2 4 ps Q(psiTs




DES AXES D’UNE HYPERBOLE 221
tandis que les rayons se trouvent par les formules
| A
‘/——“"—————w(i veva) ; cos R = V_ﬁ_ﬂm
Eunfin, si nous prenons. p, =1 et v,=sin A, c'est-a-dire

si nous prenons lintersection des médianes comme point
d’unité, les équalions précédentes deviennent

sinr —

A A A
wzugtg?1 + usuitg ?2 + wruztg -2—3 =0 ;

. g 1 . az : as
x2 x3 sin® 7 -+ a3 21 sin® - + x1a2 sm?—2— = 0

Pour le plan, 'équation du cercle inscrit restera en coor-
données barycentriques

AL - A2 AS
uzus g = + wwtg 5+ wuatg 5 = 0,

tandis que celle du cercle circonscrit devient

ar?xsas + a?asxr + aslxrae =0

M.-Fr. Daniirs (Fribourg, Suisse).

DETERMINATION DES AXES D'UNE HYPERBOLE

DONT DEUX DIAMETRES CONJUGUES SONT DONNES

On connait beaucoup de constructions des axes d’'une
B cllipse, dont deux diametres conjugués sont donnés. L'une
L des plus récentes et des plus fécondes est celle qui est due
t 4 M. Manurim L. Moins nombreuses sont les solutions de la
| méme question pour I'hyperbole. Mais on peut résondre cette
| dernicre question avec la méme facilité que la premiere, si
'on regarde une hyperbole quelconque comme projection

1 Nouv. Annales de Mathématiques, 1904, janvier.
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