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206 M.-F. DANIELS

Questioni ehe riguardano la geomM. Bonola
donne aussi une démonstration de la proposition que la somme
des angles d'un triangle sphérique est plus grande que deux
angles droits, en ayant cependant recours à la notion extensive de
l'aire du triangle, qu'il est certainement utile d'éviter. Au contraire,
dès le 1895, M. Mansion a donné, dans un supplément de
une construction de la Géométrie et de la Trigonométrie sphé-
riques, indépendante des hypothèses sur les droites parallèles et
sur l'infinité de la droite. Si l'on confronte avec celle-ci la nouvelle
construction on verra, je l'espère, que l'intérêt méthodologique
n'est nullement diminué.

Plaisance, 12 Février 1905.

LES COORDONNEES PROJECTIVES SUR LA SPHERE

1. Des coordonnées sphériques non-homogènes ont été
introduites par G. Gudermann \ qui, pour déterminer la position
d'un point M par rapport à un triangle sphérique VXY dont
deux côtésYXet VYsont droits, mène parle point en question
les droites sphériques XM et YM. La première rencontre le
côté YY en Q, la seconde rencontre le côté VX en P. Ce sont
les tangentes trigonométriques des arcsVQ et VP, qu'il
considère comme les coordonnées clu point M Axenkoordin cite).

Quelquefois il emploie aussi un système de coordonnées
polaires : l'arc VM et l'angle XYM, qu'il appelle les coordonnées

centrales du point M (CentrLesproblèmes

ordinaires de la droite, des coniques, de la eyeloïde et
de la chaînette sphériques qui sont traités dans ces systèmes
de coordonnées donnent lieu à des déductions et des
formules d'une extrême longueur, ce qui explique suffisamment
l'oubli dans lequel les recherches de Gudermann sont
tombées.

1 C. Gudermann. Grundriss der analytischen Sphärik. Köln, 1830.
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Indépendamment de lui, un géomètre anglais, Ch. Graves

*, arrivait, quelcpies années plus tard, aux mêmes
systèmes de coordonnées. Pour l'emploi des coordonnées
polaires sphériques il avait été devancé par son compatriote
S. T. Davies2.

On doit à Möbius3 un premier essai d'introduire un
système de coordonnées homogènes sur la sphère. Il y arrive
en étendant à cette surface le calcul barycentrique, et voici
comment il procède. Si A, B, G sont trois points de la

sphère, on peut, pour tout autre point Q de la surface sphé-

rique, trouver des nombres a,c tels que

acos YA -J- £»cosVB -J- ccosVC ~ cos YQ

le point V étant un point de la sphère tout à fait quelconque.
Pour arriver à une sphérique analytique, nous voulons, dit
Möbius, par abréviation, laisser de côté les signes cos et V
et écrire, au lieu de l'équation précédente :

ak -f- />B cC

Les coefficients a,b,c sont alors les coordonnées homogènes

du point Q, et Möbius démontre ensuite que cette
manière de traiter analytiquement la surface sphérique est
au calcul barycentrique comme la sphérique est à la plani-
métrie. Le centre de gravité des poids ô, c en A, B, G

ne sera pas dans la surface sphérique, mais on peut ajouter
au centre de la sphère M un poids m, tel qu'il est ramené au

point de la sphère aA -f- £B -f- cC.
G. Salmon4, procédant autrement, arrive à des meilleurs

résultats. Si Ton substitue les coordonnées d'un point P de
la sphère dans le premier membre de l'équation normale
a=0 d'un plan passant par l'origine (qui est en même temps

le centre de la sphère), on obtient la normale abaissée du

1 Two geometrical Memoirs on the general properties of cones of the second degree and of the
spherical conics by M. Chaslcs,translatedfrom the french, with notes and additions, and an
appendix on the application of analysis to spherical Geometry, by the Rev. Charles G haves.
Dublin, 1841.

2 Transactions of the Royal Society of Edenburgh, Vol. XII.
8 Möbius. Gesammelte Werke, II161, Band, S. 1-54.
4 Salmon-Fiedler. Analytische Geometrie des I. Teil, 3. Auflage, X. Kapitel.
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point P sur le plan a 0 ou encore le sinus de Pare splié-
rique compris entre P et le grand cercle déterminé sur la

sphère par le plan. Les valeurs a, ß, qu'il obtient ainsi

pour trois plans différents passant par le centre sont les
coordonnées du point P par rapport au triangle sphérique
que ces trois plans déterminent sur la sphère.

Nous allons développer un système de coordonnées pro-
jectives sphériques, qui permet de passer de deux manières
différentes aux cas spéciaux des coordonnées projectives
planes et aux coordonnées cartésiennes. Le traitement des

problèmes sphériques, dans ce système de coordonnées, se

trouvera être plus simple et plus symétrique que celui des

problèmes analogues pour le plan, et il ne nécessitera nulle
part l'intervention de la connaissance des coordonnées
cartésiennes. Sous ce rapport, l'exposition ordinaire des
coordonnées projectives, qui présuppose déjà la connaissance
de ce qui en est un cas spécial, laisse certainement à

désirer.

Nous nous servons, dans l'exposition des éléments de la

sphérique analytique qui va suivre, de quelques relations
très simples du calcul des vecteurs qui se trouvent dans un
article de L'Enseign.Mathématique (mars 1902, p. 111-113).

2. Le rayon de la sphère étant l'unité, chaque point de sa

surface est déterminé par un vecteur-unité r partant du centre.

Chaque multiple positif de ce vecteur détermine le même

point; chaque multiple négatif détermine le point diamétralement

opposé.
Une droite sphérique, son sens positif étant fixé, est

déterminée par un vecteur-unité 1 partant du centre, normal au

plan de la droite sphérique, et à gauche lorsque celle-ci est

parcourue dans le sens positif. Un multiple négatif de 1

détermine la même droite parcourue dans le sens inverse.
%

3. Le triangle sphérique rir2T3 a les angles extérieurs
Ai, x\2, A3 ou A23, A31, A12 j les côtés ai, ai, a% ou <723, c/31, c/12

et les hauteurs hi,h2, h3. Si, en parcourant les côtés dans
le sens indiqué par les flèches, on prend les vecteurs Ii, I2, I3



COORDONNÉES PROJECTIVES SUR LA SPHÈRE 209

des droites à gauche, on obtient le triangle polaire dont les

angles extérieurs sont a23,a31,r/12 et les côtés A23, A31, A12.

Les propriétés des produits scalaires nous donnent d'abord
les relations suivantes entre les vecteurs des sommets
ri, r2, Ts et ceux des côtés Ii, I2, I3 du triangle sphérique

(1)
Ti Tk C0S

hh cos A
(2)

TiTi vi 1 sin

ik h h V h*k 0

tandis que celles des produits vectoriels nous fournissent les
égalités :

(4) Yri rs sin ai.liYrs ri sin <72.12

(5) YLls — sin Ai .n YI3 li r=r sinA2.r2

Vn T2 — sin <^3. Is

Yli I2 sin As Ts

L'Enseignement mathéin., 7° année; 15)05. 15
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Les deux premières des équations (4) et (5) nous donnent
ensuite :

Nii rs Yrs ri — sin sin at. Ii h

Vh13 Vis Ii — sin Ai sin A2. ri

qui, pouvant s'écrire

r2 rs. r? ri — r2 n — sin sin at. Ii I2

his. Is Ii — h Ii sin Ai sin A2. n T2

sont les formules fondamentales de la trigonométrie sphé-
rique :

cos ai cos at — cos as sin ai sin at cos As

cos Ai cos A2 — cos A3 — sin Ai sin A2 cos a3

En outre, la multiplication scalaire des équations (4) par
ri, T2, t3 donne

(6) sinaisin hi— sin at sin ht — sin at sin ;

de même celle des équations (5) par li, L, L

(7) sin Ai sin hi— sinA2sin/i2 — sin A3 sin A3 ;

d'où nous tirons encore

(8) sin ai : sin as : sin as sin Ai : sin A2 : sin As

4. Le vecteur d'un point, qui
en général n'est pas un
vecteur-unité et que nous écrirons
donc <r4r, décomposé d'après
les trois vecteurs non-coplanai-
res, qui déterminent les sommets

du triangle de référence,
donne

Xil — miii+ mtlt +

ou, si nous introduisons trois
constantes différentes de zéro

X4r — pti xi ri -f- pt2 T2 -f- as xs 13

Le vecteur d'une droite, qui
en général n'est pas un
vecteur-unité et que nous écrirons
donc Z/4I, décomposé d'après
les trois vecteurs non-coplanai-
res correspondant aux sommets
du triangle polaire, donne

U41 ni li -j- nt I2 -f- ris h

ou, si nous introduisons trois
constantes v. différentes de zéro

U4 1 Vl Ml 11 -j- V2 h + VS Ut h



COORDONNÉES PROJE CTIVE SSUR LA SPHÈRE 211

Les coefficients xi 7

sont lescoordonnées du
tandis que le point

{AlTl -p {A2V2-ppis F8

Les coefficients u3 sont
les coordonnées de droite, tandis

que la droite

VI 11 -j- V2 I2 ~p vs ls

dont les coordonnées sont égales dont les coordonnées sont égales
à l'unité, est le point-unité. à l'unité, est la droite-unité.

5. Equation d*unPour
que le point

jl/»l Xl F1 -j— p. 2 X2 F2 —[— U3 X$ F3

soit sur la droite donnée

VInil -j- V2 V2I2-p vsnls

il faut et il suffit que la distance
sphérique de ces deux vecteurs
soit ^ ou que leur produit
scalaire

pi vi sin hi. ViXi ~p V2 sin x-i

-p {A3vssin /is .Vs xs

soit nul.

Equation d'unpoint. Pour que
la droite

VI 111 11 -p V2 U'i\2 p- vs Ils L

passe par le point donné

pnjlFl -p pt2j2T2 -p T3 y

il faut et il suffit que la distance
sphérique de ces deux vecteurs

soit ~ou que leur produit
scalaire

vi {Ai sin hi. yiui~pV2 p12 sin Ï12. 112

-p vs {A3 s in us

soit nul.

Ces conditions se simplifient considérablement si nous
choisissons les constantes p.ety. de manière à ce que

(9) pu vi sin hi— {A2 V2 sin /12 — pt3 v8 sin h2 EE A

Dans ce cas l'équation de la droite devient en coordonnées
ponctuelles sphériques

Vl Xl -P V2 X2 -j- VsXs 0

et celle du point en coordonnées tangentielles sphériques
7"i ui -p y2 U2 -p j"3 us 0

L'équation de la droite-unité est

Xl -p .T2 ~P XS— 0

et celle du point-unité
111 -p 112 -p us — 0
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6. Le tenseur du point

xi r pix\ri+ [12 X2T2 4- p>3 s rs

se trouve, en prenant le carré :

JCx2 pi2Xl2 4~ ^22X22 4"

2 p.1 £12 X2 COS 02

Nous représentons cette forme
quadratique, qui revient
souvent, par

CO {Xi X2 ^3) ou CO (xx)

Le tenseur uA de la droite

i/41 vi u 1 li 4~ V2 2 L "h V3 I5

se trouve, en prenant le carré :

Ui* — VI2 f/l2 4- V2 0-)-•••
2 vi V2 1 c/2 cos As 4- • •

Nous représentons cette forme
quadratique, qui se rencontre
souvent, par

£1(«IC/2?/S) ou ÇL(uu) -

7. Si lori 0 et 1oT2 =0, c'est-à-dire si les points Pi (ri)
et P2(y2) sont situés sur la droite lo tout point

P ri — > T2

est également sur lo parce que son produit scalaire par lo

est nul. En outre, nous avons

car si est la valeur absolue 011 le tenseur de n — Xr2, les

propriétés du produit vectoriel nous donnent

I V(n — >r2) n I X I Yri V2|t sin P Pi

' et I Y(n — >r2) r2 I I Yri r2 | t sin P P2 ;

donc
> —(P1P2P)

De même on démontre que la droite sphérique

p EE Ii — M2

passe par l'intersection des droites sphériques (li) et /^(b)
et que

1 {pip2p)•

Le rapport anharmonique des points

n r2 ri — Xr2 et ri — r2
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est 1:[x,et, si l'on fait passer par ces quatre points les quatre

droites sphériques concourantes

li I2 li —1 >012 et li — po I2

on aura les égalités

Ii n 0 hr2 — 0 (li — >012) (n — Xn) 0 (li — pob) (ri — pr2) 0

dont les deux dernières, simplifiées à l'aide des deux
précédentes, donnent le théorème de Pappus

8. Les droites joignant le
point

P — ai .ri n -p p2 X2 y2 -p ps «rs r3

aux sommets du triangle
rencontrent les côtés opposés en

Pi EE p2 X2r2-|- |jt,3 #3 rs ;

P2 EE p.3 x^rs -p pi ri ; P3 —

car P est aussi bien sur la droite
qui relie P1 au sommet A4 que
sur celle qui relie P2 à A2 etc.

Pour le point-unité

E pu ri -p 1*2 T2 -p p3 rs

nous avons de même1

Ei EE U2 T2 -p ps rs ;

E2 — p3 rs -p pi n j Es — • •.

Les points d'intersection de
la droite

p EE VI 11111 -p V2 U'2 I2 p- V3 llz ls

et des côtés du triangle
déterminent avec les sommets opposés

les droites

fi EE V211212 -p V3 iiz ls ;

p2 EE vs iizlz-p vi ui Ii ; p s EE

car^p passe aussi bien par
l'intersection de px et du côté ai
que par celle de />2 et a2, etc.

Pour la droite-unité

e vi Ii -p V212 -p vs I3

nous avons de même

ci EE V212 -p V313 ;

C2 EE V3I3 -p vi li ; £3 EE • • •

1 Les points conjugues harmoniques E'i — p2T2 — psTs Er2 — p3 T3 — pi Ti
E'3 ee pin — p2 T2 sont sur une droite (polaire trilinéaire de E), dont l'équation — dans
la supposition toutefois que les p. et v- aient été choisis tels que p.v- sill h- est une cons-
tante - peut s'écrire 11 ' 'Xl-pX2-pXZ 0

La polaire trilinéaire du point-unité est donc, dans cette supposition, la droite-unité.



214 M.-F. DANIELS
Nous en concluons, d'après

I 7, que

(A2 As Pi) —
[13 8

(A2X2

et (Aï A3 Ei) — —
f"

c'est-à-dire que

X2
(A2A3E1P1) ~ —

Nous en concluons, d'après
§ 7, que

(ci2 aspi)
va

V2 2

et
V3

(<72 <73 et)
V2

c'est-à-dire que
U2

[ai as ei p1) —
1 us

De la même manière on trouve De la même manière on
naturellement trouve

OC 3

(A8A1E2P2) — etc.
Xl

us
(as ai e2 p2) ~ — etc.

1

9. Ceci nous permet de démontrer les théorèmes suivants :

Si, du centre de la sphère,
les sommets A1, A2, A3 ; et les
points E; P; E1 ; etc., se

projettent sur un plan quelcon-
que f en A',, A'2, A'3 ; E' ; P' ;

E'd, P'4 ; etc., les coordonnées
projectives x. du point P' par
rapport au triangle plan A'2 A'3
seront les mêmes que celles du
point P par rapport au triangle
sphérique AiA2A3,pourvu que
la projection E' du point-unité
E devienne point-unité dans le
triangle plan.

En effet, nous avons vu que,
dans le triangle sphérique:

(AsAjE, Pi)=-
Nous avons de même, comme

cas spécial dans le triangle plan :

:A'2 A'aE'i P'if= X 2

7~
X s

D'après le théorème de Pappus,

les deux rapports anhar-
moniques sont égaux ; nous

Si, du centre de la sphère,
les côtés ax, a2,a3 ; et les droites
e; p; el; pl,etc., se projettent

sur un plan quelconque e en

3'^ "> Pi ^ \ P \ î l
les coordonnées projectives u'z

de la droite p'par rapport au
trilatère plan aseront
les mêmes que celles de la droite
p par rapport au trilatère sphérique

aia2a3, pourvu que la
projection e' de la droite-unité
e devienne droite-unité dans le
trilatère plan.

En effet, nous avons vu que,
dans le trilatère sphérique :

u2
(a2 as eipi) m —

us

Nous avons de même, comme
cas spécial dans le trilatère plan :

(a'2a'2 1)
u'2

u 3

D'après le théorème de Pappus,

les deux rapports anhar-
moniques sont égaux ; nous
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a\

XI

-ons donc A! _ ï_2 et. de même avons donc — — et de même
XsX3 "3 3

JL3 x'& ^ 3

— —r c est-a-dire — — ~
a*i X i

Z/3 S ixl#— -y ; c est-a-dire
Z/l « 1

xi : X2 : xs x'i : aA : x'%

ce qu'il fallait démontrer.

ui \ U2 iH — u'i : w'2 : 11 s

ce qu'il fallait démontrer

Tcg. 1.

10. Prenons comme application (fig. 2) le triangle sphérique
TT TT

Ai A3 As, dont les côtés A3 Ai, Ai A2, A2A3 sont 6, —

tandis que le point-unité E coïncide avec le point d'intersection

des médianes, les projections se faisant sur le plan

tangent en A3. Dans ce cas on a A3 Ei A3 E2 et, par

conséquent, le rayon de la sphère étant l'unité, A3E'i
ÂTE^ i

Pour trouver E\ les points E'i et E;2 doivent être reliés à

A'i et A'2 ; mais, comme ceux-ci sont à l'infini sur les « axes »

A3 X et A3 Y, il suffira de mener par F/i et Er2 des parallèles
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à ces axes ; leur point d'intersection sera le point-unité E'
de la figure plane. De même on trouve la projection P' d'un
point quelconque P comme intersection des parallèles à

A3 X et A3 Y menées par P'i et PV
Si nous appelons maintenant As P'i et A3 P'2 les coordonnées

cartésiennes Y et X du point P' par rapport aux axes
obliques A3X et A3 Y, le théorème démontré nous fournit
les relations

*1 / A A n r» /A/ KfWTï/ V
Yi E72 As P'2 A3 P'2

— — Al A3 E2 P2) A 1 A 3 E 2 P 2 — • 7 7=rr ~ 7 777- ~ X
xz A i P 2 As E 2 A3 E 2

JC2 A'2 E'i As P'i As P'i v— A2 As Ei Pi (A 2 A 3 E 1 P 1) — -—. -—r-^r 7—rrr — Y »

xz
x ' A 2 P 1 As E l As E1

ou encore
xi: X2 : xz~X: Y : 1 ;

de sorte que, si f[x1X2X3) 0 est l'équation en coordonnées
trilinéaires d'une courbe sphérique par rapport au triangle
sphérique de la fig. 2, le point-unité étant l'intersection des
médianes, l'équation de la courbe plane correspondante en
coordonnées cartésiennes par rapport aux axes obliques de
la même figure sera

f(X, Y, 1) 0

II. Nous pouvons trouver des relations analogues entre
les coordonnées tangentielles d'une droite sphérique p et
celles de sa projection p'.Eneffet, la droite-unité e étant la

polaire trilinéaire du point-unité E, il faut que
1

Ei Hi Es Hs I
si Hi et H2 sont les points d'intersection de e avec les côtés
ai et ci2 du triangle sphérique. Il s'ensuit que leurs projections

H'i et HY seront déterminées par

AsH'i — As H'2 — L

%

Une droite quelconque p donne, avec les deux premiers

1 Car on a E2 EE ri + T3 par conséquent HjETi — rs et, comme le produit scalaire de

ces deux vecteurs est nul, leur distance sphérique est -À
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côtés, les points d'intersection Iii et II2, tandis que sa

projection p rencontre les «axes» correspondants en II'i et n/2.
Nous avons donc

M] tt 4/ TT/ / As H'2 A'i n'2 A3 H'2 1

— — (ai as62pi) — (As Ai H2 Ü2)(A3 A 1 H 2 n 2 — 7—-7- • u, -7—ttf — —
uz 1 As II 2 A 1 A3 II 2 a

U2 TT n y 4 4/ TT/ / Ag ^ A'* 11Â, H'i - 1

— {a2ci3 eipi)=z (A3 A2 Hi lli) — (A3 A 2 H 1 fi 1 — -—— ,TT/ — 7——>- — —7-1 As n 1 A 2 ri 1 A3 II 1 b«3

ou encore
1 1

1 - 1m: 112: 113— : r : 1 w : r •' 1
>

a

si nous désignons A3 n'2 et A3 II'i, c'est-à-dire les distances
de l'origine aux points de rencontre de la droite p' avec les

axes A3X et A3Y par ciet ô, et si, avec Plücker, nous rempla-
1

1
1

cons et p par uet v.
a b 1

Si donc l'équation d'une courbe sphérique par rapport au

triangle sphérique de la fig. 2 est en coordonnées trigonalesf'ui,U2 3) =: 0

l'équation de la courbe plane correspondante en coordonnées

de Plücker par rapport aux axes obliques de la même
figure sera

f[ U £ 1) rr 0

Application.L'équation d'une droite sphérique p étant

«1 Xi -f- U2X2 -p US — 0

celle de la droite p' dans le plan est, par conséquent

h 7 — 1 r= 0 ou 4- vy 4- 1 — 0ab
12. Pour trouver une autre signification géométrique des

coordonnées ponctuelles et tangentielles introduites, revenons

aux expressions

'^r ~ [MlXlri-f- [M2X2T2 [Â3XST3 et 1 ~ VI 11 ~P V2 L -p V3 3 ls

et rappelons-nous (fig. 1) que la distance sphérique du point
r à I3 est le complément de l'arc £s, tandis que la distance
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de 1 à T3 est le complément de <?3. Multipliant donc les deux
équations par I3 et r3, nous obtenons

X4 sin £3 — xs sin A3 4 sin âs V3 u3 sin As

d'où nous concluons facilement

sin Çi sin £2 sin £3
xi : x2 : xs — ———r : r: :—7-

pn sin ni sin «2 sm A3

et
sin c?i sin r?2 sinc)\s

Ml : U2 M3
vi sin hiV2sin A2 v3 sin A3

si £. sont les distances sphériques du point P aux trois côtés
et d les distances sphériques de la droite aux trois
sommets du triangle de référence.

En faisant coïncider le point-unité avec l'intersection des
médianes, c'est-à-dire en prenant 1, nous devons pour
satisfaire aux équations (9) prendre les coefficients de
manière à ce que v. sink.devienneconstant. Nos proportions se

simplifient par ces suppositions, et si nous passons encore
de la sphère au plan, où le rapport de deux sinus devient le

rapport des arcs correspondants, nous aurons

Si S2 ?3
Xi : x2 : xs — -7— : -7— : -r-ni ri2 h 3

ui : U2 : W3 âi : & ;

de sorte que l'équation d'une droite plane (et d'un point) en
coordonnées trilinéaires devient

^ »? » _7- Si + y- S2 + y- S3 — 0
fil 112 ris

13. Passons au cercle sphérique.

Toutes les droites u.qui ont Tous les points qui ont la
la même distance q d'un point même distance 0 d'une droite
fixe yi enveloppent .un cercle sphérique v.sont sur un cercle
sphérique dont l'équation est sphérique dont l'équation est

yi Ti + pt2 y2 12-f- //s 33 fs) Vi 11111 -j- V2 U2I2-j- vs mI3)3-4 4 sill ; j
£ [viVl11-f- V2 V2 I2 -f- vs f3 ls) Xl Fl -f- p.2 F2 -f- f18 -T8 1*3 — X4 COS p
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ou encore :

(ji in + J2 U2 + ysus)A—y*iu sin 0

car les tenseurs des deux
vecteurs dont nous avons formé le
produit scalaire sont et uA,
tandis que leur distance sphé-

4- n
rique est - — Q•L'équation (10) du cercle en
coordonnées tangentielles ut est

en réalité dusecond parce
qu'elle contient

Ui j/û(U\ U2«3)

Si l'on y pose 0 on
retombe sur l'équation bien connue

du point yt.

14. Il est évident que
réciproquement toute équation en
coordonnées tangentielles de la
forme1 :

Bi u\ —Bj ii2 ~J- B3 us -j— B4 — 0

représente un cercle sphérique
dont on détermine le centre y.
et le rayon qpar la comparaison

avec l'équation (10), donnant

j'i A ~ Bi ; ya A — B2 ; ys A m B3 ;

j4 sin p— — B4 ;

ce qui nous permet de dire que

jxi Bi n -j- p.2 B2 T2 -f- Bs rs

est le centre, et que le rayon se

trouve par
B4 A

sin a — —
|/eo(Bi B2 Bs)

ou encore :

(11) (ViXl-\-V2X*-\-VsXs)à

car les tenseurs des deux
vecteurs dont nous avons formé le

produit scalaire sont vA et x4,
tandis que leur distance sphérique

est q— ^ — 9

L'équation (11) du cercle en
coordonnées ponctuelles xt est

en réalité du second y parce
qu'elle contient

Xi — {/(*) {Xl X2 xs)

Si l'on y pose 9— ^ — 0

011 retombe sur l'équation bien
connue de la droite

c

Il est évident que toute équation

en coordonnées ponctue]lés
de la forme1 :

biX\ —J—h2X2 —j{- Ij3 l- tji X\ — 0

représente un cercle sphérique
dont le centre et le rayon se
trouvent par la comparaison
avec l'équation (il), donnant

V\A bi; ViA 2 ; A — bz ;

Vi cos P— bi ;

ce qui nous permet de dire que'2

vi bl 11 -f- V2 1)2 I2 -J- V3 bz I3

est le centre, et que le rayon se
trouve par

bi A
cos p— —

\/£l[b\ ()2 bz)

1 II est à remarquer que, dans cette équation, les coefficients sont indépendants entre eux
B4 et bi ne sont donc nullement Lü (Bi Bs B3) et

2 Si nous appelons 0/ (b^ la dérivée de ,Q (£1 bi bz) par rapport à cette expression pour
le centre peut encore s'écrire piLl'ibi).ri-f- -f-
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15. En partant des équations (10) et (11), il est facile de voir

que les équations des circonférences sphériques tangentes
aux trois droites non-concourantes u-\, r. ou passant par
trois points y.,zé, qui ne sont pas sur la même droite
sphérique, seront

7/1 1(23 iu

Vi V2

U'i (l'2 U'S U'4

/'I 7*2 ?'3 7*4

— 0

,Tl a'2 X8 3"4

1*1 y2 7'4

Cl C2 CS Zi

t1 t'2 is ti

0

10. Exemples. — Cercle
inscrit. Dans ce cas, les trois droites

données sont les côtés du
triangle, dont les coordonnées
sont (1, 0, 0), (0, 1,0), (0, 0, 1),
tandis que les éléments
correspondants dans la dernière
colonne du déterminant deviennent

vx,k2,r3.L'équation du cercle

inscrit en coordonnées tan-
gentielles est, par conséquent :

Cercle circonscrit. Dans ce

cas, les trois points donnés sont
les sommets du triangle, dont
les coordonnées sont (1, 0, 0)

(0,1,0), (0,0,1), tandis que
les éléments correspondants
clans la dernière colonne du
déterminant deviennent ^2,
i^3 L'équation du cercle
circonscrit en coordonnées
ponctuelles est donc

771 772 778 774 Xl X2 XS Xi
1 0 0 VI 1 0 0 pi
0 1 0 V2

Vi 771 —]— V2 77 2 —j— V3778

7/4 — 0
0 1 0

I

p2

0 0 1 v3 0 0 1 ps

pi .ri-f-u2.r2 -j-psxs

— tr4 0

Il est évident que ces équations peuvent encore s'écrire

(vi z/i —|—V2 1(2—(—vs //s)2—£1 (7717/2 Ms) — 0 ; ({xi -j- -f- fxs —co 0 ;

ce qui, développé, donne

Ai772 773 Al 7/3 771 .U2 Â2 7/1 772

— sin2 —4 si — +
VI I V2 l

sin2 ^ — 0 ;

v3 2

x'2X3 „ Ci

|xi 2
sin2 + ,rs .ri 772 2 9 //s

sur --—f- snA
[À2 I

Les centres sont

pivi Fl -f- {X2 V2 F2 -(- (X3 vs rs et VI 11 -f- V2 p2h V8 ls OU

pfl'(Ul)n-f- -f- pzLl'{p3)rs
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tandis que les rayons se trouvent par les formules

S T>
*

sin?-— — ; cos n
j/to(VlV2V3) {/D. (pi [Xs)

Enfin, si nous prenons p.. 1 et v. sin A., c'est-à-dire
si nous prenons l'intersection des médianes comme point
d'unité, les équations précédentes deviennent

Ai A2 A3
A

7/2 7/3 tg -2" + US u1 tg y 4- 771 7/2 tg 0 ;

o 771 „ 77 2 *2^^ ft
3f2 ^rs sm2 — —f— ors oci sur — -f- xi ^2 sm — — U

Pour le plan,l'équation du cercle inscrit restera en
coordonnées barycentriques

Ai A2 As A
7/2 7/3 lg 7/3 7/1 tg — (- 77 1 772 tg U

tandis que celle du cercle circonscrit devient

Cll2X2XS-}-772® OC'3X\-f-778^ 3C2 — 0

M.-Fr. Daniels (Fribourg, Suisse).

DÉTERMINATION DES AXES D UNE HYPERBOLE

DONT DEUX DIAMÈTRES CONJUGUÉS SONT DONNÉS

On connaît beaucoup de constructions des axes d'une
ellipse, dont deux diamètres conjugués sont donnés. L'une
des plus récentes et des plus fécondes est celle qui est due
à M. Manheim 1. Moins nombreuses sont les solutions de la
même question pour l'hyperbole. Mais on peut résoudre cette
dernière question avec la même facilité que la première, si
l'on regarde une hyperbole quelconque comme projection

1 Nouv. Annales de Mathématiques, 1904, janvier.
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