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On peut écrire
R, + mult. 17 = a - 7b — 2c—38d + 4e +6f—8g+5h—i+7j
+ 2k + 38l —4m —6n 4 80 —Sp +qg— Tr— ... ;
de 12 on déduit que :

Le reste de la division d’un nombre par 17 est le méme que
le reste obtenu en divisant par 17 la somme algébrique des
produits des chiffres successifs du nombre, « partir de celui
des unités, respectivement par les nombres

ool

1,7,2,3,4%,6,8,5;1.7,2,3.%,6,8,5; L, 7.

ErnestT LEBON (Paris).

SUR LA GEOMETRIE ET LA TRIGONOMETRIE
SPHERIQUES

Dans les pages suivantes je me propose d’établir les pro-
priétés des figures sphériques — jusqu’aux formules fonda-
mentales de la trigonométrie — sans jamais faire usage des
théoremes propres de la géométrie plane euclidienne *. Il me
semble que ce ne soit pas un simple exercice de géométrie

1 MM. NigwENGLOWSK! et GErRARD, dans leur Traité de géométrie, construisent la géométrie
sphérique en empruntant aux développements précédents la seule proposition que la somme
des deux e¢dtés d'un triangle sphérique est plus grande (ue le troisiéme. Cependant c'est la
faire un bien grand usage de la géométrie plane.

Que la géométrie et la trigonométrie sphériques soient indépendantes de I'hypothese parti-
culicre sur les droites paralleles, ¢’est un fait bien connu. On peut aussi le faire ressortir ais¢-
ment de Particle présent: il suffira — pour éviter toute difficulté relative & la géométrie rie-
mannicne — de ddéfinir convenablement le segment et I'ordre : en admettant le segment comme
concept primitif on dira, par cxemple : « Deux segments d'une méme droite avant méme
extrémité A. ou bien sont l'un entierement contenu dans l'autre, ou bien contiennent chacun
des points extéricurs a l'autre. Dans le premier cas, on dit que les deux segments sont du
méme coté de A. dans le second qu'ils sont de cotés opposés par rapport & A. Si deux seg-
ments sont de cotés opposés par rapport a A, tout aulre segment de la méme droite. avant
A pour extrémité est du méme coté que l'un et du cdté opposé de l'autre. »

L’Enseignement mathém., 7¢ année ; 1905, 14
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Questioni che riguardano la geometria elementare, M. Boxora
donne aussi une démonstration de la proposition que la somme
des angles d'un triangle sphérique est plu% grande que deux an-
g,les d101ts en ayant cependant recours a la notion extensive de
laire dutr 1an(rle qu’il est certainement utile d’éviter. Au contraire,
des le 1895, M.’\hxsmx a donné, dans un supplément de Maz/wals,
une construction de la Géométrie et de la Trigonométrie sphé-
riques, indépendante des hypothéses sur les droites paralleles et
sur l'infinité de la droite. Sil'on confronte avec celle-ci la nouvelle
construction on verra, je 'espere, que l'intérét méthodologique
n’est nullement diminué.

Plaisance, 12 Février 1905.

LES COORDONNEES PROJECTIVES SUR LA SPHERE

1. Des coordonnées sphériques non-homogenes ont été in-
troduites par C. GUDERMANN 1, qui, pour déterminer la position
d’un point M par rapport a un triangle sphérique VXY dont
deux cotés VX et VY sont droits, mene parle point en question
les droites sphériques XM et YM. La premiere rencontre le
coté VY en , la seconde rencontre le coté VX en P. Ce sont
les tangentes trigonométriques des arcs VQ et VP, qu'il con-
sidere comme les coordonnées du point M (Awxenkoordinate).
Quelquefois il emploie aussi un systeme de coordonnées po-
laires: P'arc VM et 'angle X'VM, qu’il appelle les coordon-
nées centrales du point M (Centralkoordinate). Les proble-
mes ordinaires de la droile, des coniques, de la cycloide et
de la chainette sphériques qui sont traités dans ces systémes
de coordonnées donnent lieu a4 des déductions et des for-
mules d’une extréme longueur, ce qui explique suflisamment
I'oubli dans lequel les recherches de Gudermann sont tom-
hées.

1 (. GUDERMANN. Grundriss der analytischen Sphdrik. Koln, 1830.
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générale, mais qu’il en ressort beaucoup de lumiere sur cer-
tains théorémes connus de la géométrie sphérique.

Les figures seront toujours décrites sur une sphere fixe :
si A et B sont deux points de la sphere, le grand-arc AB
sera 'arc de grand-cercle compris entre A et B et plus petit
qu'une demi-circonférence. Deux points d'un grand-cercle
seront du méme co6té d’un point donné sur ce cercle, s'ils
appartiennent a la méme demi-circonférence ayant ce point
comme origine.

1. Géométrie sphérique.

1. Soit BC un arc de grand-cercle, A un de ses poles.
L’angle ABC est droit — Soit C' le point opposé de Cet D
un point de la demi-circonférence CAC’; l'angle DBC sera
plus grand ou plus petit que ABC selon que DC est plus
grand ou plus petit que AC. Donc dans un triangle rectangle
Uangle opposé a Uun des cétés de 'angle droit est plus grand
ou plus petit qu’un droit en méme temps que ce coté est plus
grand ou plus petit qu’un cadrant.

On déduit que dans un triangle rectangle la somme des
trois angles est supérieure a deux angles droits. Pas de doute,
en effet, si un des cotés de 'angle droit est plus grand qu’un
cadrant: 'angle opposé est plus grand qu’un angle droit, et
la somme de cet angle avec I'angle droit du triangle est déja
supérieure a deux droits.

St ABC est un triangle, rectangle en A, dont les cotés AB
AC sont moindres qu'un cadrant, soit D le milieu de BC
et soit D1 le pied du grand-arc perpendiculaire de D a BA.
Sur le cercle DD1 que 'on porlte DDz == DDi. Les deux trian
gles BDD1, CDD2 sont égaux, ayant les angles en D et les
cotés qui les forment égaux: donc I'angle CD2D est droit et
le cercle CD2 passe par les poles de DD1. Soit P le pole qui
est, par rapport a D1, du méme coté que B: PA sera plus
grand qu’un cadrant et par suite PCA obtus. Mais PCB =CBA\;
donec GBA 4+ BCA + CAB > 2 angles droits.

Tout triangle ABC a au moins deux angles de méme espece
(obtus ouaigus) : soient A et B. Le demi-grand-cercle passant
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par C et perpendiculaire 2 AB, est divisé par G en deux arcs
dont I'un (plus grand ou plus petit qu’un cadrant selon que
A et B sont obtus ou aigus) est alors intérieur a A et a B et
par suite au triangle. Il décomposera le triangle en deux irian-
gles rectangles; dans chacun la somme des angles est supe-
rieure & deux droits; il s’ensuit que dans tout triangle sphé-
rique la somme des trois angles est supérieure a deux angles
droits.

En décomposant un polygone sphérique en triangles on
étend la proposition aux polygones, de la maniere connue.

2. En appliquant la proposition au triangle polaire d'un
triangle donné on déduit que la somme des trois cotés d'un
triangle sphérique est inférieure a quatre angles droits. S
alors ABC est un triangle sphérique, et A" est le point op-
posé de A, de la relation

A’'B + A’C + BC < 4 angles droits,

on lire que
BC < AB + AC,

c'est-a-dire que dans un triangle un coté est plus petit que la
somme des deux autres. Les théorémes sur les relations entre
les cotés et les angles opposés, sur les arcs perpendiculaires
et obliques d’un point & un grand-cercle, etc., se démontrent
alors suivant les méthodes ordinaires. Nous rappelons, en
particulier, 'observation suivante que nous devons appli-
quer: Soient AB, AC deux arcs, égaux ou moindres quun
cadrant, et formant entr'eux un angle aigu. Soit P le pole de
AB du coté de AC, et supposons que PB passe par C, soit
PCi1B1 un grand-arc, qui rencontre AB et AC en B: el Ci res-
pectivement. On a PB1 = PB =1 cadrant, PC: > PC; donc
B1C1 < BG; cest-a-dire : dans un triangle rectangle dont les
cOtés sont moindres qu'un cadrant et dont un angle aigu est
invariable, les trois cotés croissent et décroissent ensemble.

3. Nous appelons AIRE D'UN POLYGONE ['arc équatorial d’un
fuseau dont U'angle soit égal a la différence entre la somme
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des angles du polygone et autant de fois deux angles droits
qu'il a de cétés, moins deux *.

Si Pon divise un coté d’un polygone en deux par un point,
et on considere ce point comme sommet d’'un angle égal a
deux droits, I'aire du polygone reste inaltérée. Si deux poly-
gones s’adaptent 'un a l'autre le long d’une ligne brisée for-
mée de k colés, k-1 sommets intérieurs et 2 sommets ex-
trémes (si sur l'un des polygones un de ces sommets est un
point d’un coté, on le considérera comme sommet d'un angle
du polygone égal a deux droits), leur ensemble est un nou-
veau polygone qui a autant de cotés que la somme des nom-
bres des cotés des deux polygones donnés diminuée de 2k,
et dans lequel la somme des angles est égale a la somme des
angles decespolygones diminuée de2 (k—1)>< 2droits. Il s’en-
suit que l'aire du polygone total estla somme des aires des
deux polygones. De la, si un polygone est décomposé d’une
maniere quelconque en polygones partiels, son aire est égale
a la somme des aires de ces polygones.

4. Considérons sur la sphere un cercle de centre O ; soit
ABC... un polygone régulier inscrit (fig. 1) et MN... le poly-
gone circonscrit qui touche la circonférence en A, B, C,...
Soient A1, Bu,.., les points ou les demi-grand-cercles partant
de O et contenant A, B,... rencontrent le grand-cercle de
centre O. Les arcs AB, BC,... sont plus petits, respective-
ment, que Ai1B1, BiCi,... (d’aprés le n° 2). Le périmetre du
polygone ABC... est donc plus petit que la circonférence
d’un grand cercle. Si alors on développe ce polygone le long
d’un grand cercle et on transporte avec ses cotés les triangles
ABM, BCN,... compris entre le polygone inscrit et le poly-
gone circonscrit, on voit que la somme de ces triangles est
toute intérieure a deux fuseaux avant 'angle égal a MAB. La
somme des aires de ces triangles est donc inférieure a la
somme des aires de ces fuseaux, c'est-a-dire a qualre fois
Parc équatorial de I'un d’eux.

1 Nous évitons ainsi la question de I'équivalence entre le polygone et le fuseaun au point de
vue de la composition par réunion de partics égales. Cette uestion a d’ailleurs déja été résolue
fort élégamment par Paffirmative par M. GirArDp. V. Thesc : Sur la géométric non-euctidienne,
p- 105, et NIRWENGLOWSKI et GERARD : Géomdtrie dans Uespace, p. 239.
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Que Pon observe maintenant que MAB 4 BAO =1 angle
droit, tandis que, dans le triangle rectangle AOMi, BAO 4+
AOM > 1 angle droit; il résulte MAB < AOM. Si donc on
fait augmenter suffisamment le nombre des cété§ du poly-
gone ABC..., on peut rendre I'angle MAB plus petit que tout
angle assigné et par suite la somme des aires des triangles |
ABM, BCN,... plus petite que toute aire assignée.

o
R

7 - -
K77 PR
N7, o=

Fig. 1.

Il s’ensuit que les aires des polygones réguliers inscrits
dans le cercle croissant avec le nombre des cotés, et les
aires des polygones circonscrits décroissant en méme temps,
tendent vers une limite commune : nous 'appellerons ['aire
de la calotte limitée par le cercle. La différence entre la cir-
conférence de grand cercle et cette limite sera l'aire de la
sone comprise entre le cercle donné et le grand-cercle de
méme poéle. Elle est la limite commune a la somme des aires
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des quadrilatéres tels que ABB1A; et a la somme des aires
des pentagones tels que AMBB1 A1,

5. Formons la tigure polaire de celle du numéro précédent.
Nous obtenons un cercle de centre O, avant pour ravon le
complément du ravon du cercle donné, et un systeme de
polvgones réguliers inscrits et circonscrits a celui-ci. Le pé-
rimetre de chacun de ces polvgones est la différence entre une
circonférence de grand-cercle et l'aire du polygone polaire.
Les conclusions du naméro précédent montrent alors que
les périmetres des polygones reguliers inscrits et circonscrits
a un cercle tendent vers une limite commune lorsque le nom-
bre de leurs cotes croit indéfiniment. 11 est naturel d’appeler
cette limite la longueur de la circonférence du cercle consi-
dére : elle est égale a la différence entre la circonférence de
grand-cercle et I'aire de la calotte limitée par le cercle polaire;
donc (d'apres le n° 4) la longueur d’une circonférence est
egale a l'aire de la zone comprise entre le cercle polaire et le
grand-cercle ayant méme centre .

1. Trigonomeétrie spherique et goniomeélrie.

6. Si¢ est un arc de grand-cercle on appelle sinp la lon-
gueur de la circonférence® de rayon p.

Le sinus d’un arc est une fonction croissante et continue de
cet arc. Rappelons en effet n°5, que sin p représente aussi
l'aire d'une zone qui a pour base un grand-cercle et pour
hauteur ¢: on déduit immédiatement qu’il est une fonction
croissante de o. Soit I'la base mineure de lazone: considérons
le polygone régulier ABC... inscrit dans I' (tig. 1), le cercle
T': inscrit dans ce polvgone et le polvgone MiNi... inscrit
dans I't, dont les sommets sont les points de contact de I'y

1 A comparer avec le théoréme connu. de la proportionalité entre les zomes et leur han-
teur.

2 On doit remarquer qu'il n'a été dit nulle part quel était le ravon de la sphére; on a dit
sculement qu'on opérait sur une sphére fixe. Quand on reste dans I'hvpothése cuclidienne,

1
que l'on prenne la longueur de ce rayon égale a i et l'on aura l'accord complet entre notre

21

définition du sinus et 'ordinaire.
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avec ABC... La différence entre la zone considérée de hau-
teur p et la zone limitée par T'1 et le méme grand-cercle est
la zone comprise entre I' et T1 et est moindre que la diffé-
rence entre les aires des polygones MNP..., MiN1Py... I'un
circonscrit a T', Dautre inscrit dans I't. Cette différence est
la somme des triangles ABM, BCN,..., MiN1B, M1P1C,... et
on voit, comme au n° 4, qu’elle devient aussi petite que l'on
veul si 'on augmente suffisamment le nombre des cotés de

ABC...

La différence entre les aires de deux zones de hauteurs p
et p + Ap peut donc devenir aussi petite que 'on veut; de
la, et de 'observation que sinp est une fonction croissanle,
on déduit qu’elle est aussi continue.

7. Soit T' un cercle de centre O, A le grand-cercle concen-
trique, v le cercle polaire de I', p la hauteur de la zone (T'A).

™
Appelons, comme d’usage, 5 le cadrant ; la hauteur de la
s .
zone (yA) est z—p. SoitI'1, un cercle de centre O et de rayon

%-(p—i—é\p) de sorte que la zone (TiA) ait la hauteur p 4 Jp et

soit y1 le cercle polaire de I''. Nous voulons comparer la dif-
férence des aires des zones (I'A), (I'A) avec celle des zones
(yA), (y14), c’est-a-dire les aires des zones (I'T), (yy1).

Ces deux zones ont méme hauteur dp. Circonscrivons a I'
et a I'' deux polygones réguliers, de méme nombre de cotés,
etayantles sommets surles mémes grands-arcs passant par O.
Nous pouvons supposer les cotés de ces polygones si pelits
que: 1°les aires comprises entre A et ces polygones soient
approximées autant que l'on veut aux aires des deux zones
(I'A) (I'1A), et par conséquent 'aire comprise entre les poly-
gones aussi peu différente que 'on veut de I'aire de la zone
(I'T1); 2° st l'on circonscrit & y un polygone dont tous les
cotés, sauf un au plus, soient égaux aux cotés du polygone
circonscrit a I', et & y1 le polygone qui a les sommets sur les
mémes rayons par O que le précédent, I'aire comprise entre
les deux polygones differe encore aussi peu que I'on veut de
laire de la zone (yy1), méme si on néglige la partie comprise
entre les deux cotés différents et les arcs passant par O el
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par leurs sommets. Les rayons sortant. de O et passant par’
les sommets des deux figures polygonales qu'on substitue
ainsi aux zones (I'T1), (yy1) les décomposent en trapezes iso-
sceles, tous de méme hauteur dp, et avec une base égale;
I'autre base est plus grande que celle-ci pour les trapezes
relatifs a (yy1), plus petite pour les trapezes relatifs a (I'T).
Si donc on pense que l'on transporte chaque trapeze relatif a
(I'T'1) sur un trapéze relatif & (yy1) on voit que le rapport
entre les aires des deux figures polygonales relatives a (T'Th)
et a (yy1) est plus petit que le rapport des longueurs des péri-
meélres des polygones circonscrits « T' et a v.

On peut répéter les mémes considérations en choisissant
les cotés du polygone circonscrit a 1 égaux aux cotés du
polygone circonscrit a I't; alors ce sont les trapezes relatifs
a la zone (I'T1) qui sont plus grands que les trapézes relatifs
a la zone (yy1) et par suite le rapport entre les aires des deux
figures polygonales relatives a (I'T1) et a (yy1) est plus grand
que le rapport des longueurs des périmetres des polygones
circonscrits a T't el a 1.

Faisons croitre indéfiniment le nombre des cotés des poly-
gones considérés; nous aurons a la limite que le rapport
entre les aires des deux zones (I'T1), (yy1) est compris entre le
rapport des longueurs des circonférences T',y et le rapport
des longueurs des circonférences T't, y1.

Supposons enfin que dp diminue indéfiniment; a cause de
la continuité du sinus (n° 6) les longueurs de I't, y1 tendent
vers les longueurs de T', y; on a donc a la limite

i aire (T'1'1) long. I’ aire (74)
1m " pum—— — . ’
dp = o Aire (771) long. ¥ aire (I'A}
c’est-a-dire
. oaire (I'A) airve (7A)
Iim FE — = —— ,
So—o aire (74) aire (I'A)
ou bien encore
. (ﬂ' )
: sin {5 — p
) ds 2
lim me — .

a\P — 0 ¢ sin (-g — _o) s p
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Si donc x ety sontles sinus de deux arcs complémentaires,
ils satislont & ’équation différentielle

d

-
S

On détermine mieux cette équation quand on observe que
x décroit lorsque ¥y croit; donc

ox . ¥
dy x
ou bien
xdx + 30y = O

et, en intégrant,

x4 3‘2 — const.

On détermine la constante en considérant le cas de p = m.
Alors T' se réduit a O, 5 coincide avec A et I'on voit que la

constante vaut 1.
x? + y‘" — 1.

(est la formule fondamentale

sin ?p + cos %p = 1. (1)

8. Soit encore I' un cercle de centre O, A le grand-cercle
concentrique, et soit I't un cercle de centre O intérieur a la
zone (T'A) (fig. 2). Soit MNP... un polygone régulier circons-
crit a T', ABC... ses points de contact. Prolongeons les arcs.
AM, MBN, NCP,... tous du méme coté jusqu’a la rencontre
de A, respeclivement en Ai, B, C1,... et de T'1 en Az, Bz, Co,...
L’aire de la zone (T'A) est, d’apres le n° 4, la limite de la
somme des triangles MA1B1, NB1Cs,... lorsque le nombre des
cOtés du polygone croit indéfiniment : d’autre coté l'aire de
la zone (I'1A) est la somme des aires A2A1B1Bz, BaB1C1Cs,...

Avec les points M, N, P,... comme centres décrivons les
arcs BsA'z, C2B'z,... et les arcs Ai1B’1, BiC'1,...; observons
que toutes les figures contenues dans les triangles MA1B;i,
NBi1Cy,... sont égales entre elles ; nous obtenons

aire (MNP..., A) aire (MA1B'1) % aire (MA:B%)
aire (I'1, A) aire (A’2A1B"1Bs) X aire (A’2A1B%1Bs)
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Avec les mémes centres décrivons les arcs A2B”2, BaC"2.. ..
et les arcs BiA"1, CiB”1... ; nous obtenons de méme

aire (MNP..., A aire (MA":1B1)  Z aire (MA"1Bi)
aire T1, A) aire (A2A”1B1B”:) 7 X aire (A2A”1B1B"s)

Les seconds membres de ces inégalités ont méme limite
lorsque le nombre des cotés du polygone croit indéfiniment :
en effet, 'angle Ai1MB1 a pour mesure ’arc qu’on doit en-
lever a I'arc équatorial de AOB pour avoir l'aire du quadri-
latere AOBM. Il est donc < AOB et par suite la somme des
aires A2A'2B2B"2, est plus petite que la zone dont les deux
bases ont pour rayons MA: et MBe et dont la hauteur est
2 AM. Elle tend donc a zéro avec cette hauteur (n° 6); de
méme la somme des aires A1A"1B1B"1 tend vers 0.

Alors
aire T, A) . aire (MA1B"1) , aive (MA":1B1)
— 0 = lim — . —— — lim — oS -
aire T'1, A) aire 1A 2A1B1By) aire (A2A"1B1B"2)

Remarquons que AA1, BB1.... sont égaux chacun a un ca-
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drant; considérons alors la figure constituée d'un grand-
cercle & et d’'un cercle concentrique y de rayon AAz: pour
plus d’évidence considérons de cette figure seulement la
partie comprise entre deux rayons formant un angle égal a
A1MB1 : soit oaabiazbe : on voit immédiatement que

aire (MA1B"1) aire (0aibi) _ aire (MA"iB1)
aire (A’2A1B"1B2) aire (azaibiba) aire (A2A"1B1B"s)
Or
aire (oarb1) _ aire hémisphere 1
aire (azaibibs) aire (¢d) T aire (yd)

Donc enfin, en rapprochant ces égalités des précédentes :

aire (T'A) 1

aire ([14)  aire (99)

Appelons p la hauteur de (T'A), g1 celle de (I'1A); celte éga-
lité peut s écrire
sin p 1

sin p1 T osin AtAg

9. Soit ABC un triangle rectangle (fig. 3), C son angle droit;
soit A le grand-cercle de centre A, et soient I', I'1 les cercles
de centre A passant par C et
par B. Appelons «, b, ¢ les
cotés du triangle, opposés
aux sommets A, B, C. Nous
pouvons appliquer la formule
précédente, ou p, p1 et ArAz

auront respectivement les va-

leurs = —p, 2 e, L _—_aq
= — 0, = p) - )
2 2 2

cos b 1
donc - :
COS ¢ COS @

ou bien

cos ¢ == cos a cos b. (2) Fig. 3.

Cest la formule fondamentale pour les triangles rectangles.
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Soient A: et Ci les points de rencontre avec A des demi
grands-cercles qui projettent B de A et de C; appelons o f3
les mesures des angles A et B dans le triangle ABC; dans
le triangle A1BC1 on a:

A1C1::%—oc, AiB = %——— ¢, BCy :g-——a, angle B = .

En appliquant la formule (2) a ce triangle on obtient donc
sin @ = sin ¢ sin @, (3)

et,en appliquant au méme triangle cette nouvelle formule (3),
cos @ = cos a sin B. (4)

Dans les formules (2) (3) (4) se résume toute la trigono-
métrie des triangles rectangles. D’apres des procédés con-
nus on en lire encore toute entiére la trigonométrie sphéri-
que, pourvu que 'on possede la formule pour la somme des
arcs. C’est cette formule que nous allons maintenant nous
procurer.

10. Il est connu qu’il suflit de I'établir dans I'hypothése
que la somme des arcs soit <—g. Soit

alors ABC un triangle rectangle en

n m G et soit GD sa hauteur (fig. 4). Po-
sons AD=a, BD =160, AC = m,

b D= BC=n, CAB=«, CBA=g,
ACD =4 et, par conséquence,

BCD = 7—; v. En appliquant les
formules (3) et (4) aux triangles ABC, ACD, BCD, on obtient

Fig. 4.

.. sin n sin m
sin (a 4+ b) = — = - ,
sin a sin 3
sin @ = sin m sin 7, sin b = sin n cos ¥y
COS % sin 5
COos a = / cos b = el
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b} .
d’ounr
. sinm . . .
sin @ cos b = - sin 2y = sin (a + b) sin *y
sin
. sin n .
sin b cos @ = ——— cos %y = sin (a 4 b) cos *y
sin &

et, a cause de la formule (1),

sin @ cos b + sin b cos a = si-n (@ 4 b). (9)

C'est la formule pour la somme des arcs: afin que sa dé-
monstration soit généralement valable, il suffit de remarquer
que, par suite de la continuité du sinus (n° 6), il existe tou-
jours un triangle rectangle dans lequel la hauteur abaissée
du sommet de P'angle droit sur 'hypoténuse divise celle-ci

’ . Tt
en deux segments donnés (dont la somme soit <g). Des

formules du triangle rectangle, en effet, on tire aisément
que, les lettres conservant les mémes significations que ci-
dessus, on a, dans le triangle rectangle ABC,

tg AD — tg AB cos 2.

Or de la continuité du sinus il suit immédiatement aussi
la continuité de la tangente et du cosinus: si donc AB res-

. N . ., . T
tant constant, on fait croitre avec conlinuiteé « de 0 a ok AD

variera avec continuité entre AB et O et passera par toute
valeur, arbitrairement assignée, de @ < AB.

Beppo Levr (Plaisance, Italie).

P. S. — Cet article fut envoyé a la rédaction en aott 1904. Tout
récemment a paru dans les Mathematischen Annalen (Bd. 60) une
note de M. Denn ou 'auteur donne une démonstration nouvelle de
I'équivalence par réunion de parties égales des polygones ayant
meéme exces sphérique, indépendamment du postulatum de la con-
tinuité.

A cette occasion je donne encore quelques autres références bi-
bliographiques, dont je n’ai eu connaissance qu’aprés avoir corrigé
les ¢preuves de article. Dans les Collectanea de M. ExriQues:
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