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DÉFINITIONS ET DÉMONSTRATIONS

MATHÉMATIQUES

Quand on demande si une nolion est définissable ou si

une proposition est démontrable, ces questions n'ont pas de

sens, ou du moins elles sont indéterminées. Pour savoir si
une notion est définissable, il faut savoir quelles sont les
notions dont on dispose, soit comme indéfinissables, soit
comme définies au moyen des indéfinissables. De même, pour
savoir si une proposition est démontrable, il faut savoir
quelles sont les propositions qu'on possède, soit qu'on les
ait admises comme indémontrables, soit qu'on les ait démontrées

au moyen des propositions premières. Ainsi une notion
n'est définissable, une proposition n'est démontrable, que
par rapport à un certain ordre assigné aux notions et aux
propositions, et, en définitive, par rapport à un certain
système de notions premières ou de propositions premières h

Une notion pourra être définissable, une proposition pourra
être démontrable dans tel système, et ne pas l'être dans tel
autre. Ainsi les propriétés tV indéfinissable et d'
ble ne sont pas intrinsèques et absolues, mais essentiellement

relatives. On a donc le choix, théoriquement, entre
une multitude de systèmes de notions premières et de

propositions premières.
Quel système doit-on préférer? Le bon sens répond : celui

où les notions premières sont les plus simples, et où les pro-

1 Dans la logique symbolique, un symbole qu'on ne peut définir que d'une manière verbale
(par des mots) est considéré comme indéfinissable. C'est que la traduction verbale qu'on en
donne ne peut être qu'un nom équivalent (par exemple N nombre entier) ou une
paraphrase ; dans les deux cas, on ne peut pas réduire cette traduction en symboles, car, si on le
pouvait, le symbole en question serait défini, et en fonction de nouveaux symboles qui, eux,
seraient indéfinissables. Les traductions verbales des symboles non définis ne font qu'en
donner une interprétation ;elles ne font pas partie de la théorie, comme les définitions
symboliques.



LES DÉFINITIONS MATHÉMATIQUES 105

positions premières sont les plus évidentes. Mais il n'y a pas
de critérium logique de la simplicité des notions et de

l'évidence des propositions. Pour pouvoir déterminer
absolument les notions les plus simples, il faudrait que toutes les

notions fussent composées d'une manière urévoque de

quelques-unes d'entre elles, comme les nombres entiers sont
tous composés (et chacun d'une seule manière) de nombres

premiers 1. Mais il n'en est pas du tout ainsi, et, dans

une certaine mesure, les notions simples peuvent se définir

les unes par les autres. De même, pour pouvoir apprécier

l'évidence des propositions autrement que par un sentiment

tout subjectif, et par suite sujet à caution (car il peut
être le produit de l'habitude), il faudrait que toutes les
propositions fussent des conséquences de quelques-unes d'entre

elles, bien déterminées, et c'est ce qui n'a pas lieu. Les
notions premières et les propositions premières se relient et
s'enchaînent, non dans 1111 ordre linéaire (ramifié)2, mais dans

un ordre circulaire, 011 plutôt dans un réseau complexe où il
n'y a ni premier ni dernier. C'est pourquoi on peut partir
indifféremment d'un point ou d'un autre, c'est-à-dire choisir entre
divers ordres également admissibles au point de vue logique,

Toutefois, à défaut de raisons strictement logiques, on

peut avoir (et on a en général) des raisons méthodologiques
de préférer tel ordre à tel autre. Ainsi, si la rigueur logique

est satisfaite dès qu'on énumère explicitement toutes les
notions premières et toutes les propositions premières dont
on se sert pour définir et démontrer les autres, l'élégance
logique demande que le nombre de ces notions et de ces
propositions soit le plus petit possible ; elle demande aussi

que ces notions et ces propositions soient, autant que
possible, indépendantes entre elles (nous allons définir bientôt
cette expression). Ce ne sont pas là des exigences absolues
de la logique, comme l'indiquent les locutions mêmes :

plus possible,autant que possible. Ce sont simplement des
desiderata d'ordre quasi esthétique, qui peuvent être plus ou

1 Cette hypothèse, ou plutôt cette analogie, était le fondement (ruineux) de toute la logique
de Leibniz. V. notre ouvrage sur La logique de Leibniz, chap. II.

2 Analogue aux arbres généalogiques.

L'Enseignement mathém,, 7e année ; 1905. 8
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moins satisfaits sans que la valeur logique d une théorie en
soit affectée.

On dit que des notions sont indépendantes entre
quand aucune d'elles ne peut être définie au moyen des

autres. On dit que des propositions sont indépendantes entre
elles, quand aucune d éliés ne peut être démontrée au moyen
des autres. Dans les mêmes cas, on dit que ces notions ou
ces propositions forment un système irréductible. Il ne faut

pas perdre de vue ce fait qu'une même théorie déduetive peut
être fondée sur plusieurs systèmes irréductibles de notions
et propositions premières, de sorte que même cette condition
peut ne pas suffire pour déterminer un système unique h

Pour prouver que dans un système de propositions
premières lu ne d'elles est indépendante des autres, il ne suffit
pas d'alléguer qu'cm n'a pas pu démontrer cette proposition
au moyen des autres; un tel argument n'a évidemment aucune
valeur logique, parce qu'il est empirique et ne peut justifier
une proposition universelle négative. Il faut (et il suffit- qu'on
trouve un cas (un seul où la proposition en question soit
fausse alors que toutes les autres sont vraies; car ce cas
exclut l'hypothèse que celles-ci impliquent celle-là. Or, puisque

le sens des notions premières est indéterminé, il suffit
de trouver une interprétation des symboles non définis, qui
vérifie toutes les propositions premières, moins celle dont
on veut prouver l'indépendance. D'où cette règle:

Pour qu'un système de propositions premières soit
irréductible, il faut et il suffit qu'on puisse trouver pour chacune
d'elles une interprétation du système des symboles non
définis qui vérifie toutes les propositions premières sauf celle-là.

Dans ce cas, on dit qu'on a démontré Y indépendance absolue

des propositions premières entre elles. Il arrive en effet

qu'on (misse sei dement démontrer leur indépendance ordon-

1 il est clair que si une même théorie peut être l'ondée sur deux systèmes irréductibles de
postulats, chacun de ces systèmes doit pouvoir se déduire de l'autre, puisqu'il contient en
tout cas des propositions (premières ou non) de la théorie. En d'autres termes, les deux
systèmes doivent être logiquement équivalents (s'impliquer mutuellement). De même, si une
théorie peut recevoir deux systèmes irréductibles de notions premières, chacun de ces deux
systèmes doit pouvoir se définir au moyen de l'autre, puisque chacun d'eux permet de définir
toutes les notions de la théorie qu'il ne contient pas.
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I née, c'est-à-dire que chacune d'elles est indépendante des

précédentes. Cette démonstration a d'ailleurs lieu suivant la

p même méthode.

I D'autre part, pour prouver que dans un système de notions

{^premières l'une d'elles est indépendantes des autres, il ne

I suffit évidemment pas d'alléguer qu'on n'a pas pu la définir
fan moyen des autres. Bien entendu, on doit considérer ces
& " %j>

| notions comme liées entre elles par un ensemble de postulats

qui déterminent leurs relations ; et quand on dit que
| l'une d'elles est indépendante des autres, il faut entendre que

le système des postulats ne permet pas de la définir au moyen
des autres. Par conséquent, ce système des postulats consli-

ytue une donnée du problème, et l'indépendance mutuelle des

[ notions premières sera relative à ce système de postulats.
• Or, pour prouver qu'un symbole non défini est indépendant

I des autres, c'est-à-dire que son sens n'est pas déterminé par
| celui des autres, il suffit de trouver deux interprétations qui
P ne diffèrent que par le sens de ce symbole, et qui vérifient

- toutesdeux le système des postulats, puisque ce système
formule les conditions qui relient les unes aux autres les notions
premières, et qui contribuent à déterminer (à limiter) leur
sens. On aboutit ainsi à formuler la règle suivante :

* Pour qu'un système de notions premières soit irréductible
par rapport à un système de propositions premières, il faut

cet il suffit qu'on puisse trouver, pour chaque notion
première, une seconde interprétation qui vérifie, comme la

première, le système des propositions premières, toutes les
autres notions conservant le même sens h

*
* *

Outre les définitions nominales, dont il a été question jus-

1 A. Padoa, Essai d'une théorie algébrique des nombres entiers, précédé d'une introduction
logique à une théorie dèductive quelconque,ap. Bibl. du Congres de Philosophie, 1900, t. III
iParis. A. Colin, 1901.) Cette méthode logique a été récemment appliquée par M. Huntington

jy dans les mémoires suivants : A complete set ofpostulates for the theory of absolute continuous
P' '-magnitude : Complete sets ofpostulates for the theories ofpositive integral and positive

numbers (Transactions of the American Mathematical Society, t. Ill, 1902) : Two
tions of an Abelian groupby sets of independent t. IV, 190*1) ; Sets of independents

postulates for the Algebra ofLogic [ibid., t. V, 1904); et par M. Oswald Vkbi.kn : A
ystc/n of axioms for Geometry [ibid., t. V, 1904).
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qu'ici, on a trouvé en Mathématiques deux autres espèces de
définitions qui semblent irréductibles à cette forme, à savoir :

les définitions par postulats et les définitions par abstraction

1.

La définition par postulats s'applique, non à une seule
notion, mais à un système de notions ; elle consiste à énumérer
les relations fondamentales qui les unissent et qui permettent
de démontrer toutes leurs autres propriétés : ces relations
sont des postulats, c'est-à-dire les propositions premières
d'une théorie. Or une telle définition n'est pas à proprement
parler une définition, car elle suppose au contraire que les
notions en question sont indéfinissables. Admettre que des

postulats puissent définir les notions premières qui y
figurent, c'est admettre que tout peut se définir ; car les notions
définies seraient définies nominalement, et les notions non
définies seraient définies par postulats. C'est donc là un
abus du mot de définition;toutce qu'on peut dire, c'est (pie
les postulats déterminent le sens des notions premières, au ;

moins dans une certaine mesure ; car nous avons vu qu'en
général ils ne le déterminent pas complètement, puisque le ;

même système de postulats peut recevoir plusieurs
interprétations.

S'il n'y avait qu'une seule notion à définir, on pourrait
aisément transformer une définition par postulats en une
définition nominale ; il suffirait de dire : « le terme à définir
~ un objet qui vérifie tels et tels postulats, » ce qui est
toujours possible, au moyen du symbole : .rs(...)2. Mais quand
il y a plusieurs notions à définir, il n'est pas possible, en

général, de « résoudre » ainsi le système des postulais par
rapport à ces notions, et d'en tirer leur « valeur » sous la

1 C. Bukai.i-Forti, Logica matcmatica, cap. IV, §§ 0. 7 (Milan, H a» pli, 18941; Sur les dif-
féren-tes méthodes logiques pour la définition du nombre réel, § 1, ap. Bibliothèque du Congres
de Philosophie, t. III (Parts, A. Colin. 1901).

2 C'est ce qui a lieu, par exemple, pour l'idée de grandeur. M. Bunali-Foioî a commencé i

par la « définir » au moyen de huit postulats qui portent sur cette notion (Formulaire de Ma-
thématiques, t. I, ch. IV 11895] : Les propriétés formelles des opérations ap. Revue
de Mathématiques, t. VI, p. 141 (1900]); puis il a défini nominalement la grandeur, ou plus
exactement, la classe de grandeurs homogènes,comme un ensemble d'objets qui vérifie ces ;

huit postulats (Sulla Tcoria generale delleCrandezzee dei ap. de II' A crade/ni a
delle Seienzc di Torino, t. 39 [1904]). Cf. notre; ouvrage Les principes des mathématiques, ,s

chap. V. j
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forme explicite de définitions nominales. Toutefois, il suffira

de les définir toutes, sauf une, pour avoir la définition nominale

de cette dernière ; car alors elle sera la seule, et 1 on

retombera dans le cas précédent. Les postulats deviendront
de simples conséquences logiques de la définition, non pas

que celle-ci puisse jamais être érigée en « vérité » ou en

principe, mais parce que la notion définie vérifiera ces
postulats pardéfinition. C'est ainsi que, l'on peut transformer
les principes ou hypothèses d'une théorie en une définition
de l'objet fondamental de cette théorie; par exemple, les

axiomes de la géométrie, ou plutôt géométrie, en une
définition de l'espace correspondant h

La définition par abstraction s'applique à une fonction

logique ou mathématique. Elle consiste, au lieu de définir
nominalement cette fonction, à indiquer la condition nécessaire

et suffisante à laquelle cette fonction prend la même

valeur pour deux valeurs différentes de la variable 2. Ce
procédé est très fréquemment employé en mathématiques. Par

exemple, beaucoup d'auteurs (M. Georg CantorI définissent
le nombre cardinal comme suit: « Deux ensembles ont des

nombres cardinaux égaux, quand on peut établir une
correspondance univoque et réciproque entre tous leurs éléments. »

De même, on ne définira pas le mais on dira : « Deux
vecteurs sont égaux, lorsqu'ils ont même longueur, même
direction et même sens. » On ne définira pas la

imais on dira : « Deux droites ont la même direction,
lorsqu'elles sont parallèles. » De même en physique : on ne défi-
nit pas nominalement la masse,la le
niais on indique dans quelles conditions « on dira » que deux

corps ont la même niasse, la même température, le même
potentiel3. En général, toutes les fois qu'on peut établir entre
deux objets d'une certaine classe une relation symétrique et

1 V. Les principes des mathématiques, chap. VI, § B, fin.
2 V. Burali-Forti, Sur l'égalité et sur l'introduction des éléments dérivés dans la science,

*

ap. 77 enseignementmathématique, 1899.

J 3 Les définitions par abstraction sont si fréquentes, que certains auteurs, par une
généralisation excessive, affirment qu'il n'y en a pas d'autres en mathématique. En quoi ils se
jtrompent ; car on définit nominalement beaucoup de notions, comme celles de nombre pre-

Smier, de limite, de dérivée, d'intégrale, de trian,de cercle, de vitesse, d'accélération, de
quantité de chaleur, etc.
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transitive ('comme le parallélisme des droites, l'équilibre
des corps sur une balance], on conçoit cette relation comme
une espèce d'égalité, à savoir comme l'identité d'une
propriété abstraite de ces deux objets h On est ainsi conduit à

déterminer et à définir cette propriété au moyen de la relation

en question; d'où le nom de définition par abstraction.
Au point de vue formel, une définition par abstraction

s'énonce comme suit :

asCls..r,yea.o:?x <pv. px>y

« L'égalité (p.r yy, oil la fonction qp est la notion à définir
et où x et y sont des éléments d'une même classe équivaut
cà la proposition p relative à x,y. »

Mais cette définition peut être ramenée à la forme d'une
définition nominale de la manière suivante. La proposition
j)x.,j est une relation entre x et y ; écrivons-la : Cette
relation est symétrique et transitive par hypothèse ; et son
champ est la classe a.En vertu du principe
on peut en conclure l'existence d'une relation uniforme S

entre chacun des termesx,y et un même terme z, de telle
sorte qu'on ait :

.rRy — ,rS: ySz

Ce terme 3 est fonction de x et fonction de ?/; c'est son
existence et son identité qui fondent l'égalité: ox cpy. On

peut donc définir nominalement la fonction y comme suit :

c'est la relation qui unit le terme 2; à chacun des éléments

x,y,... de la classer entre lesquels existe la relation R. Ainsi
la logique des relations permet de réduire les définitions par
abstraction à des définitions nominales.

* *
*

Pour illustrer ces considérations théoriques, nous ne
pouvons trouver un meilleur exemple que la théorie du nombre

1 C'est en cela que consiste le principe d'abstraction, qui peut s'énoncer comme suit : Toute
relation symétrique et transitive peut se ramener à une espèce d'égalité.

2 V. Les principes des mathématiques,chap. I. § C.
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entier, où I on verra le nombre entier défini tour à tour par

postulats, par abstraction et enfin nominalement.
La définition par postulats1 consiste à prendre 3 notions

indéfinissables: N (nombre entier positif), 0 (zéro), et seq (le

suivant de)2 : N est une classe, 0 un individu et seq une fonction.

Puis on pose les cinq postulats suivants:

I. OeN

« Zéro est un nombre3. »

II. xsN.o^.seq^cN

« Le suivant d'un nombre est un nombre4. »

III. x sX.o^. seq.r - ~ 0

Zéro n'est le suivant d'aucun nombre. »

IV. j'.rsN. seq x — seq y. —

« Deux nombres, dont les suivants sont égaux, sont égaux5.»

V. Osa: x sN* a .ox.seqx sa :

Si une classe a contient 0, et si, dès qu'elle contient un
nombre ,r, elle contient le suivant de œ, elle contient tous les
nombres. » Ce dernier postulat est ce qu'on appelle le principe

cle l'induction complète.On le formule d'ordinaire comme
suit: « Si une proposition est vraie pour 0, et si, dès qu'elle
est vraie pour n,elle est vraie pour n + C elle est vraie pour
tous les nombres entiers 6. »

1 G. Picano, Arithmetices principianovamethodo cxposita (Turin, Bocca, 1889) ; Sut concetto
(Iinuméro, ap. Rivistadi Matematica,t.I (1891) ; Formulaire de Mathématiques, toutes les

• ditions : Aritmeticageneralec Algebra elementare (Turin, Paravia, 1902).
2 Ces notions sont indéfinissables, malgré la traduction verbale que nous en donnons

parce que cette traduction n'est qu'une interprétation des 3 symboles N, 0, seq, et que leur
sens doit être déterminé uniquement par les postulats suivants.

3 Nous dirons « nombre » pour abréger, aucune confusion n'étant possible.
4 Ceci implique que la fonction seq est uniforme, c.-à-d. que :x,y SN xr=ry.oseq ~seqy
(cf. le postulat IV).

1 0 Autrement dit, la fonction seq est réciproque. (Cf. la note 2).
c L'équivalence des deux énoncés est évidente, si l'on remarque que toute proposition

détermine une classe, à savoir l'ensemble des individus qui la vérifient.



112 L. C OUT U RAT

De ces cinq postulats on peut déduire toutes les propositions

de l'Arithmétique des nombres entiers positifs ; ils suffisent

donc à «définir» les nombres entiers, c'est-à-dire qu'ils
en expriment les propriétés fondamentales et caractéristiques.
De plus, ils sont tous nécessaires, car ils sont indépendants
les uns des autres. C est ce qu'on peut prouverai! moyen des

interprétations suivantes, dont chacune vérifie tous les
postulats, sauf celui dont elle porte le numéro;

I. La classe N (ordonnée par la fonction seq; se compose
de tous les nombres entiers positifs non nuls : 1, 2, 3, 4, 5,...
(Elle ne contient pas 0 1.

II. La classe N se compose des 10 premiers nombres
entiers: 0, 1, 2,3, 4, 5, 6, 7, 8, 9 (le nombre 9 n'a pas de suivant).

III. La classe N se compose des nombres 0, 1, 2, formant
une période: 0, 1, 2, 0, 1, 2, 0, 1, 2,... (le nombre 0 est le
suivant d'un autre nombre).

IV. La classe N est 0, 1, 2, 1, 2, 1, 2,... (le suivant de 0 est
1, comme le suivant de 2.)

V. La cl asse N est la suite des nombres, mais seq ,r — -J- 2

et non plus x -f- 1). Le postulat Y se trouve en défaut si I on
prend pour s l'ensemble des nombres pairs, car cette classe
vérifie l'hypothèse, et non la thèse2.

Ainsi le système des cinq postulats est irréductible. On peut
dire que le système des 3 notions premières: N, 0, seq se

trouve défini comme vérifiant le système de postulats. Mais,
bien entendu, ce n'est pas là une définition nominale. On

peut traduire le principe d'induction en disant que N est la

plus petite classe qui vérifie les postulats l et II : en effet,
elle est contenue dans toute classe qui vérifie ces deux
postulats [Oes, et #ss.o.seq.rs£).

La définilion par abstraction des nombres entiers est toute
autre3. Elle consiste à considérer le nombre entier comme
une propriété des classes (ce qu'on appelle leur nombre

1 On peut évidemment faire commencer la suite des nombres à 1 (ou à un nombre
quelconque), mais alors il faut substituer 1 à 0 dans les postulats I, III et V.

2 A. Padoa, Conférences sur La logique mathématique, p. 51 (1898) ; (t. Piîano, Formulaire
1899, p. 30.

3 G. Pkano, Formulaire 1903, § 56.



LES DÉFINITIONS MATHÉMATIQUES 113

clin al) et à définir par abstraction les nombres cardinaux
comme des fonctions logiques (Num x) en définissant
seulement leur égalité :

a, be CIs. o : Num a Num rep Df

«aetb étant des classes, on dit que leurs nombres cardinaux

sont égaux, s'il existe entre ces classes une correspondance

univoque et réciproque. »

On peut alors définir 0 comme suit :

0 — Num A

« Zéro est le nombre cardinal de la classe nulle. »

D'où l'on peut déduire:

a s Cls d : Num a~0 — =r A

Si l'on désigne (suivant la définition générale de cette notation)

par « Num 'Cls », l'ensemble des nombres d'une classe

quelconque, c'est-à-dire des nombres cardinaux, on pourra
définir la somme de deux nombres cardinaux comme suit :

X, ye Num'Cls.o.x+ y [a, fteCls.Nura« —

Numb ~ y.a*b ~ A.ofl — Num(«ul»|] Df

« Si x et y sont les nombres cardinaux respectifs des classes
a et b qui n'ont aucun élément commun, leur somme (x + y)
sera, par définition, le nombre cardinal de la classe [a»b),
somme logique des classes a et b. » Ainsi l'addition arithmétique

se trouve définie, d'une manière générale, au moyeu
de l'addition logique.

Cela posé, on pourra définir seq n par a -[- C somme du
nombre cardinal net de 1. On aura en conséquence :

neNum 'Cls aeCls.o.•. Num an.-J- 1. — : : xea. d. Num [a - n

« Dire que la classe a a pour nombre cardinal n + C c'est
dire qu'elle n'est pas nulle, et que, si x est un de ses
éléments, la classe des a différents de x a pour nombre cardinal

n.» En d'autres termes, une classe a le nombre n + 1,
quand on peut l'obtenir eti ajoutant un élément à une classe
qui a le nombre n.
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On ne peut nier que cette manière de définir le nombre
cardinal ne soit plus naturelle et plus conforme à la conception

ordinaire ; elle donne aux symboles N, 0, seq un sens
plus concret et plus immédiat que ne faisait la définition par
postulats. Seulement cette définition s'applique à tous les
nombres cardinaux, même infinis, et non pas seulement aux
nombres de la suite naturelle (dits finis) que nous avons
désignés jusqu'ici, par N. Or l'essence des nombres finis
consiste précisément dans le principe d'induction, car celui-ci
équivaut à la définition qu'on donne des classes finies, par
opposition aux (fiasses infinies (qui peuvent être équivalentes
à une de leurs parties intégrantes)1. On pourra donc définir
les nombres entiers finis comme suit: «N est la classe des
nombres cardinaux qui appartiennent à toutes les classes qui
contiennent 0, et qui contiennent -|- 1) dès qu elles
contiennent n. »

On a par là même une définition nominale du nombre
entier fini ; seulement cette définition repose sur la notion de

Num, qu'on n'a définie que par abstraction. Mais si l'on applique

le principe d'abstraction à cette fonction, on pourra en
conclure que la relation d "égalitédenombre ou d'
entre deux classes se réduit à une relation uniforme de ces
classes à un même terme, qui sera leur nombre cardinal. Et
comme chaque concept est représenté par son extension, le
nombre cardinal, conçu comme la propriété commune à toutes
les classes équivalentes, sera représenté par la classe de ces
classes. En d'autres termes, on peut répartir toutes les classes

possibles en classes telles que, dans une même classe, toutes
les classes ont le même nombre cardinal ; on a ainsi une
correspondance univoque et réciproque entre les nombres
cardinaux et les classes de classes, et bon peut substituer ou
identifier celles-ci à ceux-là. En résumé, on peut définir
Num a nominalement comme suit :

asCls.o. N um a — Cls « Jyp.rUi) rop |

« Le nombre cardinal de la classer est la classe des classes

1 Whitkhkad, On cardinal numbers, ap. American Journal of Mathematics, t. XXIV (1902),
sect. III.
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équivalentes à a» ; et alors, dire qu'une classe a le même
nombre que la classe a,c'est dire qu'elle appartient à la

classe des classes équivalentes à a :

Num b — Numa.— »
bgCls«ors [g (xia) rcp]

m [a(5f«)rcp]

On peut donc se passer du symbole de fonction Num, de

sorte qu'au lieu d'écrire [clétant une classe et n son nombre) :

Num an, on écrira :

a sn

c'est-à-dire: « la classe a appartient à la classe de classes n. »

On définira les nombres cardinaux eux-mêmes comme des
classes de classes, sans le secours du symbole Num. On définira

d'abord zérocomme suit :

0 — tA

« Zéro est la classe qui comprend la seule classe nulle. »

Puis on définira le suivant d'un nombre:

«s N.o. seq/i — Cls ~ #3 (3« : x&a.o .a-ix s n) Df

« n étant un nombre, n + 1 est la classe des classes a
telles que, si x est un élément de a, la classe des a non
égaux à x a le nombre n. »

Cette formule permet de définir progressivement tous les
nombres cardinaux finis (puisque ceux-ci, par définition, sont
ceux qu'on obtient en ajoutant toujours 1 au nombre
précédemment obtenu). En particulier, i se définira comme le
suivant de 0 :

1 — Cls « 112(^11: oc s11 toc s 0)

Or :

U - IXs0.U - IX=Z A. 0 LX

Mais :

u 0 ix.: yeu.0^ y rr x
Donc :

x su. ox.u- ixs0: — : x eu. : y b u y :

— ,x bu.jsu. Ox, y. y — x: ~ : x, y s u. 0x,y»y x
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Substituons dans la définition de 1 : il vient :

1 — Cls"M3(3« :
x,y— Df

On trouve ainsi la définition de la classe singulière : « 1 est
la classe des classes u non nulles et telles que, si .r, y sont
des éléments de z/, ils sont identiques. »

On définira de même :

2 CIs « us(u : x su •u -ix1

3 m Gis ^ ii3 : xs u. u

et ainsi de suite. Enfin on pourra définir nominalement l?idée
de nombre cardinal :

Ne Gis 'Cls « Z3[g;Gls« U3Num«)] Df

« Un nombre cardinal est une classe de classes £ telle qu'il
y a des classes u qui ont pour nombre cardinal z. »

Et l'idée de nombre cardinal fini sera définie au moyen du

principe d'induction :

Ncfin — Ne «h» [se Gis 0 es: m s Ne ".s ow. m -f- 1 : g, ras«] Df

a L'ensemble des nombres cardinaux finis est une classe n
de nombres cardinaux qui vérifie le principe d'induction ; »

et celui-ci pourra alors être affirmé de la classe Ncfin :

(Indue) seGis.Os. s: m sNe « s .dm.-j- 1 s .s : o. Ncfin

On peut démontrer que 07 1, 2,... sont des nombres finis,
et que, si n est un nombre fini, n -f- 1 l'est aussi

* *

Les considérations précédentes nous amènent à examiner
ce qu'on appelle les définitions et les démonstrations par
induction, ou encore par récurrence. Une définition par
induction consiste à définir un concept (fonction d'un nombre
entier indéterminé) pour le nombre 0 (ou 1, ou tel autre
nombre entier déterminé), puis à définir le même concept
pour le nombre (n + 1) en fonction de sa valeur (supposée
connue) pour le nombre a ; on dit alors que ce concept est ;

1 Wil f T15u k ad, mémoire cité.
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défini pour tous les nombres entiers (à partir du premier
nombre visé dans la définition) De même, une démonstration

par induction consiste à démontrer une proposition (où

figure un nombre entier indéterminé) pour le nombre 0

(ou 1, etc.), puis à démontrer que, si cette proposition est
vraie pour le nombre /z, elle est encore vraie pour le nombre
n -f- 1 ; d'où l'on conclut qu'elle est vraie pour tous les nombres

entiers (à partir du premier nombre visé dans la
démonstration)2. Ces deux méthodes, dont l'analogie est mani-

1 Exemples de définitions par induction :

I. Définition de la somme de deux nombres entiers :

| t j

| a,bgN.o.a -|- seq b— seq (a-f- |2;

d'où : a -\- l — seq -j- 0) seq a
et alors (2) devient : a -\- (b-j-1) -f- b) -p 1

II. Définition du produit de deux nombres entiers :

a sN. o. a X 0 0 j

j ci,JgN.o.aX [b + 1) X b) + (2)

d ou t ci1 — {ci X 0) ~p n — 0 -j- ci — ci.

III. Définition des puissances entières d'un nombre entier :Cl6N. 0 rt° — 1 J

a, nsXo an~^"L— an X a |2)
$

j$i d'où : ci1 a°X a — i x a =z a

•î]

q
2 Exemples de démonstrations par induction :

i I. Loi associative de l'addition :

q ci, bc s N o ci—J- b| —J— c .— ci —j— [ b J— c

Dem : Hp. cn 0. o Ts
« Le théorème est vrai pour 0. »

4Hp. (a b) -j- c ~ a-f- [h-j-c). o. [a -j- -j- (c -J- 1) [(q -j- -]- -f- 1 —

I [a+ (b + C)1 + 1 « + [(b-J--f- 1] — -f- | -f- (c -|- Ml (2)

«y
« En supposant le théorème vrai pour c,ondémontre, par des transformations permises,

jusqu'il est vrai pour c -p 1. »

Induct. (1). (2) .o. P

« En vertu du principe d'induction, (1) et (2) démontrent le théorème. »
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feste, reposent sur le principe d induction. Gomme une
définition joue dans les raisonnements le rôle d'une proposition,

on comprend que le principe d'induction s'applique
aux définitions comme aux propositions. Nous nous bornerons

donc, pour simplifier, à étudier les démonstrations par
induction.

Ce mode de raisonnement était considéré autrefois comme
une induction,parce que, semblait-il, il permettait de
conclure de quelques cas à tous ; mais, s'il en était vraiment ainsi,
il ne serait pas logiquement probant. On a essayé de corriger
cette conséquence en qualifiant cette induction de

pour indiquer qu'elle épuise tousles cas possibles. Mais il y
a là une équivoque : tous les cas possibles figurent-ils dans
les prémisses ou dans les conséquences? S'ils ne figurent

II. Loi commutative de l'addition :a,beN. o a-+- —-+-

Dem : Df -j- ù,0-j- 0 — 0 (1)

0 -J- a— a.o 0 -f- [a-j- 1 (0 -+- ci)-J-1 — et-+-1 (2)

Indue. ('1 (2) o 0 (8)

Df + 1 -|-0 Ô + 1 1 (4)

1 -j— ci ci -j— 1 j »
i -+- ci -j— l —i 1. -+• ci -j— 1 i= ci —}— 1 j —j— 1 5

Indue. (4) (o) «.) 1 —}— ci — ci —{— 1 (6)

ci —}— b=n b —j— ci.o ci—}— b—j— 1) —i —J— 1)) —j— 1 —; [b —J— | —J— 1

— à -+- <7 -+ l ~ b-j- (1 -j =z -j- 1 -j- 7

Indue. (6) (7) P

Dans cette démonstration, on applique trois l'ois le principe d'induction : d'abord, pour
conclure de (1) et (2) à (3) ; puis pour conclure de (4) et (5) à (6) ; enfin pour conclure de (6) et
(7) le théorème à prouver; (3) sert à prouver (4). La loi associative est employée pour prouver
(2), (5), (7) : elle est invoquée 3 fois dans (7).

III. Loi distributive de la multiplication :

ci. b, os (t—J— b) c — cic -j— bc

1 Ip c— 0. o Ts 1

Hp. ci —j— à) c —! a ç —}— b ('.>).{ ci—j—b|j ^ — et j— -j— ci -+• b =^

cic -j- bc ~j— ci ~j— b —, it c—J— ci)—j~ [bcj- b) — ci [c —f— 1) —j—• b [c j- 1) (2)

Indue. (1 (2) .o, P

On pourrait multiplier ces exemples; la plupart dos lois fondamentales de la théorie des
nombres finis se démontrent par induction. V. le Formulaire de M. Peano.
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que dans les conséquences, il y a inférence illégitime de

quelques cas à tous, et par suite l'induction est ordinaire et

incomplète. S'ils figurent aussi dans les prémisses, le

raisonnement se réduit presque à une tautologie : « Si le théorème

est vrai de chaque nombre entier pris à part), il est vrai de

tous les nombres entiers (en général). » Mais, en réalité, il
n'est pas une induction : sans doute, que le théorème soit vrai

pour 0 ou 1), c'est là une vérité particulière ; mais que, si

le théorème est vrai pour /?, il soit vrai pour n -j- 1, c est la

une vérité universelle,puisque n peut prendre dans cet énoncé

n'importe quelle valeur entière. C'est cette seconde prémisse

qui fait l'universalité du théorème considéré ; et il n y a là

aucune inférence du particulier à 1 universel.
On a prétendu1 que le raisonnement par induction enveloppe

(dîne infinité de syllogismes», et par suite repose sur

quelque principe extra-logique «irréductible au principe de

contradiction»2. On dit : Le théorème est vrai pour 0 ; s'il
est vrai pour 0, il est vrai pour 1 ; s'il est vrai pour 1, il est

vrai pour 2; et ainsi de suite indéfiniment8. Et il paraît que
cette infinité échappe (on ne sait pourquoi; aux prises de la

Logique, comme si le nombre infini (nombre cardinal des

nombres entiers finis''1 n'était pas susceptible d'une définition
logique. A cela on peut répondre d'abord que, pour prouver
le théorème en question pour un nombre entier
il suffit d'un nombre fini de syllogismes, ou plutôt de déductions

simples: c'est ce qu'indique le nom de raisonnement

par récurrence.Etsi le théorème général enveloppe une
infinité de cas particuliers (à savoir l'infinité des nombres
entiers). c'est parce que la prémisse : « Si le théorème est vrai
de n.ilest encore vrai de /? + !», enveloppe cette même
infinité, et possède exactement la même généralité. Tous les
théorèmes généraux de l'Arithmétique ont la même portée
infinie, en tant que tous valent pour tous les nombres entiers.

1 H. Poincark, Sur la nature du raisonnement ap. Revue de Métaphysique et
de Morale.t. II. p. 371 i189'i) : La science et l'hypop.19 sqq.

2 Comme si le principe de contradiction était le seul principe de la logique, selon un préjugé

inexplicable qui a cours chez les philosophes.
3 Ce ne sont pas là d'ailleurs des « syllogismes », mais des raisonnements hypothétiques

enchaînés de telle sorte que la thèse du précédent est l'hypothèse du suivant.
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11 ny a là rien d'illogique ni de mystérieux, mais simplement
ce fait qu'un concept (ici celui de nombre) peut avoir une
extension infinie, sans que cela empêche de raisonner logiquement

sur lui. Dans tous les cas, la conclusion n'est pas plus
générale que la prémisse ; le passage de la prémisse à la
conclusion est donc parfaitement logique1, et il n'enveloppe pas
« une infinité de syllogismes » : tout au contraire, la
prémisse universelle : « Si le théorème est vrai pour ft, il est vrai
pour m4-1 » dispense de cette prétendue suite infinie de
déductions et les remplace par une seule, grâce au principe
d'induction.

D'autre part, on a voulu voir2, dans la démonstration par
induction, le type du raisonnement mathématique, lequel
serait étranger à la logique. Mais d'abord, le raisonnement
par induction n'est nullement une méthode générale des

mathématiques ; il est spécial à l'arithmétique des nombres
entiers finis; et pour s en rendre compte, il suffit de remarquer

qu'il repose sur le principe d'induction, lequel l'ait partie
de la définition des nombres finis3. Une peut s'appliquer

qu'aux propositions (ou définitions) où figure quelque fonction

d'un nombre entier fini ; hors ce cas, relativement
restreint, il n'a plus d'application ni même de sens. Cette
opinion erronée n'a pu provenir que de Yariexcessive

à laquelle 011 a soumis les mathématiques ; elle ne se

justifierait que dans la thèse ou non seulement l'Analyse,
mais toute la Mathématique reposerait entièrement sur la

seu le notion de nombre entier. Mais cette thèse, qui a été
assez longtemps à la mode, est à présent dépassée et réfutée4 ;

et en tout cas, il suffit (sans parler de la théorie des ensembles

et des nombres infinis) de citer la Géométrie pour montrer

un domaine où le raisonnement mathématique le plus

1 D'ailleurs, c'est une prreur de croire que la déduction logique ne puisse passer du
particulier au général ; nous l'avons montré au Congres philosophiede Genève (1904). V. les

Comptes rendus du Congrès, et la Revue de Métaphysique et de Morale, novembre 1904.

2 H. Poinoahk, ibid.
3 Cette remarque a été faite par M. Buram-Forti. Le p. 3, note 5, ap. Atti

delVAccademia dclle ScienzediTorino,I. XXXII (1896); et mémoire déjà cité du Congrès
Philosophie 1900).

4 V. notre ouvrage : Les principesdes mathématiques.
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rigoureux règne, sans prendre la forme de l'induction (si ce

n'est dans les cas où un concept est fonction d'un nombre
entier, comme le concept de polygone one), ce qui
confirme notre thèse).

Enfin, et c'est là le point le plus important, le raisonnement

|)ar induction n'est nullement étranger ou réfractaire à la

Logique; et la preuve en est que nous avons pu le formuler
symboliquement en termes purement logiques. Le principe
d'induction n'est pas, comme on le croit, un principe original
et extra-logique que les Mathématiques seraient obligées
d'adjoindre aux principes de la Logique pour pouvoir
démontrer leurs propositions; c'est, on l'a vu, une partieessen-
tielle de la définition du,nombre entier. Dira-t-on qu'il y a

quelque chose d'artificiel et d'arbitraire à transformer un

principe en une définition, ce qui semble lui enlever sa « valeur
de vérité» elle réduire à une simple convention A cela il
est facile de répondre que, si l'on retranchait le principe
d'induction delà définition du nombre, le nombre ne serait plus
défini, puisqu'on ne pourrait plus déduire ses propriétés de

sa définition. 11 faut donc-bien que le principe d'induction soit
incorporé à sa définition; etil n'y a là rien d'arbitraire, si l'on
veut définir, non un concept quelconque qu'on appellerait
nombre, mais l'idée du nombre entier fini, qui est la base
traditionnelle de l'Arithmétique ordinaire. Concluons donc

p que ni les Mathématiques en général, ni l'Arithmétique en
j >

particulier n'ont besoin, pour se constituer déductivement,
de principes spéciaux, d'« axiomes propres », et que les principes

généraux de la Logique leur suffisent, quand on leur
i adjoint, bien entendu, les définitions logiques des concepts
r propres aux mathématiques. La méthode mathématique n'est
b pas autre que la méthode logique, et la Mathématique elle-
gi même n'est pas une science spéciale et autonome, mais une

^ branche ou une application de la Logique. Telle est la collie
elusion philosophique la plus importante des recherches
relatives à la Logique mathématique.

Louis Cou tu rat (Paris).

L'Enseignement mathém., 7e année; 1905. 9
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