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DEFINITIONS ET DEMONSTRATIONS
MATHEMATIQUES

Quand on demande si une nolion est délinissable ou si
une proposition est démontrable, ces questions n’ont pas de
sens, ou du moins elles sont indéterminées. Pour savoir si
une notion est définissable, il faul savoir quelles sont les
notions dont on dispose, soit comme indéfinissables, soit
comme définies au moyen des indéfinissables. De méme, pour
savoir si une proposition est démontrable, il faut savoir
(quelles sont les propositions qu’on possede, soit qu'on les
ait admises comme indémontrables, soit qu'on les ait démon-
trées au moyen des propositions premieres. Ainsi une notion
n'est définissable, une proposition n’est démontrable, que
par rapport a un certain ordre assigné aux nolions el aux
propositions, et, en définitive, par rapport & un certain sys-
teme de notions premieres ou de proposilions premicres !,
Une notion pourra étre définissable, une proposition pourra
étre démontrable dans tel systéme, et ne pas I'étre dans tel
autre. Ainsi les propriétés d'indéfinissable et d’indémontra-
ble ne sont pas intrinséques et absolues, mais essentielle-
ment relatives. On a donc le choix, théoriquement, entre
une multitude de systémes de notions premieres et de pro-
positions premieres.

Quel systeme doit-on préférer? Le bon sens répond : celui
ou les notions premieres sont les plus simples, et ou les pro-

1 Dans la logique symbolique, un symbole qu’on ne peut définir que d’'une maniére verbale
(par des mots) est considéré comme indéfinissable. Cest (ue la traduction verbale qu'on en
donne ne peut étre qu’un nom équivalent (par exemple N = nombre entier) ou une para-
phrase ; dans les deux cas, on ne peut pas réduire cette traduction en svmboles, car, si on le
pouvait, le symbole en question serait défini, et en fonction de nouveaux symboles qui, eux,
seraient indéfinissables. Les traductions verbales des symboles non définis ne font qu'en
donner une interprétation ; elles ne font pas partie de la théorie, comme les ddfinitions sym-
boliques.
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positions premiéres sont les plus évidentes. Mais il n’y a pas
de criterium logique de la simplicité des notions et de
I'évidence des propositions. Pour pouvoir déterminer abso-
lument les notions les plus simples, il faudrait que toutes les
notions fussent composées d’une maniere univoque de quel-
ques-unes d’entre elles, comme les nombres entiers sont
tous composés (et chacun d'une seule mani¢re) de nombres
premiers !. Mais il n’en est pas du tout ainsi, et, dans
une certaine mesure, les notions simples peuvent se défi-
nir les unes par les autres. De méme, pour pouvoir appreé-
cier I'évidence des propositions autrement que par un senti-
ment tout subjectif, et par suile sujet a caution (car il peut
stre le produit de I'habitude), il faudrait que toutes les pro-
positions [ussent des conséquences de quelques-unes d’en-
lre elles, bien déterminées, et c'est ce qui n’a pas lieu. Les
notions premieres et les propositions premieres se relient et
s'enchainent, non dans un ordre linéaire (ramifié) 2, mais dans
un ordre circulaire, ou plutot dans un réseau complexe ou il
n'y a ni premiernidernier. C'est pourquoi on peut partir indif-
féremment d'un point ou d'un autre, ¢’est-a-dire choisir entre
divers ordres également admissibles au point de vue logique.

Toutefois, a défaut de raisons strictement logiques, on
peut avoir (et on a en général) des raisons méthodologiques
de préférer tel ordre a tel autre. Ainsi, si la rigueur logi-
(que est satisfaite dés qu'on énumere explicitement toutes les
notions premieres et loutes les propositions premiéres dont
on se sert pour définir et démontrer les autres, 1'élégance
logique demande que le nombre de ces notions et de ces
propositions soit le plus petit possible; elle demande aussi
que ces notions et ces propositions soient, autant que pos-
sible, indépendantes entre elles (nous allons définir bientot
cette expression). Ce ne sont pas la des exigences absolues
de la logique, comme l'indiquent les locutions mémes : /e
plus possible, autant que possible. Ce sont simplement des
desiderata d'ordre quasi esthétique, qui peuvent étre plus ou

! Cette hypothese, ou plutot cette analogie, était le fondement (ruineux) de toute la logique
de Leibniz. V. notre ouvrage sur La logzque de Leibniz, chs 1p 1.

Z Analogue aux arbres généalogiques.

L’Enseignement mathém., 7¢ année ; 1905. 8
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moins satisfaits sans que la valeur logique d'une théorie en
soit affectée.

On dit que des notions sont indépendantes entre elles,
quand aucune d’elles ne peut étre définiec au moyen des
autres. On dit que des propositions sont indépendantes entre
elles, quand aucune d’elles ne peut étre démontrée au moyen
des autres. Dans les mémes cas, on dit que ces notions ou
ces propositions forment un systéme irréductible. 11 ne faut
pas perdre de vue ce fait qu'une méme théorie déductive peut
étre fondce sur plusieurs systemes irréductibles de notions
et propositions premicres, de sorte que méme cette condition
peut ne pas suflive pour déterminer un systéme unique .

Pour prouver que dans un systeme de propositions pre-
mieres l'une d’elles est indépendante des autres, il ne suflit
pas d'alléguer qu'on 1’a pas pu démontrer cette proposition
au moven des autres: un tel argument n’a évidemment aucune
valeur logique, parce qu’il est empirique et ne peut justifier
une proposition universelle négative. Il faul (et il suflit' quon
trouve un cas (un seul: ot la proposition en question soit
fausse alors que toutes les autres sont vraies; car ce cas ex-
clut I'hvpothese que celles-ci impliquent celle-la. Or, puis-
que le sens des notions premieres est indéterminé, 1l suflit
de trouver une interprétation des svmboles non définis, qui
vérifie loutes les propositions premieres, moins celle dont
on veut prouver l'indépendance. D'ou cette vegle:

Pour qu'un svstéme de propositions premieéres soil irré-
ductible, il faut et il suffit qu’on puisse trouver pour chacune
d’elles unc interprétation du svstenme des symboles non dé-
finis qui vérifie toutes les propositions premieres sauf celle-la.

Dans ce cas, on dit qu'on a démontré Uindépendance abso-
lue des propositions premicres entre elles. Il arrive en eflet
qu'on puisse seulement démontrer leur indépendance ordon-

.

1 {1 est elair que si une méme théorie peut éire fondée sur deux systemes irvéductibles de
postulats, chacun de ces systémes doil pouvoir se déduire de Vautre, puisqu'il contient en
tout cas des propositions {premicres ou non) de la théorie. En d'antres termes, les deux svs-
temes doivent ¢tre logiquement équivalents (s'impliquer mutuellement). De méme, si une
théorie peut recevoir deux systemes irréductibles de notions premiercs. chacun de ces deux
systemes doit pouvoir se définir au moyen de 'autre, puisque chacun d’eux permet de définir
toutes les notions de la théorie qu'il ne contieut pas.
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! 16e, c'est-a-dire que chacune d’elles est indépendante des
'i pré(‘édentes Cette démonstration a d’ailleurs lieu suivant la
gira méme méthode.

i D’autre part, pour prouver que dans un systéme de notions
g”premleles I'une d’elles est 1ndependantes des autres, 1l ne
¢ suflit évidemment pas d’alléguer qu’on n’a pas pu la définir
a0 moven des autres. Bien entendu, on doit considérer ces
£ notions comme liées entre elles par un ensemble de postu-
£ lats qui déterminent leurs relations; et quand on dit que
£ 'une d’elles est indépendante des autres, il faut entendre que
E 1o systéeme des postulats ne permet pas de la définir au moyen
¥ des autres. Par conséquent, ce systéme des postulats consli-
tue une donnée du probleme, etl'indépendance mutuelle des
B notions premiéres sera relative a ce systéme de postulats.
2 Or, pour prouver qu'un symbole non défini est indépendant
des autres, c’est-a-dire que son sens n'est pas déterminé par
- celui des autres, il suffit de trouver deux interprétations qui
ne difféerent que par le sens de ce symbole, et qui vérifient
toutes deux le systéme des postulats, puisque ce systéme for-
mule les conditions qui relient les unes auxautres les notions

" premiéres, et qui contribuent a déterminer (a limiter) leur
~sens. On aboutit ainsi a formuler la regle suivante :

~ Pour qu'un systéme de notions premiéres soit irréductible
" par rapport a un systeme de propositions premiéres, il faut
et il suffit qu'on puisse trouver, pour chaque notion pre-
~micre, une seconde interprétation qui vérifie, comme la pre-
~miere, le systéme des propositions premieres, toutes les
~autres notions conservanl le méme sens .

Outre les définitions nominales, dont il a été question jus-

1AL Pavoa, Essai d’une théorie algébrique des nombres entiers, précedé d’une introduction
logique @ une théorie déductive quelconque, ap. Bibl. du Congres de Philosophie, 1900, t. 111
‘Paris. A. Colin, 1901.) Cette méthode logique a été récemment appliquée par M. HUNTINGTON
» _dans les mémoires suivants : 4 complete set of postulates for the theory of absolute continuous
Cimagnitude : Complete sets of postulates for the theories of positive integral and positive ratio-
-'?—&’/1(1[ numbers (Transactions of the American Mathematical Society, t. 111, 1902): Two defini-
e tions of an Abelian group by sets of independent postulates (ibid.,t. 1V, 1903); Sets of indepen-
i, dents postulates for the Algebra of Logic (ibid., t. V, 1904); et par M. Oswald VeBrLen: 4
zSystem of axioms for Geometry (ibid., t. V, 1904).
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qu’ici, on atrouvé en Mathémaliques deux aulres especes de
définitions qui semblentirréductibles a cette forme, a savoir :
les définitions par postulats et les définitions par abstrac-
lion 1.

La définition par postulats s’applique, non a une seule no-
tion, mais a un systeme de notions ; elle consiste a énumérer
les relations fondamentales qui les unissent et qui permettent
de démontrer toutes leurs autres propriétés : ces relations
sont des postulats, c’est-a-dire les propositions premieres
d’une théorie. Or une telle définition n’est pas a proprement
parler une définition, car elle suppose au contraire que les
nolions en question sont indéfinissables. Admettre que des
postulats puissent définir les notions premiéres qui v figu-
rent, c’est admettre que tout peut se définir; car les notions
définies seraient définies nominalement, et les notions non
définies seraienl définies par postulats. Cest donc la un
abus du mot de définition ; tout ce qu'on peut dire, c¢’est que
les postulats déterminent le sens des notions premieres, au
moins dans une certaine mesure; car nous avons vu qu'en
général ils ne le déterminent pas complétement, puisque le
méme systeme de postulats peut recevoir plusieurs inter-
prétations.

S'i1l n’y avait qu'une seule notion a définir, on pourrait
aisément transformer une définition par postulats en une
définiion nominale ; 1l suflirait de dire : « le terme a définir
= un objet qui vérifie tels et tels postulats, » ce qui est tou-
jours possible, au moyen du symbole : x2 (...) 2. Mais quand
il y a plusieurs notions a définir, il n’est pas possible, en
général, de « résoudre » ainsi le systeme des postulals par
-apport a ces notions, et d’en tirer leur « valeur » sous la

1 (. Buravi-Forri, Logica matematica, cap. IV, §§ 6. 7 (Milan, Hapli, 1894) ; Sur les dif-
8 I 33 A i
erentes meéthodes logiques powr la définition di nombre réel, § 1, ap. Bibliothéque du Congres
5tq P S I q 5
de Philosophie, t. 111 (Parts; A. Colin. 1901).

2 (Cest ce qui a lieu, par exemple, pour l'idée de grandeur. M. BuraAvri-Fortt a commencé
par la « définir » au moyen de huit postulats qui portent sur cetle notion (Formulaire de Ma-
thématiques, t. 1, ch. 1V [1895] : Les proprictés formelles des opérations algebriques, ap. Revue
de Mathématiques, t. VI, p. 141 [1900]) ; puis il a délini nominalement la grandeur, ou plus
exactement, la classe de grandeurs homogenes, comme un ensemble d’objels qui vérifie ces
huit postulats (Sulla Teoria gencrale delle Grandezze ¢ dei Numeri, ap. Acte dell’ Accademia
delle Scienze di Torino, t. 39 [1904]). Cf. notre ouvrage Les principes des mathiématiques,
chap. V.

3
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Eforme explicite de définitions nominales. Toutefois, il suffira
-_."5de les définir toutes, sauf une, pour avoir la définition nomi-
“pale de cette derniere: car alors elle sera la seule, et I'on
“retombera dans le cas précédent. Les postulats deviendront
~de simples conséquences logiques de la définition, non pas
- que celle-ci puisse jamais étre érigée en « vérité » ou en
_ principe, mais parce que la notion deﬁme vérifiera ces pos-
- tulats par définition. C'est ainsi que. Fon peut transformer
~les principes ou hypothéses d’une théorie en une définition
de Pobjet fondamental de cette théorie; par exemple, les
Li{f‘;amomes de la géométrie, ou plutot d'une géométrie, en une
?‘\déﬁnition de I’espace correspondant .
- La définition par abstraction s’applique a une fonction
' logique ou mathématique. Elle consiste, au lieu de définir
nominalement cette fonction, a indiquer la condition néces-
saire et suffisante & laquelle cette fonction prend la méme
_valeur pour deux valeurs différentes de la variable ?. Ce pro-
cédé est tres fréquemment employé en mathématiques. Par
exemple, beaucoup d’auteurs (M. Georg Caxror' définissent
. le nombre cardinal comme suit: « Deux ensembles ont des
nombres cardinaux égaux, quand on peut établir une corres-
.pondance univoque etréciproque entre tous leurs éléments. »

‘De méme, on ne définira pas le vecteur, mais on dira: « Deux
~vecleurs sont égaux, lorsqu’ils ont méme longuéur, meéme
direction et méme sens. » On ne définiva pas la direction,
- mais on dira: « Deux droites ont la méme direction, lors-
qu'elles sont paralléles. » De méme en physique : on ne défi-
‘nit pas nominalement la masse, la température, le potentiel,
‘mais on indique dans (uelles conditions « on dira » que deux
~ corps ont la méme masse, la méme température, le méme
. potentiel 2. En général, toutes les fois qu’on peut établir entre
- deux objets d’une certaine classe une relation symétrique et

L V. Les principes des mathématiques, chap. VI, § B, fin.

V. BurALi-FFoRrTI, Sur Uégalité et sur Uintroduction des eléements derives dans la science,
r.ap. L'enseignement mathématique, 1899.

8 Les ddfinitions par abstraction sont si fréquentes, que certains auteurs, par une géné-
ralisation excessive, affirment qu’il n’y en a pas d’autres en mathématique. En quoi ils se
Ltr(}nlpent; car on définit nominalement beaucoup de notions, comme celles de nombre pre-
;“nzurr, de limite, de dérivee, d'integrale, de triangle, de cercle, de vitesse, d’accélération, de
s quantite de chaleur, ete.
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transitive icomme le parallélisme des droites, l'é¢quilibre
des corps sur une balance;, on concoit cette relalion comme
une espece d'égalité, a savoir comme l'identité d'une pro-
priété abstraite de ces deux objels ’. On est ainsi conduit a
déterminer et a définir cette propriété au moyen de la rela-
tion en question; d'ou le nom de définition par abstraction.

Au point de vue formel, une définition par abstraction
s'énonce comme suit :

aeCls.x,yea., o Pr = Q.= P

« I'égalité gr = gy, ou lafonction ¢ est la notion a définir
et on.r et y sont des éléments d'une méme classe «, équivaut
a la proposition p relative a .x, y.»

Mais cette définition peut étre ramenée a la forme d'une
définition nominale de la maniere suivante. La proposition
P, €st une relation entre x et y; écrivons-la : rRy. Cette
relation est symétrique et transitive par hypothese; et son
champ est la classe @. En vertu du principe d’abstraction?,
on peut en conclure l'existence d’une relation uniforme S
entre chacun des termes .x, 7 et un méme terme z, de telle
sorte qu’on ait:

xRy .= . xSz LYz

Ce terme 3 est fonction de .x et fonction de y; c’est son
existence et son identité qui fondent Pégalité: gr — gy. On
peut donc définir nominalement la fonction ¢ comme suit:
c’est la relation qui unit le terme z a chacun des éléments
L, y,... de la classe @ entre lesquels existe la relation R. Ainsi
la logique des relations permet de réduire les définitions par
abstraction a des définitions nominales.

Pour illustrer ces considérations théoriques, nous ne pou-
vons trouver un meilleur exemple que la théorie du nombre

1 (est en cela que consiste le principe d’abstraction, qui peut s'énoncer comme suit : Toute
relation symétrique et transitive peut se ramener a une espéce d'égalité.

2 V. Les principes des mathématiques, chap. I, § C.
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. entier, ou l'on verra le nombre entier défini tour a tour par
postulats, par abstraction et enfin nominalement.
La définition par postulats1 consiste a prendre 3 mnotions

indéfinissables: N (nombre entier positif), 0 (zéro), et seq (le

i
-
.

[
i

suivant de)?: N est une classe, 0 un individu et seq une fonc-
“tion. Puis on pose les cinq postulats suivants:

I. OeN

« Zéro est un nombre?3. »
1I. J’sN.Ox.Squ?EN

« Le suivant d'un nombre est un nombre®. »
I11. (z'sN.:)x.seq.-r -=0

« 7.éro n'est le suivant d’aucun nombre. »

IV. X, yeN.sequx = SeqY . gyl =

« Deuxnombres, dontles suivants sont égaux, sont égaux®.»
V. Oca: reNra.o, .sequea: 9,.Noa

« Si une classe « contient 0, et si, des qu’elle contient un
nombre .z, elle contient le suivant de @, elle contient tous les
‘nombres.» Ce dernier postulat est ce qu’on appelle le prin-
cipe de Uinduction compléte. On le formuled’ordinaire comme
suit: « Si une proposition est vraie pour 0, et si, des qu’elle
est vraie pour n, elleest vraie pour n + 1, elle est vraie pour
lous les nombres entiers ¢ »

1 G. PraANo, Arithmetices principia nova methodo exposita (Turin, Bocca, 1889) ; Sul concetto
di numero, ap. Rivista di Matematica, t. I (1891); Formulaire de Mathématiques, toutes les
cditions ; Aritmetica generale e Algebra elementare (Turin, Paravia, 1902).

-

2 Ces notions sont indéfinissables, malgré la traduction verbale que nous en donnons

- parce que cette traduction n’est qu'une interprétation des 3 symboles N, 0, seq, et que leur

'« lef. le postualat 1V).

“sens doit étre déterminé uniquement par les postulats suivants.
- ® Nous dirons « nombre » pour abréger, aucune confusion n’étant possible.
4 Ceei implique que la fonction seq est uniforme, c.-a-d. que :

JC,J'EN X = y.0.8eqx = seqy

3 Autrement dit, la fonction seq est réciproque. (Cf. la note 2).

¢ L'¢quivalence des denx énoneés est évidente, si 'on remarque que toute proposition dé-
' termine une classe, a savoir ensemble des individus qui la vérifient.
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De ces cinq postulatson peut déduire toutes les proposi-
tions de 'Arithmétique des nombres entiers positifs; ils sufli-
sent donc a «définir » les nombres entiers, c’est-a-dire qu’ils
en exprimentles propriétés fondamentales et caractéristiques.
De plus, ils sont tous nécessaires, car ils sont indépendants
les uns des autres. C'est ce qu'on peut prouverau moyen des
interprétations suivantes, dont chacune vérifie tous les pos-
tulats, sauf celui dont elle porte le numéro:

I. La classe N (ordonnée par la fonction seq: se compose
de tous les nombres entiers positifs non nuls: 1, 2, 3, 4, 5,...
(Elle ne contient pas 0 1

II. La classe N se compose des 10 premiers nombres en-
tiers: 0, 1,2,3,4,5,6,7,8, 9{lenombre9n’a pasde suivant).

III. La classe N se compose des nombres 0, 1, 2, formant
une période: 0,1, 2,0, 1, 2,0, 1, 2,... (le nombre 0 estlesui-
vant d’un autre nombre).

IV. La classe N est 0, 1, 2, 1,2, 1, 2,... (le suivantde O est
1, comme le suivant de 2.)

V. Laclasse Nestla suitedesnombres, mais seq v —= o + 2
‘et non plus & + 1). Le postulat V se trouve en défaut si I'on
prend pour s I'’ensemble des nombres pairs, car cette classe
vérifie hypothese, et non la these?®.

Ainsi le systeme des cinq postulats est irréductible. On peut
dire que le systéme des 3 notions premieres: N, 0, seq se
trouve délini comme vérifiant le systeme de postulats. Mais,
bien entendu, ce n’est pas la une définition nominale. On
peut traduire le principe d'induction en disant que N est la
plus petite classe qui vérifie les postulats 1 et II: en effet,
elle est contenue dans toute classe qui vérifie ces deux pos-
tulats (Oes, et wes.o.seq.res).

La définition par abstraction des nombres entiers est toute
autre?. Elle consiste a considérer le nombre entier comme
une propriété des classes (ce qu'on appelle leur nombre car-

1 On peut évidemment faire commencer la suite des nombres a 1 (ou a un nombre quel-
conque), mais alors il faut substituer 1 2 0 dans les postulats I, III et V.

2 A. Pavoa, Conférences sur la logique mathématique, p. 51 (1898); G. Praxo, Formulaire
1899, p. 30.

3 G. Prano. Formulaire 1903, § 56.
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v dinal) et a définir par abstraction les nombres cardinaux
“comme des fonctions logiques (Num x) en définissant seu-
lement leur égalité :

a,beCls.o: Numa =— Numb. = 5(bfa)recp Df

C«a et b étant des classes, on dit que leurs nombres cardi-
naux sont égaux, s'il existe entre ces classes une correspon-
. dance univoque et réciproque. »

 On peut alors définir O comme suit :

0 — NumA

« Z.éro est le nombre cardinal de la classe nulle. »
D'ou l'on peut déduire:

aeCls . o: Numa—=0.—.a— A

Si 'on désigne (suivant la définition générale de cette nota-
tion) par « Num 'Cls », I'ensemble des nombres d'une classe
quelconque, c’est-a-dire des nombres cardinaux, on pourra
définir la somme de deux nombres cardinaux comme suit :

x,7eNum’'Cls.o. ¢ 4+ y =122 [¢, beCls Numa = x.

Numb = y.a~b = Ao, .5 = Num (a.b)] Df

~ «Sixetysontlesnombres cardinaux respectifs des classes
“a et b qui n'ont aucun élément commun, leur somme (x 4 y)
- sera, par définition, le nombre cardinal de la classe («-0),
somme logique des classes « et 0. » Ainsi 'addition arithmeé-
"tique se trouve définie, d’'une maniére générale, au moyen
de I'addition logique.
Cela posé, on pourra définir scq n par n + 1, somme du
nombre cardinal 7 et de 1. On aura en conséquence :

- neNum 'Cls. aeCls.o. . Numa = n+1.=: ja: xea.o,. Num(a-1x) =n

 « Dire que la classe @ a pour nombre cardinal n + 1, c’est
~dire qu’elle n’est pas nulle, et que, si x est un de ses élé-
. ments, la classe des ¢ différents de x a pour nombre cardi-
;Lg;nal n.» En d’autres termes, une classe a le nombre n 4 1,

i

- quand on peut l'obtenir en ajoutant un élément a une classe

e

qui a le nombre n.
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On ne peut nier que cette maniere de définir le nombre
cardinal ne soit plus naturelle et plus conforme a la concep-
tion ordinaire ; elle donne aux symboles N, 0, seq un sens
plus concret et plus immédiat que ne faisait la définition par
postulats. Seulement cette définition s’applique a tous les
nombres cardinaux, méme infinis, et non pas seulement aux
nombres de la suite naturelle (dits finis) que nous avons dé-
signés jusqu’ici par N. Or l'essence des nombres finis con-
siste précisément dans le principe d’induction, car celui-ci
équivaut a la définition qu’on donne des classes finies, par
opposition aux classes infinies (qui peuvent étre équivalentes
a une de leurs parties intégrantes;’. On pourra donc définir
les nombres entiers finis comme suit: « N est la classe des
nombres cardinaux qui appartiennent a toutes les classes qui
contiennent 0, et qui contiennent n 4 1) des qu’elles con-
tiennent 1. »

On a par la méme une définition nominale du nombre en-
tier fini; seulement cette définition repose sur la notion de
Num, qu’on n’a définie que par abstraction. Mais si I'on appli-
que le principe d’abstraction a cette fonction, on pourra en
conclure que la relation d’égalité de nombre ou d’équivalence
entre deux classes se réduit a une relation uniforme de ces
classes & un méme terme, qui sera leur nombre cardinal. Et
comme chaque concept est représenté par son extension, le
nombre cardinal, concu comme la propriété commune a toutes
les classes équivalentes, sera représenté par la classe de ces
classes. En d’autres termes, on peut répartir toutes les classes
possibles en classes telles que, dans une méme classe, toutes
les classes ont le méme nombre cardinal ; on a ainsi une cor-
respondance univoque et réciproque entre les nombres car-
dinaux et les classes de classes, et l'on peut substituer ou
identifier celles-ci a ceux-la. En résumé, on peut définir
Num « nominalement comme suit :

aeCls.o. Numa = Cls~xs[slxfajrep]

« Le nombre cardinal de la classe « estla classe des classes

L WHITENEAD, On cardinal numbers, ap. American Journal of Mathematics, t. XXIV (1902),
sect. ITI.




LES DEFINITIONS MATHEMATIQUES 115

" équivalentes a @»; et alors, dire qu’une classe b ale méme

nombre que la classe @, c'est dire qu’elle appartient a la
classe des classes équivalentes a «:

Numb = Numa,=.heCls~az [ (xfa)rcp]

= [q(bfa)rep]

On peut donc se passer du symbole de fonction Num, de
sorte qu'aulieu d’écrire (a étant une classe et n son nombre):
Num @ = n, on écrira :

azgn

¢’est-a-dire: «la classe « appartient a la classe de classes n.»

On définira les nombres cardinaux eux-mémes comme des
classes de classes, sans le secours du symbole Num. On défi-
nira d’abord zéro comme suit :

0 — A

« Zéro est la classe qui comprend la seule classe nulle. »
Puis on définira le suivant d’un nombre: i

neN.o.seqn = Clsras(ga: xsa.o . a-rren) ' Df

« n étant un nombre, n + 1 est la classe des classes a
telles que, si .x est un élément de «, la classe des « non
égaux a . a le nombre n. »

Cette formule permet de définir progressivement tous les
nombres cardinaux finis (puisque ceux-ci, par définition, sont
ceux qu'on obtient en ajoutant toujours 1 au nombre précé-
demment obtenu). En particulier, 1 se définira comme le sui-

“vant de 0:

I'=Clsrus(qu: xen.o, . u-1re)
Or:
u-txed, = . u-wx = A.—=.udrwr
Mais :
UDLE == yEULO,.y = X
Donec:
Xewdg. u-wel: = : xew.og: yeu.oy.y —x:

TSIXEULYEU I,y Y T= XD IS DX, Y EU.Ogy.) == X
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Substituons dans la définition de 1 : il vient :
1 = Cls~us(qqu: x,yeu.oxy.y = x) Df

On trouve ainsi la définition de la classe singuliére: « 1 est
la classe des classes « non nulles et telles que, si ., y sont
des éléments de u, ils sont identiques. »

On définira de méme :

2 = Clscua(qju:reu.og.u-wrel)

3= Clsrus(sju:reu.ogx.u-tre)

et ainsi de suite. Enfin on pourra définir nominalement I'idée
de nombre cardinal :

Ne = Cls’Cls~ z3 [;[Cls~u3(z = Numu)] Df
« Un nombre cardinal est une classe de classes z telle qu’il
y a des classes « qui ont pour nombre cardinal z. »
Et'idée de nombre cardinal fini sera définie au moyen du

principe d’induction :
Nefin = Neona[seCls . 0es : meNens. om.m | 1les : 0. nes| Df

« L’ensemble des nombres cardinaux finis est une classe n
de nombres cardinaux qui vérifie le principe d’induction ; »
et celui-ci pourra alors étre aflirmé de la classe Nefin:

(Induc) seCls.0es: meNcrs.om.m + les:o.Ncefines

On peut démontrer que 0, 1, 2,... sont des nombres finis,
et que, si n est un nombre fini, n 4 1 I'est aussi ',

R
. x

Les considérations précédentes nous amenent a examiner
ce quon appelle les définitions et les démonstrations par
induction, ou encore par récurrence. Une définition par in-
duction consiste a définir un concept (fonction d’un nombre
entier indélerminé) pour le nombre 0 (ou 1, ou tel autre
nombre entier déterminé), puis a définir le méme concept
pour le nombre (n + 1) en fonction de sa valeur (supposée
connue) pour le nombre n; on ditalors que ce concept est

1 WIHTEHEAD, mémoire cite.

i o Bl T
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défini pour tous les nombres entiers (a partir du premier
nombre visé dans la définition) . De méme, une démonstra-
tion par induction consiste & démontrer une proposition (ou
¥ figure un nombre entier indéterminé) pour le nombre 0
£ (ou 1, etc.), puis & démontrer que, si cette proposition est
E vraie pour le nombre 7, elle est encore vraie pour le nombre
t n 4+ 1; d’ou 'on conclut qu’elle est vraie pour tous les nom-
‘ bres entiers (a partir du premier nombre visé dans la dé-
monstration) 2. Ces deux méthodes, dont I'analogie est mani-

1 Exemples de définitions par induction :

1. Définition de la somme de deux nombres entiers :

‘ agN.o.a40=a "
?a,bsi’.o.a—{-—seqb:seq (e + b) 12)
d’out : a4+ 1=seq (a4 0) =seqa
et alors (2) devient : a+(b4+1) =+ b) 41

I1. Définition du produit de deux nombres entiers :

{aeN.o.a XX 0=0 (1)
/absNoax(b—}—l {a><b)+ « (2)
d’ou : aX1T=(aX0)+a=0+a=c.

II1. Définition des puissances entiércs d’'un nombre entier :

aeN.2.a°=1 (1)
la,neN.o.a"T'=a" < a 12)
d’ou : W=} a=1><a—=— a.

? Exemples de démonstrations par induction :

I. Loi associative de 'addition :
a,b,ceN.o.(a + b) +c=a + (b + ¢
Dem : Hp.c = 0.0.7Ts

« Le théoréme est vrai pour ¢ = 0. »
‘ “l[p a4+ by +c=a4 (b4c)o (a4 b)+ (c+ 1) = [la + b ]+ 1=
la + (0 +c)] +1=a41{b+c)+1]=a+ [b+ (c+ 1)] {2)

« En supposant le théoréeme vrai pour ¢, on démontre, par des transformations permises,
2 quil est vrai pour ¢ 4 1. »

Induct. (1). (2).0.P

« Ein vertu du principe d’induction, (1) et (2) démontrent le théoréme. »
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feste, reposent sur le principe d'induction. Comme une défi-
nition joue dans les raisonnements le role d’'une proposi-
tion, on comprend que le principe d’induction s’applique
aux définitions comme aux propositions. Nous nous borne-
rons donc, pour simplifier, a étudier les démonstrations par -
induction.

Ce mode de raisonnement était considéré autrefois comme
une nduction, parce que, semblait-il, il permettait de con-
clure de quelques cas a tous; mais, s’il en était vraiment ainsi,
il ne serait pas logiquement probant. On a essayé de corriger
cette conséquence en qualifiant cette induction de compléte,
pour indiquer qu’elle épuise tous les cas possibles. Mais il v
a la une équivoque : tous les cas possibles figurent-ils dans
les prémisses ou dans les conséquences? S'ils ne figurent

1I. Loi commutative de l'addition :

a«a.beN.ov.a+b=b-+ a

Dem: DE4+ 0.0 +-0=20 (1)
04+a=a.2.04+(a+1=(0+a)+1=a+1 (2)
Indue. (1) . (2).0. 04+ a=a (3)
DfF+ 0.1 +0=0+4+1=1 (1)
l4+a=a+1. 0. Il +lat+ =l +a)+1=(a+ 1) +1 (5
Indue. (9. 5). 0.1 +a¢a=a + 1 (6)

« +b=b+a.o.a+{b4+1)=(e«a+b +1=(b+a) +1
=b+(«+ ) =b+114+a=(b+ 1)+« (7)

Indue. (6).(7).0.P

Dans cette démonstration, on applique trois fois le principe d’induction : d’abord, pour
conclure de (1) et (2) a (3) ; puis pour conclure de (4) el (5) a (6) ; enfin pour conclure de (6) et
(7) le théoréme a prouver; (3) sert & prouver (4). La loi associative est employvée pour prouver
(2), (5), (7) : elle est invoquée 3 fois dans (7).

[TI. Loi distributive de la multiplication ;

a.b,ceN.o.(a + byec = ac 4+ be
Hp.e = 0.0.Ts (1)
Hp.(la + bjc =a¢ + be.ofa + b)ic 4 V) = (a + b)c + (a + b) =
ac~+ be +a+b=1lac+ a4+ (bec + b)=a(c 4+ 1)+ bc + 1) (2
Indue. (1).(2).0.P

On pourrait multiplier ces exemples: la plupart des lois fondamentales de la théorvie des
nombres finis se démontrent par induction. V. le Formulaire de M. Peano.
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que dans les consequences, il y a inférence illégitime de
quelques cas & tous, et par suite I'induction est ordinaire et
incomplete. S'ils figurent aussi dans les prémisses, le raison-
nement se réduil presque a une tautologie : « Si le théoréme
est vrai de chaque nombre entier pris & part), il est vrai de
tous les nombres entiers (en général). » Mais, en réalité, il
n'est pas une induction : sans doute, que le théoréme soit vrai
pour 0 ou 1), c'est la une vérité particuliére ; mais que, si
le théoreme est vrai pour n, il soit vrai pour n + 1, c’est la
une vérité universelle, puisque n peutprendre dans cet énonce
n'importe quelle valeur entiere. Clest cette seconde prémisse
qui fait l'universalité du théoreme considéré ; etiln’y a la au-
cune inférence du particulier a 'universel.

On a prétendu’® que le raisonnement par induction enve-
loppe «une infinité de syllogismes», et par suite repose sur
quelque principe extra-logique « irréductible au principe de
contradiction »2. On dit : Le théoréeme est vrai pour 0; s'il
est vrai pour 0, il est vrai pour1; s'il est vrai pour 1, il est
vrai pour 2; et ainsi de suite indéfiniment®. Kt il parait que
cette infinité échappe (on ne sait pourquoij aux prises de la
Logique, comme si le nombre infini inombre cardinal des
nombres entiers finis' n'était pas susceptible d'une définition
logique. A cela on peut répondre d'abord que, pour prouver
le théoréme en question pour un nombre entier quelconque,
il suflit d'un nombre fini de syllogismes, ou plutot de déduc-
tions simples: c’est ce quindique le nom de raisonnement
par récurrence. Et sile théoreme général enveloppe une in-
finité de cas particuliers (a savoir I'infinité des nombres en-
tiers), c'est parce que la prémisse : « Sile théoreme est vrai
de n. il est encore vrai de n41», envetoppe cette méme in-
finité, et possede exactement la méme généralité. Tous les
théoremes généraux de I'Arithmétique ont la méme portée
infinie, en tant que tous valent pourtousles nombresentiers.

1 H. PoiNcaRE, Sur la nature du raisonnement mathématique, ap. Revue de Métaphysique et
de Morale, t. 11, p. 371 1189%) : La science et Uhypothese, p. 19 sqq.

2 Comme si le principe de contradiction était le seul principe de la logique, selon un pré-
Jugé inexplicable qui a cours chez les philosophes.

¢ Ce ne sont pas la d'ailleurs des «syllogismes », mais des raisonnements hypothétiques
enchainés de telle sorte (ue la these du précédent est 'hypothése du suivant.
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Il n'y a la rien d’'illogique ni de mystérieux, mais simplement
ce fait qu'un concept (ici celui de nombre) peut avoir une ex-
tension infinie, sans que cela empéche de raisonner logique-
ment sur lui. Dans tous les cas, la conclusion n’est pas plus
générale que la prémisse; le passage de la prémisse & la con-
clusion est donc parfaitement logique !, et il n’enveloppe pas
«une infinité de syllogismes » : tout au contraire, la pré-
misse universelle: « Si lethéoreme est vrai pour n, il est vrai
pour n41» dispense de cette prétendue suite infinie de dé-
ductions et les remplace par une scule, grace au principe
d’induction.

D’autre part, on a voulu voir?, dans la démonstration par
induction, le type du raisonnement mathématique, lequel
serait étranger a la logique. Mais d’abord, le raisonnement
par induction n'est nullement une méthode générale des
mathématiques ; il est spécial a 'arithmétique des nombres
entiers finis; et pour s'en rendre compte, il suflit de remar-
quer qu'il repose sur le principe d’induction, lequel fait par-
tie de la définition des nombres finis ®. Ilne peut s’appliquer
(qu'aux proposilions (ou définitions) ou figure quelque fonc-
tion d’un nombre entier fini; hors ce cas, relativement res-
treint, il n'a plus d’application ni méme de sens. Celle opi-
nion erronée n'a pu provenir que de U'arithmétisation exces-
sive a laquelle on a soumis les mathématiques ; elle ne se
justifierait que dans la theése ou non seulement I"Analyse,
mais toute la Mathématique reposerait entierement sur la
seule notion de nombre entier. Mais cette thése, qui a été
assez longtemps a lamode, est a présent dépassée et réfutée? ;
el en tout cas, il suflit (sans parler de la théorie des ensem-
bles et des pombres infinis) de citer la Géométrie pour mon-
trer un domaine ou le raisonnement mathématique le plus

1 D'ailleurs, ¢’est une grreur de croire que la déduction logique ne puisse passer du par-
ticulier au général ; nous l'avons montré au Congres de philosophie de Gendéve (1904). V. les
Comptes rendus du Congres, et la Revue de Mctaphysique et de Morale, novembre 1904,

2 H. PoiNCARIE, tbid.

3 Cette remarque a é¢té faite par M. Burari-Forri. Le classi finite, p. 3, note 5, ap. Ati
dell’Accademia delle Scienze di Torino, L. XXXII (1896) ; et mémoire déja cité du Congreés de
Philosophic (1900).

4 V. notre ouvrage : Les principes des mathématiques.
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rigoureux régne, sans prendre laforme de l'induction (si ce
n'est dans les cas ol un concept est fonction d’'un nombre
‘entier, comme le concept de polygone (n-gone), ce qui con-
firme notre these). |
Enfin, etc’est lale point le plus important, le raisonnement
par induction n’est nullement étranger ou réfractaire a la
Logique: et la preuve en est que nous avons pu le formuler
symboliquement en termes purement logiques. Le principe
d'induction n’est pas, comme on le croit, un principe original
et extra-logique que les Mathématiques seraient obligées
-d’adjoindré aux principes de la Logique pour pouvoir dé-
montrer leurs propositions; c¢’est, on I'avu, une partie essen-
lielle de la définition du nombre entier. Dira-t-on qu’il y a
quelque chose d’artificiel et d’arbitraire a transformer un
principe en une définition, ce qui semblelui enlever sa « valeur
de vérité» etle réduire a une simple convention? A cela il
est facile de répondre que, si I'on retranchait le principe d’in-
~duction de la définition du nombre, le nombre ne serait plus
défini, puisqu’on ne pourrait plus déduire ses propriétés de
-sa définition. Il fautdonc bien que le principe d’induction soit
incorporé a sa définition; etil n'yala rien d’arbitraire, si I'on
veut définir, non un concept quelconque qu'on appellerait
“nombre, mais I'idée du nombre entier fini, qui est la base
traditionnelle de I'Arithmétique ordinaire. Concluons done
I que ni les Mathématiques en général, ni 'Arithmétique en
particulier n'ont besoin, pour se counstituer déduclivement,
~ de principes spéciaux, d’ «axiomes propres», et que les prin-
“cipes généraux de la Logique leur suffisent, quand on leur
adjoint, bien entendu, les définitions logiques des concepts
_propres aux mathématiques. La méthode mathématique n’est
pas autre que la méthode logique, et la Mathématique elle-
“méme n'est pas une science spéciale et aulonome, mais une
“branche ou une application de la Logique. Telle est la con-
¢ clusion philosophique la plus importante des recherches re-
B latives a la Logique mathématique.

Louis Coururat (Paris).

[’Enscignement mathém., 7¢ année; 1905. 9
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