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SUR LES FONDEMENTS DE LA LOGIQUE
ET DE LZ—\RYFHMETIQUE‘

¥.  Sidans la recherche des fondements de la Géomélirie nous
g. sommes anjonrd’hui d'accord, quant al'essentiel, sur les voies
:*"'i; a prendre et les buts & poursuivre, on ne saurait en dire au-
. lant des fondements de I'Arithmétique : ici les opinions les
- plus différentes se dressent encore en face les unes des au-
tres.

= Effectivement, lorsqu'on passe de la Géométrie a I'Arith-
métique, on rencontre des difficultés qui sont en partie d’'une
»f‘"_espé(‘e nouvelle. Dans I'analyse des fondements de la Géo-
%{;,,métrie on peut laisser de coté certaines diflicultés, de nature
'purement arithmétique ; mais des qu’il s’agit de fonder
UArithmétique, il semble qu'on n’a pas le droit de s’appuyver
sur une autre discipline. Pour mettre clairement en évidence
Cwles difficultés fondamentales qui se présentent, je ne saurais
. mieux faire que de soumettre a une bréve revue critique les
/> points de vue adoptés par divers savants.

L. KRONECKER vovail, comme on sait, dans le concept de
E nombre entier le 1ondement propre de I'Arithmétique. Il con-
" sidérait le nombre entier, en tant que concept général (valeur
pammetmque) comme directement et immeédialement donné;
~ce qui I empécha d’apercevoir que le co ncept de nombre en-
‘f- ler doit, cependant, et peut étre fondé. A cet égard, Kro-
> necker est un dogmatique. 11 recoit comme un dogme le
«-nombre entier doté de ses propriétés fondamentales et il ne
cherche pas a remonter plus arriérve.

H. Herwuorrz représente le point de vue empiriste. Mais

'Communication faite par M. D. HiLsert (Gottingue), an 1ITme Congrés international des
g athématiciens, a Heidelberg, le 12 aoit 1904 ; traduction de M. P, B()LIROL\ (Paris).

[Enscignement mathém., 7¢ année ; 1905. 7
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toule tentative d'explication empirique me parail échouer
devant ce fait que jamais l'expérience ne saurait rien nous
apprendre relativement a ['existence possible ou actuelle
d’un nombre arbitrairement grand. Le nombre des choses
qui sont objels de notre expérience reste en effet toujours,
quelque grand qu'il soit, inférieur a une limite finie.

E.-B. CuristorreL et quelques autres adversaires de Kro-
necker ont eu le juste sentiment que le concept de nombre
irrationnel est nécessaire a I'Analvse. si I'on ne veut pas
quelle soit tout entiére frappée de stérilité ; des lors, soit en
s'efforcant de déterminer des caractéres « positifs » de ce
concept, soit par dautres moyens analogues, ils ont tiché
de sauvegarder le nombre irrationnel. Ce sont, a cet égard.
des opportunistes. Ils n'ont toutefois pas réussi, selon moi. a
ruiner radicalement le point de vue de Kronecker.

Parmi les savants qui ont pénétré plus avant dans ['essence
du nombre entier, je citerai les suivants :

G. FreGe se propose de fonder les lois de 'Arithmétique
en sappuvant sur la Logique au sens usuel du mot). [l a eu
le mérite de discerner les propriétés essentielles du concept
de nombre entier, comme aussi la signification du principe
de I'induction complete. Mais sa doctrine souleve quelques
difficultés. Fidele a son plan, il admet, entr’autres principes,
qu'un concepl un ensemble se trouve défini et immédiate-
ment utilisable des que l'on sait dire d'un objet quelconque
s'il rentre ou ne rentre pas dans cet ensemble (le concept de
« quelconqgue », lui non plus, n'est pas autrement déterminé’.
Mais alors Frege se trouve désarmé devant les paradoxes de
la théorie des Ensembles. paradoxes dont la considération
de I Ensemble de tous les Ensembles nous fournit un exem-
ple el qui établissent, selon moi, que les notions et les mé-
thodes de la logique usuelle n'ont pas encore la précision et
la rigueur réclamées par la théorie des Ensembles. Or, ce
deorait étre, au contraire, 'un des objets principaurx pour-
suivis, de prime abord, par celui qui €tudie le concept de
nombre, que d’éclhapper a ces contradictions et d’éclairceir ces
pardadores.,

R. Devekinp a clairement reconnu les difficultés d'ordre
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mathématique que I'on rencontre lorsqu’on cherche a fondre
le concept de nombre et, le premier, avec une rare pénétra-
tion, il a construit une théorie des nombres entiers. Je qua-
lifierai, cependant, sa méthode de transcendantale, car, vou-

~lant prouver I'existence de I'Infini, Dedekind s’engage dans

un raisonnement qui repose sur des idées métaphysiques
comme en invoquent souvent les philosophes. C’est la une

_ voie que je ne saurais regarder comme praticable, ni comme
" stre; car elle nous accule 2 une contradiction insurmontable
| en faisant appel au concept de « 'ensemble de tous les ob-
jets ».

G. Cantor a bien senti cette contradiction, et c’est ce qui

. I’'a conduit a établir une distinction entre les Ensembles
~« consistants » et les Ensembles « non-consistants ». Mais il

‘ne me parait pas avoir fondé cette distinction sur un crite-

rium suflisamment précis. Force m’est donc de déclarer que

~sur ce point, le point de vue de M. Cantor laisse encore

- place a I'appréciation subjective et qu’il ne saurait nous four-

~nir une certitude objective.

J’estime, pour ma part, que toutes les difficultés ainsi sou-

levées sont surmontables et que I'on peut fonder le concept
~de nombre d'une maniere parfaitement rigoureuse et salis-

¢

+ .

- faisante. La méthode que j'emploie a cet effet est une mé-

thode axiomatique dont je voudrais briévement faire con-

- naitre le principe.

On regarde d’ordinaire l’Arilhmétique comme une partie

de la Logique et, lorsqu’on cherche a fonder cette science,

on prend généralement pour point de départ les notions

- recues dans la Logique usuelle. Cependant, si nous y regar-
~dons de pres, nous constatons que dans les principes logi-
‘ques, tels que l'on a coutume de les présenter, se trouvent

impliquées déja certaines notions arithmétiques, par exemple

- la notion d’Ensemble et, dans une certaine mesure, la notion
~de Nombre. Ainsi, nous nous trouvons pris dans un cercle,
L ) ) . ‘. . * A
et cest pourquol, afin d'éviter tout paradoxe, il me parait

. neécessaire de développer simultanément les principes de la
. Logique et ceux de I’Arithmétique.

~ . ’ , . ’
Commen”e me représente ce developpement simultané,
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je ne puis que I'esquisser dans ces quelques pages. Que l'on
veuille bien m’excuser si je me borne a indiquer sommaire-
ment dans quelle direction jai poursuivi mes recherches.
Encore, afin d’étre plus facilement compris, ferai-je usage de
la langue ordinaire ainsi que des lois logiques qui y sont im-
pliquées; il faudrait procéder autrement si l'on voulait ren-
dre parfaitement rigoureuse la construction synthétique qui
va sulvre.

Soit un objet de notre pensée que nous appellerons d'un
seul mot : Objet. Nous le représenterons par un signe.

Prenons tout d’abord en considération I'Objet 1 (un). Les
groupes formés avec cet Objet, deux, trois ou plusieurs fois
répété, c'est-a-dire les groupes tels que :

1, 1t 1111,

sont appelés Combinaisons de 'Objet 1 avec lui-méme. De
méme, toute combinaison de ces Combinaisons, par exemple :

(1y (1), (1L (1) (11, (H’l) (‘11)) (1), (Ull» m) (1),

est également une Combinaison de 'Objet | avec lui-méme.
L.es Combinaisons seront a leur tour regardées comme des
Objets ; afin de distinguer I'Objet initial 1, nous 'appellerons
Objet stmple.

Donnons-nous maintenant, avec 1, un second Objet simple
(ue nous représenterons par le signe =, et considérons les
Combinaisons formées avee nos deux Objels, par exemple :

=, =, (1) (=1 (===, (m,; () (:)}(:: =1, (1= (1) (1),

Nous dirons que la Combinaison « des Objets simples 1,
— différe de la Combinaison b, si ces deux Combinaisons se
distinguent de quelque manicre (ne sont pas idenliques), soit
que Vordre et I'arrangement de leurs termes soient dillé-
rents, soit que les Objets 1 et = n'y entrent pas de Ja méme
maniere.

Cela posé, imaginons que les Objets 1 et = et leurs Com-
binaisons soient, par un procédé quelconque, répartis entre

AL D ot e 3 0 acuditd

AP e el

et sy
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deux classes, la classe des étres et la classe des non-étres. Un
Objet quelconque appartenant a la classe des étres différe
d’un Objet quelconque appartenant a la classe des non-étres.
Toute Combinaison des deux Objets simples 1, = appartient
a l'une ou a l'autre des deux classes.

Soit @ une Combinaison des deux Objets fondamentaux 1
et = : nous désignerons également par @ la Proposition af-
firmant que @ appartient a la classe des étres, et nous repré-
senterons par @ la Proposition aflirmant que « appartient a la
classe des non-étres. Nous dirons que a est une Proposition
exacte, si « appartient effectivement a la classe des étres; de
méme a sera une Proposition eracte, si a appartient a la
classe des non-étres. Les Propositions « et @ sont contradic-
toires entre elles.

L’ensemble de deux propositions A, B, que 'on représente
par le symbole

A|B,

et qui s’énonce : « A enlraine B» ou « Si A est exact, B est
exact», est a son tour une Proposition, dans laquelle A est la

< prémisse et B la conclusion. La prémisse et la conclusion

- peuvent elles-mémes comprendre plusieurs Propositions,

~ telles que A1, As...ou Bi, Be, Bs...; Uon a alors, par exem-

ple:
A1 et A2 I B1 ou ]32 ou Bg

© ce qui s’énonce : « A1 et A2 enlrainent Bi, ou Bz, ou Bs ».

I’emploi dusymbole o.(ou) nous permettrait, puisque la né-

* galion a été également introduite, de nous passer du sym-

bole | . Si je continue a faire usage de ce symbole, c¢’est uni-

~quement afin de me rapprocher le plus possible du langage
-, courant.

Par A, Az,... nous désignerons les Propositions que l'on

. obtient en substituant a 'indéterminée x, dans une méme
. Proposition A (x), les Objets 1, = et leurs diverses Combi-

naisons. Les Propositions

Ai ou Az ou Az, ... Ay ot Ao et Ag,
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seront aussi respectivement désignées par les symboles :

I 5 \ . N
A '), ’est-a-dire « au moins pour un x » ;

A (,1‘(“';, ¢ est-a-dire « pour un x quelconque » ;

c est la une simple abréviation d’écriture.
Cela posé.avecles deuxobjets 1, = que nous nous sommes
donnés, nous formons les Propositions suivantes :

i1 r —=Jx

i

yoet wix) % ‘ wiy) .

Dans ces Propositions, . (mis pour x'*), représente l'un
des deux Objets fondamentaux ou l'une quelconque de leurs
Combinaisons. Dans 2.y ¢'est-a-dire y'™) représente éga-
lement 'un de ces deux Objets ou l'une de leurs Combinai-
sons, et & . est une Combinaison arbitraire formée avec
V'indéterminée x, c'est-a-dire r* . La Proposition (2 s'énonce
en ces termes : Si lon a.x =y et w (r, on aura w y,.

Les Propositions 1) et '2; constituent la Définition du con-
cept = égal . et sont pour cette raison appelées A.riomes.

Lorsque dans les Axiomes |, et ‘2' on substitue aux indé-
terminées r et y les Objels simples 1 et = ou certaines de
leurs Combinaisons, on obtient des Propositions que nous
appellerons Propositions déduites des Axiomes. Soit une série
de Propositions supposée telle que la derniere Proposition
ait des prémisses identiques aux conclusions des précé-
dentes : si nous prenons comme prémisse les prémisses des
Propositions initiales et comme conclusion la conclusion de
la Proposition finale. nous obtenons une nouvelle Proposi-
tion qui sera également considérée comme Proposition dé-
dutte des Axiomes. L'emplol répété du méme procédé nous
permettra toujours d'obtenir des Propositions nouvelles.

Parmi ces Propositions je choisis celles qui ont la forme
d'une Proposition simple @ (sans prémisse), et je les situe
dans la classe des étres; je laisse de coté tous les autres Ob-
jets, lesquels pourront appartenir a la classe des non-étres.
Nous voyons que de (1] et (2; on ne pourra tirer que des Pro-
positions de la forme x = a«. ou « est une Combinaison des
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Objets 1 et —. Les Axiomes (1) et (2) doivent donc étre consi-
| dérés comme vrais relativement a la répartition adoptée en-
| tre la classe des étres et celle des non-étres; je veux dire que
f ces Axiomes sont des « Propositions exactes ». En consé-
§ (uence, nous regarderons le concept de I'égalité, que défi-
nissent ces Axiomes, comme un concept exempt de contra-
B (iciion.
| 1l est bon de remarquer a ce propos que dans les Axiomes
B 1) et (2) ne sauraient en aucun cas figurer des Propositions
® de la forme a, c'est-a-dire des Propositions aflirmant que
 telle ou telle Combinaison appartient a4 la classe des non-
38 ¢tres. Nous pourrions donc satisfaire a ces deux Axiomes
B lors méme que nous rangerions dans la classe des élres
toutes les Combinaisons des deux Objets simples 1 et =, et
laisserions vide la classe des non-étres. La répartition adop-
g (ce plus haut est cependant préférable, car elle montre com-
8 ment on devra procéder lorsqu’on sera en présence de cas
& plus difficiles.

Nous allons maintenant poursuivre notre reconstruction
logique de la pensée mathématique en adjoignant aux deux
Objets 1 et = trois nouveaux Objets représentés par les sym-

% holes suivants : « signiﬁant «infini» ou « ensemble infini»,

f'signifiant « conséquent», et /" signifiant «opération corres-
pondante ». Nous poserons relativement a ces Objets trois
nouveaux Axiomes :

(3)  flux) = w(f" v
(41 flux) = fluy) | ur = uy
(9) flux) = ul

Dans ces Axiomes, l'indéterminée . (au sens de %) re-
présente I'un quelconque des cinq Objets fondamentaux dont
fi 1ous disposons maintenant, ou I'une quelconque de leurs
g Combinaisons. Donnons au symbole « le nom d'Ensemble
@ (/ini, et appelons élément de cet Ensemble # la Combinai-

& son wr (par exemple, ul, ou u (11), ou uf). Alors I'Axiome (3)

| signifie que tout élément wr admet comme consequent un
Objet déterminé f (wx), lequel est lui-méme un élément de
LR ’ 7 g .

'Ensemble u et est représenté par w (f'x). L’ Axiome (4 ex-
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prime ce fait que si deux éléments de 'Ensemble « ont le
méme conséquent, ces deux éléments sont égaux entre eux.
L’Axiome (5) nous apprend que I'élément «1 n’a pas de con-
séquent : 'élément ul sera dés lors considéré comme étant
le premier élément de w. |

Cela posé, les nouveaux Axiomes doivent étre soumis au
méme examen que tout a 'heure les Axiomes (1) et (2). Ces
deux premiers Axiomes, eux aussi, doivent étre éprouvés a
nouveau, puisque nous avons accru leur extension en dési-
gnant désormais par . et y les Combinaisons formées avec
cinq Objets simples au lieu de deux.

Demandons-nous donc s’il peut y avoir contradiction entre
Propositions déduites des Axiomes (1),...(5), ousil’on réussira
au contraire a répartir de telle maniere (entre les classes des
étres et des non-étres) les cinq Objets fondamentaux et leurs
Combinaisons, que toute Proposition déduite des cinq Axio-
mes soit une « Proposition exacte » relativement a la répar-
tition adoptée. Pour répondre a cette question, nous remar-
querons que 1'Axiome (5) est le seul qui ait la forme a, c'est-
a-dire le seul Axiome affirmant qu'une certaine Combinaison
appartient a la classe des non-étres. Une Proposition contre-
disant cet Axiome devrait donc étre de la forme

(6) flur®) = u1

Or, je vais montrer qu'on ne saurait déduire des Axiomes
(1).., (4) aucune Proposition de cette forme.

Je donnerai le nom d'égalité homogene (par égalité jen-
tends une Combinaison de la forme « = /) a toute égalité
dans laquelle les deux membres « et b sont composés du
méme nombre d’Objets simples (deux, trois, quatre Objets
simples, ou davantage). Par exemple, les égalités

(11) = (fu) , (ff) = (uf'), (1) = (ul =),
(f 1) (F1) = (1111} , (FUff ) = (1 uu )

sont des égalités homogenes. Des Axiomes (1) et (2) on ne
saurait tirer, ainsi que nous l'avons déja remarqué, que des
égalités de la forme o = o, c'est-a-dire des égalités homo-
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| genes. De méme ’Axiome (3), lorsqu'on y remplace x par un
b Objet quelconque, ne donne que des égalités homogeénes. Et
£ il en est encore ainsi de I’Axiome (4), & condition que la pré-
f nisse de cet Axiome soit elle-méme une égalité homogeéne.
{ Ainsi loute Proposition déduite des Axiomes (1),..., (4) est une
;'fi égalité homogeéne. Au contraire I'égalité (6), qui seule pour-
E rait contredire ['Axiome (5), n’est pas homogene, puisque

¥ l'on doil v remplacer «x par une certaine Combinaison, en

B sorte que le coté gauche est une Combinaison de trois Objets
simples au moins, tandis qu’au coté droit ne figurent jamais
que les deux Objets simples « et 1.
. Tel est le principe de la méthode qui me permet de dé-
£ montrer lalégitimité des Axiomes (1),...,(5). Pour donner une
€ démonstration compléte, il faudrait faire appel au concept de
¥ nombre ordinal finiet établir quelques propositions surle con-
cept d’égalité numérique (appliqué aux deux membres d’une
B égalité); au point ol nous en sommes, nous n’aurions pas de
i difficulté & obtenir ces propositions. Il faudrait également,
pour étre complet, tenir compte de certaines considérations
. sur lesquelles je reviendrai a la fin de cet article (voir V).
»  Nous sommes ainsi conduits au résultat suivant : On ob-
I; tient une répartition satisfaisant aux conditions voulues si
' I'on range dans la classe des étres tous les Objets @ qui sont
£ des Propositions déduites des Axiomes (1),..., (4), et dans la
B classe des non-étres tous les autres Objels, en particulier
i les Objets de la forme / (ux) = ul. Les cing Axiomes posés
plus haut jouissent, en conséquence, de cette propriété qu'ils
ne sauraient conduire a aucune contradiction. C'est pourquoi
> les Objets définis par ces axiomes seront considérés comme
des concepts ou opérations exempts de contradiction; ils sc-
ront regardés comme existant. En particulier, par la mé-
thode qui vient d’étre exposée, l'aflirmation de 'existence de
UInfini u se trouve légitimée ; car elle acquiert une signifi-
cation définie et un contenu auquel nous pourrons nous tenir
désormais.

Les considérations que je viens. d’esquisser sont le premier
exemple d’'une démonstration directe établissant qu'il n’y a
pas conlradiction entre différents Axiomes. La démonstration
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directe s'imposait ici, puisqu’il était interdit de recourir a la
méthode ordinaire — employée principalement en Géométrie
— laquelle consiste a considérer des cas particuliers conve-
nablement choisis, et a former des exemples.

Le succés de la démonstration directe tient ici principale-
ment a celte circonstance que nous n’avons a considérer
qu'une seule Proposition de la forme « (Proposition aflirmant
qu'une certaine Combinaison appartient a la classe des non-
étres) : c’est a savoir la Proposition qui figure dans I’Axiome
(5).

Nous pouvons maintenant poursuivre notre synthese. Ex-
primant toujours dans le méme langage les Axiomes bien
connus relatifs a I'Induction compléte, nous constatons que
ces Axiomes peuvent étre, sans contradiction, adjoints aux
précédents; ce qui établit que 'Existence du plus petit In-
fini! (c’est-a-dire du type ordinal défini par la suite 1, 2, 3...)
est exempte de contradiction.

Il n’y a aucune difficulté a fonder le concept de nombre
ordinal fini a I'aide des principes que nous avons posés. On
s’appuiera pour cela sur ’Axiome suivant: Etant donné un
Ensemble qui contient le premier élément du nombre ordi-
nal, et qui, au cas ou il en contient un élément (quelconque),
contient aussi I’élément suivant, cet Ensemble contient né-
cessairement le dernier élément du nombre ordinal. Que cet
axiome peut étre sans contradiction adjoint aux précédents,
la considération d’un exemple (soit du nombre deu.x) le mon-
trera facilement. Il faudra montrer ensuite qu’il est possible
d’ordonner les éléments du nombre ordinal fini de telle ma-
niere que tout Ensemble partiel formé avec ces éléments ait
un premier et un dernier élément. Nous établirons ce point
en définissant un nouvel objet < au moyen de ’Axiome

(.17<‘)' et )'<:)|.’I'<:~,

et en montrant ¢que cet Axiome peut, sans contradiction, étre
joint aux précédents, lorsque x, y, = désignent des éléments

! Voir la communication que jai présentée au Ile Congres International des Mathéma-
ticiens, Paris, 1900 : Problémes mathématiques. 2° De la non-contradiction des Axiomes de
UArithmctique. :
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quelconques du nombre ordinal fini. Aprés quoi nous pour-
| rons prouver, en nous appuyant sur I'existence du plus petit
infini, qu'étant donné un nombre ordinal fini quelconque,
il existe un nombre ordinal qui lui est supérieur.
J’énoncerai maintenant brievement les principes que nous
| devrons prendre pour guides si nous poursuivons la recons-
(ruction des lois de la pensée mathématique selon le point
| de vue que j'ai adopté.
I. Supposons que l'on soit arrivé a un stade déterminé de
l'évolution de la théorie:la condition nécessaire et suflisante
i pour qu'une Proposition nouvelle soit considérée comme
f oxacte est que, si on l'adjoint en tant qu'Axiome aux Propo-
B sitions déja reconnues exactes, on ne rencontre pas de con-
B adiction. En d’autres termes, I'adjonction du nouvel Axiome
doit conduire a des Propositions ui ne soient pas en contra-
B liction avec la répartition de I'ensemble des Objets entre la
 classe des étres et celle des non-étres.
b 1. Les indéterminées qui figurent dans les Axiomes — en
nlace du « quelconque » ou du «tous» de lalogique ordinaire
B — représentent exclusivement I'ensemble des Objets el des
Combinaisons qui nous sont déja acquis en I'état actuel de la
’ théorie, ou que nous sommes en train d’introduire. Lors done
qu’on déduira des Propositions des Axiomes considérés. ce
i sont ces Objets et ces Combinaisons seules que 1'on sera en
(llOlt de substituer aux indéterminées. Il ne faudra pas non
[)lus oublier que, lorsque nous augmentons le nombre des
Ol)]ets fondamentaux, les Axiomes acquiérent du méme coup
,une extension nouv elle et doivent, par suite, élre de nouveau
gnns a l’épreuve et au besoin modifiés.
E 1I1. Nous avons défini PEnsemble en general en le consi-
derant comme étant un Objet de la pensée, m. Les éléments
# de 'Ensemble sont les combinaisons m.x ; en sorte que, con-
tl’"urement a l'usage établi, nous regardons la notion d'Elé-
f nent comme postérieure a la notion d’Ensemble.
- Comme on a procédé avec la notion d’ « Ensemble », on
procédera avec les notions de « correspondance », de « trans-
 formation », d’ « association », de « fonction ». On les regar-
| dera comme des Objets au sujet desquels on posera certains
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Axiomes appropriés : si I'on ne rencontre pas d'impossibilité
en cherchant a répartir les Combinaisons de ces Objets entre
la classe des étres et celle des non-étres, on sera en droit
de considérer les notions correspondantes comme « existant I_
sans contradiction ».

Le Principe I est le principe fécond et créateur qui nous
donne pleine liberté pour créer de nouveaux concepts, a la
seule condilion que nous évitions la contradiction. Les Prin-
cipes Il etIlI permettentd’échapperaux Paradoxes mentionnés
au début de cet article, et de triompher, en particulier, du
Paradoxe relatif @ I'Ensemble constitué par tous les Ensem-
bles qui ne se contiennent pas eux-mémes comme élément.

Afin de montrer que la notion définie dans IlI ne cesserait
pas, dans une théorie plus complete, de coincider avec la
notion usuelle d’Ensemble, j'établirai le théoréme suivant :

A unstade déterminé de I’'évolution de lathéorie, soient 1,..,
a,.. /i les Objets dont nous disposons, et soit « (§) une Com-
binaison de ces Objets, laquelle renferme une indéterminée &.
Soit de plus « («) une « Proposition exacte » (ce qui veut dire
que « (&) appartient a la classe des étres). Alors il existe si-
rement un Objet m tel que « (mx) soit, quel que soit .r, une
Proposition exacte (c’est-a-dire que « (m.x) appartienne,
pour un .x quelconque, ala classe des étres), et tel que, réci-
proquement, lout Objet & pour lequel la Proposition « (&) est
exacte, soit égal a une Combinaison mx® . [En disant que &
est égal a mx jentends que la Proposition

£ — ma!”

est exacte, en d’autres termes que les Objets & pour lesquels
a (£) est une Proposition exacte sont, selon la définition don-
née plus haut, les éléments d’'un Ensemble m.]

Pour démontrer ce théoréme, nous procéderons comme
1] suit : )

Nous poserons d’abord ce nouvel Axiome : « L'Objet m est
tel que les deux Propositions

(7) alf) | mE =&
(8) a(k) | mé = «
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¥soient exactes. En d’autres termes, si a (§) appartient a la
classe des étres, on aura, d’aprés le nouvel Axiome, mé§ = &;
B .t en cas contraire, on aura mé — «. » Nous adjoindrons cet
F A\xiome aux Axiomes antérieurement adoptés relativement
’;_»tanx Objets 1,.., «,., &, et nous imaginerons pour uninstant que

¥ nous supposerons que nous puissions déduire de nos divers
% Axiomes deux Propositions de la forme

plm) et [7—(177),
_p (m) élant une certaine Combinaison des Objets 1,.., &,
'~ Nous raisonnerons alors ainsi : Partout ou, dans P nz)
lObJet m figure combiné avec un Objet &, appliquons les
\xiomes (7) ou (8), en tenant compte de (2), et remplacons
“ainsi még, soit par &, soit par «. p (i) se lransformera en ¢ (m),
et dans g (m)il n’y aura plus aucune Combinaison de la forme
m’;’ Il en résulte que la Proposition ¢ (m) aurait pu étre dé-
duite des Axiomes relatifs aux seuls Objets 1,.., «,., /&, dont
“nous disposions avant d’introduire (7) et (8). Des lors, elle
;“::.restera exacte si nous substituons & m 'un que]conque de
“ces Objets, soit, par exemple, 1. Le méme raisonnement s’ap-
|)l1que a p (m). Notre hypothese initiale conduit donc a cette
~conclusion qu’au stade de Pévolution de la théorie ot 'on se
trouvait avant Pintroduction de m, on devait renconlrer une
if:{,:.fc‘ontradi(:lion de la forme

""P;.";:-ﬁ YRR

RGO

TG T
N

v*f';-,“u 7;;

v..,_“.,,..m.\_v

1)« gl

‘e qul ne pouvait avoir lieu, puisque l'existence (sans conlra-
: (hctlon) des Objets 1,.., &£ a été admise. Nous devons donc
" rejeler nolre hypothese et admetlre 'existence (sans conlra-
.. diction) de I’Objet m.

‘ IV. Eprouver la validité d’un systeme donné d’Axiomes re-
;vient & ellectuer la répartition des Objets correspondants en-
i lre la classe des étres et la classe des non-étres, en considé-
ant les Axiomes comme des régles auxquelles If\ répartition
loit satisfaire. La difficulté consiste alors & reconnaitre la
¢possibilité d’une telle répartition. La question posée équi-
fvaut encore a la suivante : les Proposilions que 1'on peut dé-
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duire des Axiomes, lorsqu’on les spécialise ou qu’on les{j
combine d’aprés la méthode exposée plus haut, peuvent-:
elles oui ou non conduire a une contradiction? Cela, lorsque .
'on adjoint aux Axiomes les regles logiques classiques telles

que

Via|b) o (alb){]b

§((loul))et ((louc)%lga,ou([)ctc))g

Il y aura deux manieres de prouver qu'un systeme donné .
d’Axiomes est exempt de contradiction.Ou bien 'on montrera
que s'il y avait contradiction & un moment donné, cette con-
tradiction devrait déja s'étre manifestée a un stade antérieur
de la théorie. Ou bien, supposant qu'il existe une déduction
permettant de lirer une certaine contradiction des Axiomes
donnés, on établira qu'une telle déduction implique elle-
méme contradiclion et est par suite irrecevable. C'est de cette
derniere maniere que nous avons prouvé l'existence (sans
contradiction) de I'Infini : nous avons montré qu’il était im-
possible de déduire 'égalité (6) des Axiomes (1), (4).

V. Lorsque dans les pages précédenles il était question
de plusteurs Objels ou Combinaisons, de plusieurs indéter-
minées, de Combinaisons multiples, ces mots s’appliquaient
toujours a un nombre limité de choses. Apreés avoir défini le
« nombre fini », nous sommes en état de leur donner le sens
général qu’ils comportenl. De méme, en nous appuyant sur
la définition du nombre fini, nous pourrons, conformément
au Principe de I'Induction compleéte, définir explicitement a
I'aide d’'une méthode récurrente ce qu’il faut entendre par
« Propostition déduite quelconque» ou par « Proposition dif-
[érant de toutes les Propositions d’une certaine espéce ». En
particulier, nous pourrons compléter la démonstration don-
née plus haut, laquelle tendait a prouver que la Proposition
[ (ux)?) = ul differe de loule Proposition qui se laisserait
déduire des Axiomes (1),..., (4) a 'aide d’'un nombre fini d’opé-
rations. A cet effet, nous regarderons la démonstration elle-
méme comme une notion mathématique : ¢’est un Ensemble
fini dont les éléments sont reliés par des Propositions, les-
quelles affirment que la dite démonstration permet de con-
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| clure des Axiomes (1)...., (4)a la Proposition (6). Tout revient

alors a4 montrer qu'une semblable démonstration implique
contradiction et ne saurait par suile, selon nos conventions,
otre considérée comme existante.

Comme on a prouvél’existence du plus petit Infini, on prou-

* veral'existence del'ensemble des nombres réels :les Axiomes

TETREILLT R

relatifs aux nombres réels (tels que je les ai énoncés ail-
leurs 1), se laisseront, en effet, représenter par des lormules
analogues a celles qu'on a vues plus haut. La méthode s’ap-
v pliquera en particulier & 'Axiome des Systémes Complets
- (Vollstandigkeitsaxiom), d’apres lequel I'ensemble des nom-
b bres réels se trouve contenir (en ce sens qu'il existe entre
les éléments des deux ensembles une correspondance uni-
‘. voque et réciproque) tout Ensemble dont les éléments satis-
font aux mémes Axiomes. Cet Axiome des Systémes Com-
- plets pourra étre exprimé par des formules du type défini
plus haut, et, d’'une maniere générale, les Axiomes relatifs a
~ I'ensemble des nombres réels ne se distinguent pas qualita-

tivement des Axiomes invoqués pour la définition du nombre

~entier. C'est la le fait qui me parait porter un coup décisif i
- ladoctrine de Kronecker sur les fondements de I’Arithmé-
tique, doctrine qu’au début de cet article je qualifiais de

dogmatique.
En employant toujours la méme méthode, on établira que

- les notions fondamentales de la théorie des Ensembles de
~ Cantor, en particulier, la notion d’Alel doivent é&tre consi-
- dérées comme existant sans contradiction.

D. Hirsert (Goltingue).

1 Grundlagen der Geometrie, 2¢ Ed., Leipzig, 1903, pp. 24-26.
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