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SUR LES FONDEMENTS DE LA LOGIQUE

ET DE L'ARITHMÉTIQUE 1

Si dans la recherche des fondements de la Géométrie nous
sommes aujourd'hui d'accord, quant à l'essentiel, sur les voies
à prendre et les buts à poursuivre, on ne saurait en dire
autant des fondements de l'Arithmétique : ici les opinions les
plus différentes se dressent encore en face les unes des
autres.

Effectivement, lorsqu'on passe de la Géométrie à l'Arith-
métique, on rencontre des difficultés qui sont en partie d'une
espèce nouvelle. Dans l'analyse des fondements de la Géo-

i métrie on peut laisser de côté certaines difficultés, de nature
| purement arithmétique; mais dès qu'il s'agit de fonder
l'Arithmétique, il semble qu'on n'a pas le droit de s'appuyer

5sur une autre discipline. Pour mettre clairement en évidence
fies difficultés fondamentales qui se présentent, je ne saurais
[mieux faire que de soumettre à une brève revue critique les
points de vue adoptés par divers savants.

L. Kronecker voyait, comme on sait, dans le concept de
nombre entier le fondement propre de l'Arithmétique. Il
considérait le nombre entier, en tant que concept général (valeur
paramétrique) comme directement et immédiatement donné;
ce qui l'empêcha d'apercevoir que le concept de nombre entier

doit, cependant, et peut être fondé. A cet égard, Kroner

ko r est un dogmatique. Il reçoit comme un dogme le
nombre entier doté de ses propriétés fondamentales et il ne
cherche pas à remonter plus arrière.

H. Helmholtz représente le point de vue Mais

1 Communication laite par M. D. Hilrrrt (Göttinguei, au IIIrae Congrès international des
mathématiciens, à Heidelberg, le 12 août 1904; traduction de M. P. Boutroux (Paris).

L'Enseignement mathèm., 7e année; 1905. 7



90 D. HILBERT

toute tentative d'explication empiric)ne me parait échouer
devant ce Fait que jamais l'expérience ne saurait rien nous
apprendre relativement à l'existence possible ou actuelle
d'un nombre arbitrairement grand. Le nombre des choses

qui sont objets de notre expérience reste en effet toujours,
quelque grand qu'il soit, inférieur à une limite finie.

E.-B. Christoffel et quelques autres adversaires de Kro-
neeker ont eu le juste sentiment que le concept de nombre
irrationnel est nécessaire à l'Analyse, si l'on ne veut pas
qu'elle soit tout entière frappée de stérilité ; dès lors, soit en
s'efforçant de déterminer des caractères « positifs » de ce

concept, soit par d'autres moyens analogues, ils ont taché
de sauvegarder le nombre irrationnel. Ce sont, à cet ée'arcl,

o O

des opportunistes. Ils n'ont toutefois pas réussi, selon moi, à

ruiner radicalement le point de vue de Kronecker.
Parmi les savants qui ont pénétré plus avant dans l'essence

du nombre entier, je citerai les suivants :

G. Frege se propose de fonder les lois de l'Arithmétique
en s'appuyant sur la Logique au sens usuel du mot). Il a eu
le mérite de discerner les propriétés essentielles du concept
de nombre entier, comme aussi la signification du principe
de l'induction complète. Mais sa doctrine soulève quelques
difficultés. Fidèle a son plan, il admet, entr'autres principes,
qu'un concept un ensemble se trouve défini et immédiatement

utilisable dès que l'on sait dire d'un objet quelconque
s il rentre ou ne rentre pas dans cet ensemble (le concept de

« quelconque », lui non plus, n'est pas autrement déterminé).
Mais alors Frege se trouve désarmé devant les paradoxes de
la théorie des Ensembles, paradoxes dont la considération
de 1 Ensemble de tous les Ensembles nous fournit un exemple

et qui établissent, selon moi, que les notions et les
méthodes de la logique usuelle n'ont pas encore la précision et
la rigueur réclamées par la théorie des Ensembles. ce

devrait être, aucontraire,l'un des objets principaux -

suivis, de prime abord,par celui étudie le concept de

nombre, que d'échappera ces contradictions et d*éclaircir ces

paradoxes.
R. Dedekind a clairement reconnu les difficultés d'ordre
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I mathématique que l'on rencontre lorsqu'on cherche à fondre
S le concept de nombre" et, le premier, avec une rare pénétra-
â tion, il a construit une théorie des nombres entiers. Je qua-
1 lifierai, cependant, sa méthode de car, vou-
'] lant prouver l'existence de l'Infini, Dedekind s'engage dans

un raisonnement qui repose sur des idées métaphysiques
3 comme en invoquent souvent les philosophes. C'est là une
j voie que je ne saurais regarder comme praticable, ni comme

| sûre; car elle nous accule à une contradiction insurmontable
j en faisant appel au concept de « l'ensemble de tous les ob-

i jets ».
S G. Cantor a bien senti cette contradiction, et c'est ce qui
i l'a conduit à établir une distinction entre les Ensembles

« consistants » et les Ensembles « non-consistants ». Mais il
ne me parait pas avoir fondé cette distinction sur un critérium

suffisamment précis. Force m'est donc de déclarer que
sur ce point, le point de vue de M. Cantor laisse encore

: place à l'appréciation subjective et qu'il ne saurait nous four-
nir une certitude objective.

; J'estime, pour ma part, que toutes les difficultés ainsi sou-
| levées sont surmontables et que l'on peut fonder le concept

J de nombre d'une manière parfaitement rigoureuse et satis-
H faisante. La méthode que j'emploie à cet effet est une mé-

I thode axiomatiquedontje voudrais brièvement faire con-
j naître le principe.

1 On regarde d'ordinaire l'Arithmétique comme une partie
de la Logique et, lorsqu'on cherche à fonder cette science,
on prend généralement pour point de départ les notions

la Logique usuelle. Cependant, si nous y regardons

de près, nous constatons que dans les principes
logiques, tels que l'on a coutume de les présenter, se trouvent
impliquées déjà certaines notions arithmétiques, par exemple
la notion d'Ensemble et, dans une certaine mesure, la notion

jde Nombre. Ainsi, nous nous trouvons pris dans un cercle,
et c'est pourquoi, afin d'éviter tout paradoxe, il me paraît

;r|nécessaire de développer simultanément les principes de la

,1 Logique et ceux de l'Arithmétique.
|g Comment je me représente ce développement simultané,
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je ne puis que l'esquisser dans ces quelques pages. Que l'on
veuille bien m'excuser si je me borne à indiquer sommairement

dans quelle direction j'ai poursuivi mes recherches.
Encore, afin d'être plus facilement compris, ferai-je usage de
la langue ordinaire ainsi que des lois logiques qui y sont
impliquées; il faudrait procéder autrement si l'on voulait rendre

parfaitement rigoureuse la construction synthétique qui
va suivre.

Soit un objet de notre pensée que nous appellerons d'un
seul mot : Objet.Nous le représenterons par un signe.

Prenons tout d'abord en considération l'Objet 1 Les

groupes formés avec cet Objet, deux, trois ou plusieurs fois
répété, c'est-à-dire les groupes tels que :

il, 1.11, Mil,

sont appelés Combinaisons de rObjet i avec lui-même. De

même, toute combinaison de ces Combinaisons, par exemple :

fl) (11), (11) (11) (11), ((11) (il)) (11), ((111) (p) |1),

est également une Combinaison de l'Objet 1 avec lui-même.
Les Combinaisons seront à leur tour regardées comme des

Objets ; afin de distinguer l'Objet initial 1, nous l'appellerons
Objet simple.

Donnons-nous maintenant, avec 1, un second Objet simple
que nous représenterons par le signe et considérons les
Combinaisons formées avec nos deux Objets, par exemple :

1 11 (1) 1) ((1 i) (1) 1= 1 (I l) (1) (1).

Nous dirons que la Combinaison « des Objets simples i,
— diffère de la Combinaison si ces deux Combinaisons se

distinguent de quelque manière (ne sont pas soit

que l'ordre et l'arrangement de leurs termes soient
différents, soit que les Objets 1 et n'y entrent pas de la même
manière.

Cela posé, imaginons que les Objets 1 et et leurs
Combinaisons soient, par un procédé quelconque, réparlis entre



Il

LOGIQUE ET ARITHMÉTIQUE 93

I deux classes, la classe des êtres et la classe des non-êtres. Un
1 Objet quelconque appartenant à la classe des êtres diffère
| d'un Objet quelconque appartenant à la classe des non-êtres.

Ji Toute Combinaison des deux Objets simples 1, appartient
fy à l'une ou à l'autre des deux classes.
1 Soit a une Combinaison des deux Objets fondamentaux 1

& et : nous désignerons également par a la Proposition af-
t|; firmant que a appartient à la classe des êtres, et nous repré-
!?-.! senterons par a la Proposition affirmant que appartient à la

gy classe des non-êtres. Nous dirons que a est une Proposition
^ exacte,si a appartient effectivement à la classe des êtres; de

Éj même a sera une Proposition si a appartient à la
classe des non-êtres. Les Propositions et sont contradicts

toiresentre elles.
i 4

A; L'ensemble de deux propositions A, B, que l'on représente
/i par le symbole

b-j A | B

K et qui s'énonce : « A entraîne B » ou « Si A est exact, B est
M exact», est à son tour une Proposition, dans laquelle A est la

prémisse et B la conclusion. La prémisse et la conclusion
: • j

s peuvent elles-mêmes comprendre plusieurs Propositions,
C telles que Ai, A2... ou Bi, Bs, B3...; l'on a alors, par exem-

c pie :

1 Al et A2 j Bl ou B2 ou Bg

;

; ce qui s'énonce : « Ai et A2 entraînent Bi, ou B2, ou B3 ».
L'emploi du symbole o .(ou)nouspermettrait, puisque la

négation a été également introduite, de nous passer du sym-
v bole I Si je continue à faire usage de ce symbole, c'est uni¬

quement afin de me rapprocher le plus possible du langage
< courant.

Par Ai, As,... nous désignerons les Propositions que l'on
[ I obtient en substituant à Y indéterminée .r, dans une même

Proposition A (.*;), les Objets 1, et leurs diverses Combi-
naisons. Les Propositions

Al ou A2 ou As, Al Ot As et As,
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seront aussi respectivement désignées par les symboles :

A U"'° j, c'est-à-dire « au moins pour un » ;

A ijr*•
^

I, c est-à-dire « pour un x quelconque » ;

c'est là une simple abréviation d'écriture.
Cela posé, avec les deux objets 1, que nous nous sommes

donnés, nous formons les Propositions suivantes :

il) X — X

(2) | x — v et mer) | | w|r)

Dans ces Propositions, x (mis pour xlu>), représente run
des deux Objets fondamentaux ou Tune quelconque de leurs
Combinaisons. Dans 2 yc'est-à-dire représente
également l'un de ces deux Objets ou l une de leurs Combinaisons,

et w > est une Combinaison arbitraire formée avec
Y indéterminée x, c'est-à-dire x.La Proposition (2 s'énonce
en ces termes : Si l'on a x y et m (.r-, on aura x

Les Propositions i) et 2j constituent la Définition du

cept égal,et sont pour cette raison appelées Axiomes.
Lorsque dans les Axiomes iy et 2; on substitue aux

indéterminées xet y les Objets simples 1 et ou certaines de

leurs Combinaisons, on obtient des Propositions que nous
appellerons Propositions déduites des Soit une série
de Propositions supposée telle que la dernière Proposition
ait des prémisses identiques aux conclusions des
précédentes : si nous prenons comme prémisse les prémisses des

Propositions initiales et comme conclusion la conclusion de
la Proposition finale, nous obtenons une nouvelle Proposition

qui sera également considérée comme Proposition
déduite des Axiomes.L'emploi répété du même procédé nous
permettra toujours d'obtenir des Propositions nouvelles.

Parmi ces Propositions je choisis celles qui ont la forme
d'une Proposition simple a (sans prémisse], et je les situe
dans la classe des êtres; je laisse de côté tous les autres
Objets, lesquels pourront appartenir à la classe des non-êtres.
Nous voyons que de (1) et (2; on ne pourra tirer que des

Propositions de la forme a a, où a est une Combinaison des
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Objets 1 et Les Axiomes (i) et (2) doivent donc être considérés

comme vrais relativement à la répartition adoptée entre

la classe des êtres et celle des non-êtres; je veux dire que
ces Axiomes sont des « Propositions exactes ». En

conséquence, nous regarderons le concept de l'égalité, que
définissent ces Axiomes, comme un concept exempt de
contradiction.

Il est bon de remarquer à ce propos que dans les Axiomes
:i) et (2) ne sauraient en aucun cas figurer des Propositions
de la forme a,c'est-à-dire des Propositions affirmant que
telle ou telle Combinaison appartient à la classe des non-
êtres. Nous pourrions donc satisfaire à ces deux Axiomes
lors même que nous rangerions dans la classe des êtres
toutes les Combinaisons des deux Objets simples 1 et et
laisserions vide la classe des non-êtres. La répartition adoptée

plus haut est cependant préférable, car elle montre comment

on devra procéder lorsqu'on sera en présence de cas
plus difficiles.

Nous allons maintenant poursuivre notre reconstruction
logique de la pensée mathématique en adjoignant aux deux
Objets 1 et= trois nouveaux Objets représentés par les
symboles suivants : usignifiant « infini » ou « ensemble infini »,
/"signifiant « conséquent », et fsignifiant«opération
correspondante ». Nous poserons relativement à ces Objets trois
nouveaux Axiomes :

(3) f(ux) u{f'x)
(4) f(ux) f(| ux =z

(5) f [ux) ~ w'1

Dans ces Axiomes, l'indéterminée x (au sens de x(ul)
représente l'un quelconque des cinq Objets fondamentaux dont
nous disposons maintenant, ou l'une quelconque de leurs
Combinaisons. Donnons au symbole u le nom d'Ensemble
infini, et appelons élément de cet Ensemble la Combinaison

ux (par exemple, ui,ou u (il), ou uf). Alors l'Axiome (3)
signifie que tout élément ux admet comme conséquent un
Objet déterminé f (ux), lequel est lui-même un élément de
' Ensemble u et est représenté par L'Axiome (41 ex-
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prime ce fait que si deux éléments de l'Ensemble ont le
même conséquent, ces deux éléments sont égaux entre eux.
L'Axiome (5) nous apprend que l'élément n'a pas de
conséquent : l'élément uïseradès lors considéré comme étant
le premier élément de u.

Gela posé, les nouveaux Axiomes doivent être soumis au
même examen que tout à l'heure les iYxiomes (i) et (2). Ces
deux premiers Axiomes, eux aussi, doivent être éprouvés à

nouveau, puisque nous avons accru leur extension en
désignant désormais par x et y les Combinaisons formées avec
cinq Objets simples au lieu de deux.

Demandons-nous donc s'il peut y avoir contradiction entre
Propositions déduites des Axiomes (1),... (5), ou si l'on réussira
au contraire à répartir de telle manière (entre les classes des
êtres et des non-êtres) les cinq Objets fondamentaux et leurs
Combinaisons, que toute Proposition déduite des cinq Axiomes

soit une « Proposition exacte » relativement à la répartition

adoptée. Pour répondre à cette question, nous
remarquerons que PAxiome (5) est le seul qui ait la forme c'est-
à-dire le seul Axiome affirmant qu'une certaine Combinaison
appartient à la classe des non-êtres. Une Proposition contredisant

cet Axiome devrait donc être de la forme

(6) 1

Or, je vais montrer qu'on ne saurait déduire des Axiomes
(1).., (4) aucune Proposition de cette forme.

Je donnerai le nom d'égalité homogène (par égalité
j'entends une Combinaison de la forme a b) à toute égalité
dans laquelle les deux membres a et b sont composés du
même nombre d'Objets simples (deux, trois, quatre Objets
simples, ou davantage). Par exemple, les égalités

(11) (fa)(//') (uf) (/'11) (u 1

(fl) (fi)(1111) (1

sont des égalités homogènes. Des Axiomes (1) et (2) on ne
saurait tirer, ainsi que nous l'avons déjà remarqué, que des

égalités de la forme & c'est-à-dire des égalités homo-
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gènes. De même l'Axiome (3), lorsqu'on y remplace par un

Objet quelconque, ne donne que des égalités homogènes. Et
il en est encore ainsi de l'Axiome (4), à condition que la

prémisse de cet Axiome soit elle-même une égalité homogène.
Ainsi toute Proposition déduite des Axiomes (1),..., (4) est une

égalité homogène. Au contraire l'égalité (6), qui seule pourrait

contredire l'Axiome (5), n'est pas homogène, puisque
l'on doit y remplacer x par une certaine Combinaison, en

sorte que le côté gauche est une Combinaison de trois Objets
simples au moins, tandis qu'au côté droit ne figurent jamais
que les deux Objets simples uet 1.

Tel est le principe de la méthode qui me permet de

démontrer la légitimité des Axiomes (1),..., (5). Pour donner une
démonstration complète, il faudrait faire appel au concept de

nombre ordinal fini et établir quelques propositions sur le concept

d'égalité numérique (appliqué aux deux membres d'une
égalité); au point où nous en sommes, nous n'aurions pas de

difficulté à obtenir ces propositions. 11 faudrait également,
pour être complet, tenir compte de certaines considérations
sur lesquelles je reviendrai à la fin de cet article (voir Y).

Nous sommes ainsi conduits au résultat suivant : On
obtient une répartition satisfaisant aux conditions voulues si
l'on range dans la classe des êtres tous les Objets a qui sont
des Propositions déduites des Axiomes (1),..., (4), et dans la
classe des non-êtres tous les autres Objets, en particulier
les Objets de la forme f (ux)ul. Les cinq Axiomes posés
plus haut jouissent, en conséquence, de cette propriété qu'ils
ne sauraient conduire à aucune contradiction. C'est pourquoi
les Objets définis par ces axiomes seront considérés comme
des concepts ou opérations exempts de contradiction; ils
seront regardés comme existant. En particulier, par la
méthode qui vient d'être exposée, l'affirmation de Vexistence de

l'Infini u se trouve légitimée ; car elle acquiert une signification

définie et un contenu auquel nous pourrons nous tenir
désormais.

Les considérations que je viens.d'esquisser sont le premier
exemple d'une démonstration directe établissant qu'il n'y a

pas contradiction entre différents Axiomes. La démonstration
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directe s'imposait ici, puisqu'il était interdit de recourir à la
méthode ordinaire—employée principalement en Géométrie
— laquelle consiste à considérer des cas particuliers
convenablement choisis, et à former des exemples.

Le succès de la démonstration directe tient ici principalement
à cette circonstance que nous n'avons à considérer

qu'une seule Proposition de la forme a (Proposition affirmant
qu'une certaine Combinaison appartient à la classe des non-
êtres) : c'est à savoir la Proposition qui figure dans l'Axiome
{5)-

Nous pouvons maintenant poursuivre notre synthèse.
Exprimant toujours dans le même langage les Axiomes bien
connus relatifs à l'Induction complète, nous constatons que
ces Axiomes peuvent être, sans contradiction, adjoints aux
précédents; ce qui établit que VExistence plus petit
fini1 (c'est-à-dire du type ordinal défini parla suite 1, 2, 3...)
est exempte de contradiction.

Il n'y a aucune difficulté à fonder le concept de nombre
ordinal fini à l'aide des principes que nous avons posés. On

s'appuiera pour cela sur l'Axiome suivant : Etant donné un
Ensemble qui contient le premier élément du nombre ordinal,

et qui, au cas où il en contient un élément (quelconque),
contient aussi l'élément suivant, cet Ensemble contient
nécessairement le dernier élément du nombre ordinal. Que cet
axiome peut être sans contradiction adjoint aux précédents,
la considération d'un exemple (soit du nombre deux) le montrera

facilement. Il faudra montrer ensuite qu'il est possible
d'ordonner les éléments du nombre ordinal fini de telle
manière que tout Ensemble partiel formé avec ces éléments ait
un premier et un dernier élément. Nous établirons ce point
en définissant un nouvel objet < au moyen de l'Axiome

(•* < yet y<z\or < z

et en montrant que cet Axiome peut, sans contradiction, être
joint aux précédents, lorsque x, z désignent des éléments

1 Voir la communication que j'ai présentée au IIe Congrès International des Mathématiciens,

Paris, 1900 : Problèmes mathématiques. 2° De non-contradiction des Axiomes de

l'Arith mètique.
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quelconques du nombre ordinal fini. Après quoi nous pourrons

prouver, en nous appuyant sur l'existence du plus petit
infini, qu'étant donné un nombre ordinal fini quelconque,
il existe un nombre ordinal qui lui est supérieur.

J'énoncerai maintenant brièvement les principes que nous
devrons prendre pour guides si nous poursuivons la
reconstruction des lois de la pensée mathématique selon le point
de vue que j'ai adopté.

I. Supposons que l'on soit arrivé à un stade déterminé de

révolution de la théorie : la condition nécessaire et suffisante

pour qu'une Proposition nouvelle soit considérée comme
exacte est que, si on l'adjoint en tant qu'Axiome aux Propositions

déjà reconnues exactes, on ne rencontre pas de
contradiction. En d'autres termes, l'adjonction du nouvel Axiome
doit conduire à des Propositions qui ne soient pas en contradiction

avec la répartition de l'ensemble des Objets entre la

classe des êtres et celle des non-ètres.
II. Les indéterminées qui figurent dans les Axiomes— en

place du « quelconque » ou du «tous» de la logique ordinaire
— représentent exclusivement l'ensemble des Objets et des
Combinaisons qui nous sont déjà acquis en l'état acluel de la

théorie, ou que nous sommes en train d'introduire. Lors donc
qu'on déduira des Propositions des Axiomes considérés, ce
sont ces Objets et ces Combinaisons seules que l'on sera en
droit de substituer aux indéterminées. Il ne faudra pas non
plus oublier que, lorsque nous augmentons le nombre des
Objets fondamentaux, les Axiomes acquièrent du même coup

nine extension nouvelle et doivent, par suite, être de nouveau
mis à l'épreuve et au besoin modifiés.

III. Nous avons défini l'Ensemble en général, en le considérant

comme étant un Objet de la pensée, Les éléments
de l'Ensemble sont les combinaisons mx ; en sorte que,
contrairement à l'usage établi, nous regardons la notion d'Elément

comme postérieure à la notion d'Ensemble.
Comme on a procédé avec la notion d' ((Ensemble», on

procédera avec les notions de «correspondance», de
«transformation», d' «association», de « fonction ». On les regardera

comme des Objets au sujet desquels on posera certains
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Axiomes appropriés : si Ton ne rencontre pas d'impossibilité
en cherchant à répartir les Combinaisons de ces Objets entre
la classe des êtres et celle des non-êtres, on sera en droit
de considérer les notions correspondantes comme « existant
sans contradiction)).

Le Principe I est le principe fécond et créateur qui nous
donne pleine liberté pour créer de nouveaux concepts, à la
seule condition que nous évitions la contradiction. Les Principes

II et III permettent d'échapper aux Paradoxes mentionnés
au début de cet article, et de triompher, en particulier, du
Paradoxe relatif à l'Ensemble constitué par tous les Ensembles

qui ne se contiennent pas eux-mêmes comme élément.
Afin de montrer que la notion définie dans III ne cesserait

pas, dans une théorie plus complète, de coïncider avec la
notion usuelle d'Ensemble, j'établirai le théorème suivant :

A un stade déterminé de l'évolution de la théorie, soient 1,..,
a,., h les Objets dont nous disposons, et soit a (£) une
Combinaison de ces Objets, laquelle renferme une indéterminée £.

Soit de plus a (oc)une « Proposition exacte » (ce qui veut dire
que a (oc) appartient à la classe des êtres). Alors il existe
sûrement un Objet m tel que a (mx) soit, quel que soit ,r, une
Proposition exacte (c'est-à-dire que a appartienne,
pour un Xquelconque, à la classe des êtres), et tel que,
réciproquement, tout Objet £ pour lequel la Proposition a (£) est
exacte, soit égal à une Combinaison [En disant que £

est égal à mxSa),j'entends que la Proposition

/

est exacte, en d'autres termes que les Objets £ pour lesquels
a (£) est une Proposition exacte sont, selon la définition donnée

plus haut, les éléments d'un Ensemble m.\
Pour démontrer ce théorème, nous procéderons comme

il suit :

Nous poserons d'abord ce nouvel Axiome : « L'Objet m est
tel que les deux Propositions

(7) a(£) | /»J

(8) «(?} | 777? rr: «
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soient exactes. En d'autres termes, si a (£) appartient à la

classe des êtres, on aura, d'après le nouvel Axiome, m\ — £ ;

et, en cas contraire, on aura //?£ a. » Nous adjoindrons cet
Axiome aux Axiomes antérieurement adoptés relativement
aux Objets 1,.., a,., k,et nous imaginerons pour un instant que

|cette adjonction conduise à une contradiction; autrement dit.
|nous supposerons que nous puissions déduire de nos divers
V ;

llAxiomes deux Propositions de la forme

I P(m) o< p[m)
S

|j p(m) étant une certaine Combinaison des Objets 1,.., ni.
P! Nous raisonnerons alors ainsi : Partout ou, dans

||rObjet ni figure combiné avec un Objet £, appliquons les
Axiomes (7) ou (8), en tenant compte de (2), et remplaçons

|?;ainsi 7>?£, soit par £, soit par a. p se transformera en (m),

| et*dans q m)iln'y aura plus aucune Combinaison de la forme
| Il en résulte que la Proposition q aurait pu être dé-

(luite des Axiomes relatifs aux seuls Objets 1,.., a,., dont

| nous disposions avant d'introduire (7) et (8). Dès lors, elle
L -'restera exacte si nous substituons à m l'un quelconque de

jA'ices Objets, soit, par exemple, 1. Le même raisonnement s'ap-
; plique à p (ni). Notre hypothèse initiale conduit donc à cette

conclusion qu'au stade de l'évolution de la théorie où l'on se
trouvait avant l'introduction de on devait rencontrer une

s :
}

contradiction de la forme

Ç('e qui ne pouvait avoir lieu, puisque l'existence (sans
contradiction) des Objets 1,.., k a été admise. Nous devons donc
rejeter notre hypothèse et admettre l'existence (sans conlra-

;vdiction) de l'Objet m.

|] IV. Eprouver Invalidité d'un système donné d'Axiomes re-
V;vient à effectuer la répartition des Objets correspondants en-
j itre la classe des êtres et la classe des non-êtres, en considé-
^'rant les Axiomes comme des règles auxquelles la répartition
!'.(loit satisfaire. La difficulté consiste alors à reconnaître la

$

possibilité d'une telle répartition. La question posée équivaut

encore à la suivante : les Propositions que l'on peut dé-
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duire des Axiomes, lorsqu'on les spécialise ou qu'on les
combine d'après la méthode exposée plus haut, peuvent- -

elles oui ou non conduire à une contradiction? Cela, lorsque /j

l'on adjoint aux Axiomes les règles logiques classiques telles

que
J (a | b)et(a | J | *.

| aOU b} et ou c)jj | <2 OU et c) |

Il y aura deux manières de prouver qu'un système donné
d'Axiomes est exempt de contradiction. Ou bien l'on montrera
que s'il, y avait contradiction à un moment donné, cette
contradiction devrait déjà s'être manifestée à un stade antérieur ;

de la théorie. Ou bien, supposant qu'il existe une déduction
permettant de tirer une certaine contradiction des Axiomes
donnés, on établira qu'une telle déduction implique elle-
même contradiction et est par suite irrecevable. C'est de cette
dernière manière que nous avons prouvé l'existence (sans

contradiction) de l'Infini : nous avons montré qu'il était
impossible de déduire l'égalité (6) des Axiomes (1), (4).

Y. Lorsque dans les pages précédentes il était question
de plusieurs Objets ou Combinaisons, de plusieurs indéterminées,

de Combinaisons multiplescesmots s'appliquaient
toujours à un nombre limité de choses. Après avoir défini le
« nombre fini », nous sommes en état de leur donner le sens
général qu'ils comportent. De même, en nous appuyant sur
la définition du nombre fini, nous pourrons, conformément
au Principe de l'Induction complète, définir explicitement à

l'aide d'une méthode récurrente ce qu'il faut entendre par
« Proposition déduite quelconque» ou par « Proposition
différant de toutes les Propositions d'une certaine espèce». En

particulier, nous pourrons compléter la démonstration donnée

plus haut, laquelle tendait à prouver que la Proposition
f{ua'Y0)) u 1 diffère de toute Proposition qui se laisserait
déduire des Axiomes (1), (4) à l'aide d'un nombre fini
d'opérations. A cet effet, nous regarderons la démonstration elle-
même comme une notion mathématique : c'est un Ensemble
fini dont les éléments sont reliés par des Propositions,
lesquelles affirment que ladite démonstration permet de con-
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I dure des Axiomes (1),..., (4) à la Proposition (6). Tout revient
S alors à montrer qu'une semblable démonstration implique
|j contradiction et ne saurait par suite, selon nos conventions,
m être considérée comme existante.
C Comme on a prouvé l'existence du plus petit Infini, on prou-
Ci vera l'existence de l'ensemble des nombres réels : les Axiomes
i j relatifs aux nombres réels (tels que je les ai énoncés ail-
N leurs *), se laisseront, en effet, représenter par des formules
|C analogues à celles qu'on a vues plus haut. La méthode s'ap-
|-l pliquera en particulier à YAxiodes Systèmes Complets
l'j (Vollständigkeitsaxiom), d'après lequel l'ensemble des nom-
Ki bres réels se trouve contenir (en ce sens qu'il existe entre
lté
V les éléments des deux ensembles une correspondance uni-

" 1

voque et réciproque) tout Ensemble dont les éléments satis-
I font aux mêmes Axiomes. Cet Axiome des Systèmes Combi

plets pourra être exprimé par des formules du type défini
I j plus haut, et, d'une manière générale, les Axiomes relatifs à

; l'ensemble des nombres réels ne se distinguent pas qualita-
V tivement des Axiomes invoqués pour la définition du nombre
f ; entier. C'est là le fait qui me paraît porter un coup décisif à

Ci la doctrine de Kronecker sur les fondements de l'Arithmé-
; tique, doctrine qu'au début de cet article je qualifiais de
V dogmatique.
t ; En employant toujours la même méthode, on établira que

les notions fondamentales de la théorie des Ensembles de
C Cantor, en particulier, la notion d'Alef doivent être consi-

|v j dérées comme existant sans contradiction.

D. Hilbert (Göltingue).

1 Grundlagen der Geometrie, 2e Ed., Leipzig, 1903, pp. 21-26.
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