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NOTES ET DOCUMENTNS 6Y

eylindre de révolution, de la spheére, et du pa allélipipede par rapport a
leurs axes de symétrie. — Aires et volumes des solides de la géométrie
élémentaire.

Intégration des ¢quations différentielles du premier ordre:

lo Dans le cas ou les variables se séparent immédiatement ;

20 Dans le cas ou 'équation est linéaire.

Intégration de I'équation différentielle linéaire du second ordre i coclli-
cients constants sans sccond membre: cas ou le second membre ext un
polynonme ou une somme d’exponentielles de la forme A e«x.

Résolution numérique des équations algébriques ou transcendantes. —
Méthode d’approximation de Newton et méthode des parties proportion-
nelles établies par des considérations géomdétriques. — Extension de la
méthode de Newton a la résolution numérique de deux équations simultanées
gqu'on remplacera par deux équations lincaires approchées.

Calcul approché d’une intégrale définie par la méthode des trapezes.

Il. — TRIGONOMETRIE
Fonctions circulaires. — Angles correspondant a une foncltion circulaire.
Théoreme des projections.
Relations entre les fonctions circulaires d’un méme angle. — Formules

relatives a I'addition, a la soustraction, & la multiplication et & la division
des angles.

Divisions sexagésimale et centésimale de la circonférence. (On fera usage
de tables trigonométriques centésimales a cing décimales.)

Résolution des triangles rectilignes.

Résolution trigonométrique de I'équation binome.

Formule fondamentale de la trigonométrie sphérique :

Cos @« = Cos b Cos ¢ 4+ Sin b Sin ¢ Cos .1

II[., — GEOMETRIE ANALYTIQUE

1o Géométrie pla/zc.

Counstructions d’expressions algébriques. — Homogénéilé,
Coordonnées rectilignes. — Reprdésentation d’uue ligne par une ¢quation.

- — Formules de transformation des coordonnées rectilignes. Ordre d'unc
. courbe algébrique. Distance de deux poinls.

.= Ligne droile. — Equation de la ligne droite. Problemes simples relatifs &
. sa détermination. — Formules donnant la distance d’'un point & une droite
";(:1 la tangente de l'angle de¢ deux droites, en supposant les axes rectangu-
- laires. Applications. — Notions succinctes sur les points & I'infini au moyen
‘des coordonnées homogeénes et sur les ¢léments imaginaires. — Relation
B homographique; relation involutive; rapport anharmonique de quatre nom-
.brcs. Application au rapport anharmonique de quatre points en ligne droite
. el de quatre droites appartenant & un méme faisceau linéaive.

Cercle.

~ Lieux géométriques.

... Courbes dont l'équation est résolue ou résoluble par rapport « l'une des
s coordonnées. Tracé. — Equation de la tangente en un point; sous-tangente.
@ — Normale; sous-normale. — Conecavité: convexité; points d'inflexion. —
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Asymptotes. -— Application & des cxemples simples et en particulier & des
coniques et a des courbes dont I'équation est du sccond degré par rapport
a I'une des coordonnées.

Courbes définies par Uexpression des coordonnées d'un de leurs points
en fonction d'un paramétre. — T'racé. — LExemples numériques. — Les
courbes du second ordre et celles du troisi¢cme ordre a4 point double sont
unicursales.

Courbes défintes par une équation implicite. — Equation de la tangente
¢t de la normale en un point. — Tangentes a Porigine dans le cas ou l'ori-

gine est un point simple ou un point double. Recherche des asymptotes sur
des exemples numériques de courbes du second et du troisiéme ordre.

Courbure. — Enveloppes. — Déyveloppées.
Intersection d’une courbe algébrique donnée, définie par une équation
enticre et homogeéne : f (x, y, z,) = 0, avec une droite arbitraire menée par

un point quelconque donné sur cette courbe; point simple; tangente en ce

point. Cas particulier ou le point est rejeté a linfini : asymptote définie
comme tangente a la courbe en ce point.

Courbes du second ordre. — Division ¢n trois genres d’apres la nature
des points a I'infini; asymptotes. — Etablir les différentes formes réduites

que peut prendre I'équation d’une conique en appliquant la méthode de
décomposition en carrés a des exemples numériques; figurations géométri-

ques correspondantes. — Condition pour que deux points soient conjugués
par rapport & une conique ; polaire d’un point. — Condition pour que deux

droites soient conjuguces; pole d’une droite.

Centres ; diametres ; directions conjuguées; diametres conjugués. —
Directions principales et axes de symétrie en supposant les coordonnées
rectangulaires. — Recherche des formes réduites; calcul des coeflicients
des formes réduites dans le cas ol les coordonnées sont rectangulaires.

Foyers d'une courbe du second ordre. — Directrices. — Excentricité. —
Parametre. — Recherche des foyers et des directrices sur les équations
réduites en coordonnées rectangulaires.

Equation trinome : 3? = 2px -+ ¢a?, commune aux (rois courbes du sec-
cond ordre.

Etude des courbes du second ordre sur les équations réduites. — Inter-
section avec une droite ; condition de contact; problémes simples relatifs
aux tangentes. — Propriétés focales et tracés qui en résultent; tangente et
normale. — Questions relatives a ellipse et a Phyperbole; diamétres; cordes
supplémentaires; diamétres conjugués ; théorémes d’Apollonius. — Tracés
sp¢ciaux pour lellipse considérée comme projection orthogonale du cercle.
— Propriétés spéciales de I'hyperbole relativement aux asymptotes. — Pro-
priétés spéciales de la parabole relativement aux diamctres, a la sous-
tangente et a la sous-normale.

Homothétie.

Rapport anharmonique de quatre points ou de quatre tangentes sur une
conigue. — Divisions homographiques et divisions en involution sur une
conique.

Deux coniques ont, en général, quatre points communs réels ou imagi-
naires & distance finic ou infinie. — Notions succinctes sur les coniques
appartenant au faisceau linéaire ponctuel défini par deux coniques données
les coniques de ce faisceau découpent sur une droite quelconque deux divi-
sions en involution.




NOTES ET DOCUMENTS -1

Coordonnées polaires. — Leur transformation en coordonnées rectilignes.

Equation de la ligne droite.

Construction des courbes; tangentes. — Asymptotes. —— Applications
(on se bornera au cas ou I'équation est résolue par rapport au rayon vecleur).
— Cas des coniques.

2. Géométrie dans l’espace.

Coordonnées rectilignes. — Représentation d’une surface par une équa-
lion; représentation d’une ligne par deux équations simultanées. — Formule
qui donne le cosinus de I'angle de deux directions en supposant les coor-
données rectangulaires. — Formules de transformation des coordonnées
vectilignes; formules d’Euler. — Ordre d’une surface algébrique. — Distance
de deux points.

Ligne droite et plan. — Equation du plan; équations de la droite. —

Problémes simples relatifs a leur détermination et & leurs intersections.

Formules donnant le cosinus de I'angle de deux droites ou de deux plans,
la distance d’un point & un plan, d’un point a une droite et la plus courte
distance de deux droites, en supposant les axes rectangulaires. — Applica-
tions. — Notions sucecinctes sur les points a l'infini & I'aide des coordonnées
homogenes et sur les éléments imaginaires. — Rapport anharmonique de
(quatre plans appartenant & un méme faisceau linéaire.

Sphere. (Coordonnées rectangulaires).

Courbes gauches. — Tangente. — Plan osculateur. — Courbure. — Appli-
cations & I'hélice circulaire.

Surfaces en général. — Plan tangent; normale. — Marche & suivre pour
trouver 'équation d’une surface définie géométriquement. Application aux
cvlindres, aux cones et aux surfaces de révolution.

Surfaces du second ordre. — Intersection d’une surface du second ordre
donnée avec une droite arbitraire menée par un point quelconque donné sur
cette surface; point simple; plan tangent en ce point; son intersection avec

la surface. — Cas ot le point est & Pinfini; plan asymptote défini comme
plan tangent en ce point. — Classification des surfaces du second ordre

d'aprés la nature des points a linfini.

Conditions nécessaires et suffisantes pour qu'une surface du second ordre
poss¢de un ou plusieurs points doubles a distance finie ou infinie.

Etablir les différentes formes réduites que peut prendre I'équation d'une
surface du second degré en appliquant la méthode de décomposition en
carrés & des exemples numériques ; formes géométriques des surfaces
correspondantes. — Condition pour que deux points soient conjugués par
rapport & une surface du second ordre; plan polaire d’un point. — Condi-
tion pour que deux plans soient conjugués; pole d’un plan. — Droites
conjuguées. — Centres; plans diamétraux; directions conjuguées; diame-

g res, diamétres conjugués. (Toutes les discussions relatives 4 la distribution
g cs plans asymptotes, des centres, des plans diamétraux et des diamétres

f scront faites sur les formes réduites.)

Démontrer que dans toute surface du second ordre il existe au moins irois

- directions conjuguées rectangulaires (en coordonnées rectangulaires); calcul
r 0 Q » M \. aJ L4 -1’ 1 - ;
b des coellicients des carrés des variables lorsqu’on prend des axes paralléles

@ ces directions; calcul des autres coefficients des formes réduites par la
translation de ces axes.
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Homothétie.

Etude des surfaces du second ordre sur les équations réduites. — Condi-
tion de contact d'un plan avee la surface; problémes simples relatifs aux
plans tangents. — Normale, — Propriétés des diametres conjugués; théore-
mes d’Apollonius pour I'ellipsoide et les hyperboloides. — Sections cireu-
laires. — Génératrices rectilignes. — Tes surfaces du second ordre sont
unicursales.

Variation de la courbure des sections normales en un point simple d'une
surface {on supposcra le point & origine et la surface tangente au plan

xoy). — Indicatrice. — Courbure d’une section plane quelconque au méme
point. — Théoréme de Meusnier. — Surfaces convexes, surfaces a courbures

opposéces en un point.

IV. — MEcaNIQUE

Ciximariove bu poixt. — Mouvement vectiligne d’un point. — Relativité
du mouvement. — Vitesse, aceélération. — Mouvement uniforme, uniformd-
ment varié, vibratoire simple.

Mouvement curviligne. — Vitesse. — Hodographe. — Veeteur aceélération.

Accélérations tangenticlle et centripéte. — Diagrammes des espaces, des
vilesses, des accélérations tangentielles.

Mouvement rapporté a des axes de coordonnées rectangulaires ou obliques
et a des coordonnées semi-polaires.

Cinématique d’un systeme inyariable. — Translation. — Rotation autour
d’un axe fixe. — Mouvement hélicoidal.
Changement du systéme de comparaison. — Composition des vitesses ;

composition des accélérations bornéc au cas ot le mouvement du systéme
de comparaison est un mouvement de (ranslation.

DyNamrouve.

I. Point matériel libre. — Principe de inertic. — Définition de la foree
et de la masse’. — Relation entre la masse et le poids. — Invariabilité de
la masse. — Unités fondamentales. — Unités dérivées. — Mouvement d’un

point sous l'action d’une force constaunte en grandeur ct en direction ou
sous l'action d’unc foree issuc d’un centre fixe @ 1o proportionnelle a la
distance; 20 en raison inverse du carré de la distance.

Composition des forces appliquées & un point matériel 2,

Travail d’une force, travail de la résultante de plusieurs forces, travail

d’une force pour un déplacement résultant. —- Théoréme de la foree vive, —
Surfaces de niveau. — Champs ct lignes de force. — Energie cindétique ot
I g g

¢nergie potenticlle d'un point placé dans un chamyp de force.

II. Point materiel non libre. — Mouvement d’un point pesant sur un plan
incliné avece et sans frottement, la vitesse initiale étant dirigée suivant une
ligne de plus grande pente. — Pression totale sur le plan; réaction dua plan.
— Petites oscillations d'un pendule simple sans frottement, isochronisme.

Homogénéité. — Dimensions d’une vitesse, d’'une accélération, d’une foree,
d'un travail, d’'unc quantité de mouvement, d'une force vive.

1 On admettra qu'une force appliquée a un point matériel est égale géomdétriquement au
produit de la masse du point par Paccélération qu’elle lui imprime.

2 On admettra que si plusicurs forces agissent sur un point, laceélévation qu'elles lui
impriment est la somme géomdétrique des aceclérations que chacune d'elles lui imprimerait
si elle agissait scule.
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