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(Traduction de M. D. Mirimanofl, Genéve).

Note pE LA REpactioN. — Nous apprenons que M. Tchaplyguine,
professeur a I’'Université de Moscou, ayant remarqué que les fonc-
tions considérées dans l'article précédent sont des intégrales
d’équations différentielles linéaires du 1 et du 2™° ordre, essaya
de généraliser les procédés dont s’est servi auteur de ce travail.
A la suite d’une correspondance qui s’engagea alors entre M.
Tchaplyguine et M. Ermakoff, il fut reconnu qu’il était possible
de donner un procédé général permettant de calculer approxima-
tivement les intégrales d’équations différentielles quelconques.
Ces intégrales peuvent étre exprimées au moyen de formules
simples qui dans l'intervalle donné représentent ces intégrales
avec une approximation donnée. Les recherches de M. Tchaply-
guine paraitront prochainement dans un périodique mathémati-
que.

SUR LES DEMONSTRATIONS
DE DEUX FORMULES POUR LE CALCUIL DES NOMBRES
DE BERNOULLI

[. — Nous allons nous occuper, en premier lieu, de la for-
mule bien connue

)

ot By, représente les nombres de Bernoulli.
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On trouve une démonstration de cette formule dans le
Caleul intégral de Serret (2° édit., p. 225) et nous en avons
donné une autre dans notre Curso de Analyse (Calculo diffe-
rencial, 3° édit., p. 237). Mais nous allons l'obtenir ici par
une analyse plus simple que celle que l'on trouve dans ces
deux traités, au moyen de la formule connue (HErMiTE, Cours

d’Analyse de ’Ecole polytechnique, p. 60) :

n
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laquelle donne la dérivée d'ordre n de y par rapport a .,
quand y = f(u) et u est une fonction donnée de ..
Pour cela, appliquons cette formule a la fonction

ou

= (1 4+ 51,
On a, en posanty — «—', u =1 4+ e* ,
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et, par conséquent,
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et, en posant .r — (),
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- Mais, puisque

W) (=007

nous pouvons écrire l'identité
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Nous avons donc
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En employant maintenant la formule

n 2n L (2n—1)
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qui lie les nombres de Bernoulli aux dérivées: de la fonction
considérée, on obtient la formule qu’on a écrite précédem-
ment. .

II. — La deuxiéme formule pour le calcul des nombres de
Bernoulli que nous allons considérer, fut atiribuée a Lisri
par CavcHy ((Fuvres, 2° série, t. VII, p. 348). On peut obtenir
immédiatement au moyen de la formule

d'v 2 n! f(i) (u) u'au”ﬁ (u(”')))

dz" 2! 81t @n?sn?

)‘ ’

ou X représente une somme qui se rapporle aux solutions
entieres, positives et nulles, de I’équation

« + 26+ 3y 4+ ... +nd=n
et ou
i:a—}—ﬁ—l—y—{— .

laquelle donne la dérivée d'ordre n de y par rapport a .r,

quand y =/f(u), u=9 (x).
En appliquant, en effet, celte formule & la fonction

o 2 12 4.4
y = log T :———]og<’l—~n:)T —§—7EI ~—> ,
J .

® sin Ty 5!

on trouve, en posant n=2m, et

y = — logu, w=1—

l’égalilé suivante :

e TR LU SRR
(].132’”'/ x:O— i ‘@' 7l 31 5! )

ou X représente une somme qui doit s’étendre aux solulions
entieres, posilives et nulles, de I'équation

B4+ 20+ ... = m,
et ou
L= +d 4+ ..
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Mais, d'un autre colé, on a

)2m —1 ‘)m

IOg - B ,)-2/”
sin o 2 m 2m 2m—1 '

m=1

On trouve donc

m(2m) ! i i1 'NIZE 1\®
Bam—1 = o= E: T T er L\ T ’5"> )

Cette formule est celle (que nous nous proposions d’obte-
nir.

J

F. Gomes Teixeira (Porto).

LES AXIOMES DE LA GEOMETRIE

Les études que nous avons successivement publiées dans
cette Revue! sur les Principes de la Géométrie appellent ra-
tionnellement, a titre de conclusion, une vue d’ensemble sur
la Géométrie tout entiere

Etablir les axiomes de la Géométrie, ¢’est réduire celte
science a étre une application d’une théorie plus générale et
indépendante de tout élément géométrique.

La théorie plus générale dont la Géométrie est une simple
application n’est autre que celle des ensembles.

Cette théorie, dont la terminologie a été abondamment uti-
lisée, dans ces derniéres années, dans de nombreux travaux
sur I’Analyse numérique, a recu peu de développement en
ce qui concerne ses parties les plus générales, bien que tous
les éléments essentiels de la théorie intégrale des ensembles
semblent réunis dans ’ccuvre géniale de G. Cantor.

1 I’Ens. Math., 7¢ annde, p. 270-291; p. 375-381.
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