Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 7 (1905)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: propos d'un théorème de M. Zervos sur les racines des équations

algébriques.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

c) On peut aussi appliquer la propriété que l'aire du triangle formé en joignant les extrémités de deux diamètres conjugués est constante. Si OB' est le demi-axe on a

$$\frac{\overline{OB'}^2}{\overline{ON}^2} = \frac{\text{aire OA'B'}}{\text{aire OPN}} = \frac{\text{aire OQ'R'}}{\text{aire OPN}} = \frac{OQ_0 \cdot R'R_0 - Q'Q_0 \cdot OR_0}{ON \cdot OP},$$

et par suite

$$\overline{\mathrm{OB'}}^2 = \frac{\mathrm{ON}}{\mathrm{OP}} \left(\mathrm{OQ_0} \; . \; \mathrm{R'R_0} - \mathrm{Q'Q_0} \; . \; \mathrm{OR_0} \right) \; .$$

Mais

$$R'R_0 \frac{ON}{OP} = R_0N = OQ_0$$
,

$$Q'Q_0\frac{\mathrm{ON}}{\mathrm{OP}}=Q_0N=\mathrm{OR}_0\ ,$$

ce qui donne

$$\overline{\mathrm{OB'}}^2 = \overline{\mathrm{OQ}_0}^2 - \overline{\mathrm{OR}_0}^2 = \overline{\mathrm{R}_0}\mathrm{N}^2 - \overline{\mathrm{OR}_0}^2,$$

résultat conforme à la construction examinée.

E. Cantoni, Viadana (Mantova).

A propos d'un théorème de M. Zervos sur les racines des équations algébriques.

Dans *L'Ens. mathém.* du 16 juillet 1904, (6^e année, p. 297-299), M. Zervos examine le théorème suivant :

Si dans un polynome entier avec tous ses termes positifs, ordonné par rapport aux puissances décroissantes de x, le rapport d'un coefficient au précédent ne va pas en croissant, l'équation qu'on a en égalant le polynome à zéro a nécessairement des racines imaginaires.

Or, il est facile de former des exemples qui ne vérifient pas ce théorème.

Soit, par exemple, l'équation

$$3x^2 + 2x + \frac{1}{12} = 0 ,$$

donnant

$$x = \frac{-2 \pm \sqrt{3}}{6} ,$$

et l'équation

$$128 x^3 + 112 x^2 + 20 x + 1 = 0 ,$$

dont les racines sont :

$$x_2 = -\frac{1}{8}$$
, $x_{2,3} = \frac{-3 \pm \sqrt{5}}{8}$.

Du reste il ne ressort pas de la démonstration de M. Zervos que l'équation possède nécessairement des racines imaginaires.

T. KARIYA (Tokio).

Questions et remarques diverses.

Un théorème sur le triangle. — Voici un théorème tout-à-fait élémentaire et qui est sans doute connu et utilisé depuis longtemps, bien que je ne l'aie trouvé dans aucun des ouvrages de géométrie que j'ai à ma disposition.

Soit A le sommet de l'angle droit d'un triangle rectangle A B C; on mène la médiane AO, la hauteur A D et la bissectrice A E de l'angle A. La bissectrice A E de l'angle B A C est aussi bissectrice de l'angle O A D.

La démonstration est du reste immédiate.

Je serais heureux si quelque lecteur de l'Enseignement mathématique pouvait me dire si cette propriété a été utilisée sous forme de théorème ou à titre d'exercice dans un manuel de géométrie.

A. Hantos (Kecskemét, Hongrie).

Modèles et instruments.

Collection Wiener. — La collection de modèles construits par M. le prof. Wiener en vue de son enseignement de géométrie descriptive à l'Ecole technique de Darmstadt va être éditée par la maison Teubner à Leipzig; elle sera complétée, au fur et à mesure des besoins, par de nouvelles séries qui seront également établies sous la direction de M. H. Wiener.