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360 S C II L E SINGER

et £x—i •> embrasse à la fois l'intervalle 3£x—i ••• X* et devient
k

infiniment petit en même temps que Sé^—i...£>. La condition
(3) est donc suffisante pour que S et T tendent vers une limite
commune, c.q./. d.

Il est évident que cette condition se trouve satisfaite, —
aussi dans le sens étendu, — si est une fonction continue,

au sens de Cauchy, dans l'intervalle

II

Soient P(£, y;), Q(£, y?) deux fonctions des variables réelles £, y?

qui, à l'intérieur d'un domaine S simplement connexe du

plan des (£, yj), sont uniformes et finis et admettent des dérivées

partielles par rapport à £ et yj. Si la condition d'intégra-
bilité.

m ^
se trouve satisfaite à l'intérieur de S, l'équation différentielle

(2) du P di + Qdn

possède une solution a qui est une fonction des deux
variables indépendantes £, nuniforme à l'intérieur de S, et qui
s'évanouit pour un point (£0, y;0x de S, donné arbitrairement.
C'est ce que nous allons démontrer, sans faire usage des
notions de l'intégrale curviligne et de l'intégrale double ; au
contraire, notre démonstration nous va permettre de démontrer

d'une manière extrêmement simple les théorèmes
classiques, relatifs aux intégrales curvilignes. Nous allons procéder

suivant Euler L t

1. Soient (£0, y?0) et (£, yj) deux points de S, tels que le
rectangle déterminé par les points (£0, yj0), (£, yj0), (£, yj), (£0, y;) —
qui seront désignés aussi par A, B, C, D — se trouve
entièrement à l'intérieur de S. Nous considérons les deux
expressions

1 Voir Institutionescalculi integralis, t. I, caput II, art. 448 et suiv.
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«

(3) e

v,

V

:jTQ(?o ' V)d* + j^^ ' 13 >

«

(4) v=J P (Ç u0| dg + j*Q (§ m) dm

%o *0

qui pourront être caractérisées de manière, que la première
v se rapporte à la marche supérieure (AD, DC), l'autre c à la
marche inférieure (AB, BC), joignant les points A et C. Nous
allons démontrer que v et c satisfont à l'équation (2) et que ces
deux expressions sont identiques, c'est-à-dire que l'on a les

équations

(5) J P Q
Ôç ÖVJ

(6) Q J p «

(7) r — v 0

Les deux équations (5) se vérifient immédiatement ; quant
aux équations (6), il suffira de donner la démonstration de la
première.

Posons à cet effet

(8) «'= P(Ç, y?)/5o

nous aurons 1

/r\ \
Ö P _ ÖPP

(9) r_ Q(5o'*)+ — •

Mais

ö* U '
ÖV3

âK—s)=ï-5(5
1 C. 1. Eulkr, c., art. 448. Pour que les calculs suivants soient légitimes, il faut imposer

aux fonctions P, Q encore certaines conditions supplémentaires ^que l'on va tirer facilement
de ces calculs mêmes.
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donc en vertu de la condition d'intégrabilité (1)

(i°) 8i(Q(5'")-S) ° '

c'est-à-dire que l'expression.

(H) QiÇ, «) - ^ l'M
otj

est indépendante de £. Etant

(12) lim w zr:0lim -— r=z 0

r_£ ötj
"= So 5—'0

on aura donc

Q|Ç0, n)F (y?)

et d'après les équations (11) et (9),

~ Q (5 TQi — Q (50 ' ^ '
ôï?

~ — Q (Ç 73) e. q- t. d.
dTJ

Pour démontrer l'équation (7), nous remplaçons dans les
limites supérieures de c, vles£, yj par £i, y?i ; l'équation (7)

s'écrit alors :

fi Ui £0

(7 ai P (f 770) <v) ' v) dn+ ÇV (I %)*/£ -fJ Q (Ç0, u) 0

ç0 5i »1

équation qui peut s'énoncer en disant que l'intégrale de la
différentielle exacte P d% -f- Q menée au sens positif sur
la périphérie du rectangle (A B G D) s'évanouit; l'équation (7)

n'est donc autre chose que le théorème de Riemann-Cauchy 1

pour le cas du rectangle (A B C D)2.

1 Riemann, Werke (1892), p. 15, I«
2 Quant à l'équation (7), Euleh n'en donne pas de démonstration explicite, il s'exprime

comme il suit (1. c., art. 452) : « Ex rei natura patet, perinde esse utra via procedatur ne-
cesse enim est ad eandem aequationem integralem perveniri ». Mais la démonstration qu'on
va lire dans le texte, ne fait usage que des moyens qu'Eui.KR avait à sa disposition.



CALCUL INTÉGRAL 363

Soit (£, yi) un point quelconque à l'intérieur de (A B G D) et

posons
S i

5 ;Ç n)V (Ç u) Q (?0 ïî)

?o

nous aurons, d'après ce qui précède,

05 „(13) — Q(Ç,u),' ôr;

et le premier membre de l'équation ila) pourra s'écrire :

ht

t
y

CQ (fi, ri)dn— 6-

ou encore

h

t
D,

às\
Q(£i, ïj)

Î>7J /

intégrale qui s'évanouit d'après l'équation (13).
2. Soient maintenant (£0, yj0) et (|, y?) deux points quelconques

à l'intérieur du domaine S, on pourra intercaler d'une
infinité de manières des points en nombre fini

(5l fil) (Ï2 1)2) '

appartenant également à S et tels que pour deux points consécutifs

(Ix-i V3X—1) et & < ^x) (0Ll I« I • Vn V?) ou la marche

supérieure ou la marche inférieure, joignant ces deux points,
se trouve entièrement à l'intérieur de S. Suivant le cas qui se

présente désignons par ou l'expression

h h
(15) j*Q 1

-• ^clrl p ' V c

x-i n-i
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ou l'expression

/
(15 a) fV{*' di+JQ1h-i \-i

si toutes les deux marches étaient situées à l'intérieur de S,

les deux expressions (15) et (15a) seraient identiques d'après
le théorème (7). La somme

(16) -j- *'2 "f ••• ~h

représente alors une fonction de £, y?, satisfaisant à l'équation
différentielle (2) et s'évanouissant pour £0 yj0. Pour démontrer
que cette fonction est uniforme à l'intérieur de S, il suflit de
faire voir qu'elle est indépendante du choix des points intercalés.

Soit donc

(14fl) ß'i > V ' ••• ' <C-J > 1>

une autre série de points intercalés, et

(16 a) + v'% + + vm

la somme des intégrales correspondantes ; les séries (14) et
(14a) vont déterminer deux joignant les points
(£0, v}0) et (£, yj) et situés entièrement à l'intérieur de S. L'aire
limitée par eux pourra évidemment être partagée en un
nombre fini de rectangles, tels que (AB CD) ; en appliquant
donc le théorème (7) sur chacun de ces rectangles, on démontrera

immédiatement l'identité des sommes (16), (16a).
La somme (16) fournit la solution u de l'équation différentielle

(2), dont nous nous sommes proposés de démontrer
l'existence ; elle sera représentée par le symbole

(S tq)

u S j (Prf? + QdvY

k. i„)

1 Le principe de la définition de l'intégrale (17) indiqué dans le n° 2, a été imaginé à

peu près en même temps par mon ami Heffter et par moi (voir la communication de M.
Heffter, Göttinger Nachrichten,1904, p. 196). Pour moi les considérations de la note pré-
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3. Pour passer encore à l'application des résultats obtenus

à la démonstration des théorèmes fondamentaux relatifs aux

intégrales curvilignes, soit C une courbe menée dans 1

intérieur de S entre les points (£i, 731), (£2, et représentée par
les équations

Ç çp (t), ri —-p

y (/), [p (t)étantdeux fonctions uniformes du paramètre t, et

admettant des dérivées continues dans 1 intervalle
Oil

?,•= ?(C a c 211-

Alors l'intégrale curviligne prise suivant C n est autre chose

que

C Ç(Prff -I- Qch\ j (P. fin + Q.ii'i/lirfi •(18)

ili.iîi) h

Comme la fonction uniforme u (£, 77), donnée par l'expression

(17) satisfait à l'équation différentielle (2\ on a

f -h it j

P (cp it), éit))çp it) + Q(© tf| (0 p t) — — —

donc
^21 ^2)

C j*(P -j- Q//73) u(© (f2) » (A> — (cp UP ^ (fii I

£

Ifi, ïhl rj2) — q (?i. TQii

ce qui montre que l'intégrale (18) est indépendante du chemin
d'intégration C, et que partant l'intégrale relative à une courbe

sente ne forment qu'une application très particulière des développements analogues que
j'ai établis relativement aux solutions des systèmes d'équations différentielles linéaires, et
qui seront publiés ailleurs.

1 On sait d'après les travaux de MM. Goursat, Transactions of the Soc.,
I (1900), Moore, ibid., Pringsheim, ibid., II (1904), Heffter, Gött. Nachrichten. 1902.
1903, 1904. que la définition de l'intégrale curviligne peut être donné pour des courbes
d'un caractère beaucoup plus général, mais comme pour la plupart des applications
analytiques la définition adoptée dans le texte est assez générale, elle suffira pour les buts
de l'enseignement, et c'est à quoi nous nous restreignons dans cette note.
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fermée se réduit.à zéro 1. Le passage aux théorèmes de Cau-

chy, relatifs aux intégrales de fonctions monogènes, se fait
maintenant de la manière usuelle.

Remarquons enfin que les considérations du n° I s'étendent

sans difficulté aux intégrales multiples, aussi bien que
celles du n° II, aux intégrales des différentielles exactes, à un
nombre quelconque de variables indépendantes.

Kolozsvar, 18 décembre 1904.
L. Schlesinger.

SUR UNE MANIÈRE

D'EXPOSER LA GÉOMÉTRIE PROJECTIVE

1. On sait que von Staudt exposa, indépendamment de

toute notion de distance, les principes de la Géométrie
projective.

Son exposition est fondée sur les propriétés du quadrilatère

complet. Je vais ici exposer la Géométrie projective
d'une façon différente et que je crois plus simple. Je ne me
servirai pas du quadrilatère complet.

J'admettrai les axiomes ordinaires concernant le point, la

ligne droite, le plan.
On regardera deux droites situées dans un même plan

comme se coupant toujours. Si le point d'intersection n'existe
pas en réalité, on dira que les droites se coupent en un point
fictif, ou idéal. Il sera toujours possible de projeter les
droites sur un autre plan (en projection conique) de façon
que leurs projections se coupent. Trois droites d'un plan se

couperont en un même point idéal, si leurs projections se

coupent en un même point réel.

1 C. f. Heffter, l. 1903, p. 123.
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