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CALCUL INTÉGRAL 357

desquels découlent les théorèmes de Cauchy sur les intégrales
des fonctions monogènes d'une variable complexe.

I

Soit f (x)une fonction de la variable réelle uniforme et
finie dans l'intervalle.

p < x <

Pour démontrer l'existence de l'intégrale
b

(1) f(x)d,a

a, bélant deux valeurs situées entre et il faut démontrer,
selon Riemann \ que la somme

il

(2) xk — il — 1*

k i

tend vers une limite déterminée, si l'on augmente le nombre
a-1 des points x^...— partageant l'intervalle ,r0,

b xn)enil parties, de manière que l'étendue de chacune
des parties devienne aussi petite que l'on veut, et que cette
limite soit indépendante du choix des points _ i et
des points intermédiaires _i

xk-î< < xk •

Si l'on forme la somme (2) pour les mêmes points i,
mais, pour deux séries différentes de valeurs intermédiaires
^k — i Ct i

Si —,rÄ-— j) '

k

s2 =2.^ — A?*-!) -

k

1 Werke, (1892), p. 239.
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la condition nécessaire et suffisante pour que la différence
Si — S2 devienne aussi petite que Ton veut en augmentant le

nombre nde la dite manière, consiste — comme on sait —
en ce que

en désignant par <rk_l Xoscillation de la fonction f dans

l'intervalle Xk—i xk c'est-à-dire, la différence entre les
valeurs extrêmes, dont la fonction f (x) est capable dans cet
intervalle. Quant à la démonstration que cette condition est
suffisante pour que les sommes (2), formées avec des séries
différentes de points de partition .ri, xn—{, tendent vers une
limite commune, elle se fait ordinairement en appliquant le

principe de la superposition des partitions, due à Gauchy1.
Je vais montrer, en m'appuyant à une remarque due à Kro-
necker2 que l'application du principe mentionné devient
superflu, si l'on étend de la manière suivante le sens de la
condition (3).

Soient Ç/c—iÇades intervalles embrassant les intervalles
Xk—i... mais tels que Çk — Ça.- —1 tende vers zéro en
même temps que^ — xk—1 ; ces intervalles plus grands pourront

d'ailleurs pénétrer l'un dans l'autre. En désignant alors

par <Jk_{ l'oscillation de f(x) dans l'intervalle Ça.- — 1 ••• Ça et par

|*-i, Ça.-—1 deux valeurs intermédiaires du même intervalle, la
condition (3) continuera d'être nécessaire et suffisante pour
que les sommes Si, S2 se rapprochent indéfiniment.

Augmentons maintenant le nombres des parties *a
selon une loi arbitraire, de manière que ces parties tendent
vers zéro, et soient

les sommes (2), formées pour les partitions successives avec
des valeurs intermédiaires quelconques ; il faut démontrer

il
lim

n 2 (•>< — «A—1 0

1 Résumé des leçons, etc. (1823), p. 81.
2 Vorlesungen über Integrale (1894), p. 6-7.
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qu êtant $ une petite quantité positive donnée à l'avance,-on
puisse déterminer le nombre N de manière que l'on ait

I S n — S« < d
I À -f- v v

pour v > N et A arbitraire, c'est-à-dire quelimvS,, existe. Puis
il faut démontrer que cette limite soit indépendante de la
manière, dont le nombre na été augmenté. Soient donc

Xi, JCn — h avec les valeurs intermédiaires £o ^ ••• £/> —u et

&n —\,avec les valeurs intermédiaires £o, ••• i
deux partitions, et

n

^ ^xk ' Xkl) d >

k= 1

m

A:=l

les sommes correspondantes, il suffira d'établir que la
différence T-S tende vers zéro, si l'on fait croître n et m. de manière
que les différences xk — xk-.i(k= 1, 2,..., n) et —%k_l
{k=l,2,...,m) deviennent infiniment petites. A cet effet,
désignons par 36i X»+,„_2 les valeurs xk et %k, rangées par
ordre croissant, et soit l'intervalle contenu dans
l'intervalle .î^.et dans l'intervalle £}_! g, ; alors il est

évident que nous aurons:

m -f- n— 1

S 0 '

À 1

m -)- n— i

k
A — l

Mais écrites de telle manière, les sommes S et T rentrent
sous la forme des sommes Si,S2 prises dans le sens étendu,
parce qu'en réunissant les intervalles Cj et t... g.

on obtient un intervalle Ç, qui contient les points ^
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et £x—i •> embrasse à la fois l'intervalle 3£x—i ••• X* et devient
k

infiniment petit en même temps que Sé^—i...£>. La condition
(3) est donc suffisante pour que S et T tendent vers une limite
commune, c.q./. d.

Il est évident que cette condition se trouve satisfaite, —
aussi dans le sens étendu, — si est une fonction continue,

au sens de Cauchy, dans l'intervalle

II

Soient P(£, y;), Q(£, y?) deux fonctions des variables réelles £, y?

qui, à l'intérieur d'un domaine S simplement connexe du

plan des (£, yj), sont uniformes et finis et admettent des dérivées

partielles par rapport à £ et yj. Si la condition d'intégra-
bilité.

m ^
se trouve satisfaite à l'intérieur de S, l'équation différentielle

(2) du P di + Qdn

possède une solution a qui est une fonction des deux
variables indépendantes £, nuniforme à l'intérieur de S, et qui
s'évanouit pour un point (£0, y;0x de S, donné arbitrairement.
C'est ce que nous allons démontrer, sans faire usage des
notions de l'intégrale curviligne et de l'intégrale double ; au
contraire, notre démonstration nous va permettre de démontrer

d'une manière extrêmement simple les théorèmes
classiques, relatifs aux intégrales curvilignes. Nous allons procéder

suivant Euler L t

1. Soient (£0, y?0) et (£, yj) deux points de S, tels que le
rectangle déterminé par les points (£0, yj0), (£, yj0), (£, yj), (£0, y;) —
qui seront désignés aussi par A, B, C, D — se trouve
entièrement à l'intérieur de S. Nous considérons les deux
expressions

1 Voir Institutionescalculi integralis, t. I, caput II, art. 448 et suiv.
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