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CALCUL INTEGRAL 357

desquels découlent les théorémes de CaucHy sur les intégrales
des fonctions monogenes d’une variable complexe.

I

Soit f (x) une fonction de la variable réelle .x, uniforme et
finie dans I'intervalle.

p<ax<gq.

Pour démontrer I'existence de l'intégrale

b
(1) f flx)da

a, b élant deux valeurs situées entre p et ¢, 1l faut démontrer,
selon Rremann?, que la somme

n

(2) E(xk = gy 18y

k=1

tend vers une limite déterminée, si I'on augmente le nombre
n-1 des points.vy, ... 2,1, partageant 'intervalle «...b (@ = x,
b = x,) en n parties, de maniere que 'étendue de chacune
des parties devienne aussi petite que 1'on veut, et que cette
limite soit indépendante du choix des points @y, . x,_ et
des points intermédiaires &; _, ,

Ty T8y <y -

Si I'on forme lasomme (2) pour les mémes points .y, ... .x,_y,
mais, pour deux séries différentes de valeurs intermédiaires
Er—y et &y

Sy

hHA -\

(.I‘k _— 11‘_,1) f‘gk_j) )

Sy ('T;c — Xy _y) ﬂglc—i) )

1 Werke, (1892), p. 239.
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la’condition nécessaire et suffisante pour que la différence
S1 — Sz devienne aussi petite que I'on veut en augmentant le

nombre n de la dite maniére, consiste — comme on sait —
en ce que
n
(3) limzt.rk — 2 _ e, =0,
k=1

en désignant par g, _, 'oscillation de la fonction f (x) dans
I'intervalle x._, ... x;, c'est-a-dire, la différence entre les va-
leurs extrémes, dont la fonction f (x) est capable dans cet
intervalle. Quant a la démonstration que cette condition est
suffisante pour que les sommes (2), formées avec des séries dif-
férentes de points de partition xy, ..., .x,_y, tendent vers une
limite commune, elle se fait ordinairement en appliquant le
principe de la superposition des partitions, due a Cauvcuy'.
Je vais montrer, en m’'appuyant a une remarque due a Kro-
NECKER? que l'application du principe mentionné devient su-
perflu, si I'on étend de la maniere suivante le sens de la
condition (3).

Soient &,_y ... L des intervalles embrassant les intervalles
Xk—y ... Ly, mais tels que ¢ — & —y tende vers zéro en
méme temps que xp — Xx—1; ces intervalles plus grands pour-
ront d’ailleurs pénétrer 'un dans l'autre. En désignant alors
par ¢, _, l'oscillation de /' (x) dans l'intervalle £, _y ... ¢ et par

Er—1, Er—y deuxvaleursintermédiaires du méme intervalle, la
condition (3) continuera d’étre nécessaire et suflisante pour
que les sommes Si, Sz se rapprochent indéfiniment.

Augmentons maintenant le nombre n des partieS(i.J(:k_i... X
selon une loi arbitraire, de maniére que ces parties tendent
vers zéro, et soienl

les sommes (2), formées pour les partitions successives avec
des valeurs intermédiaires quelconques; il faut démontrer

1 Résumé des lecons, etc. (1823), p. 81.
2 Vorlesungen iitber Integrale (1894), p. 6-7.
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qu’étant ¢ une petite quantité positive donnée a l’avance, on
puisse déterminer le nombre N de maniere que l'on ait

' Sn)\+v—- Snv ’ <d‘

pour v > N et} arbitraire, c’est-a-dire que limy S, existe. Puis
il faut démontrer que cette limite soit indépendante de la
maniére, dont le nombre n a été augmenté. Soient donc
Xy, ..., Xn_1, avec les valeurs intermédiaires &, ... £,_4, et
Ly, .oes Lm—1, avec les valeurs intermédiaires &, ..., En—1,
deux partitions, et

n

S :E (r, — ap_y) (1€, )
k=1
m
t :/_14 G — Le—y) 118, _y)
=

les sommes correspondantes, il suffira d’établir que la diffé-
rence T-S tende vers zéro, sil'on fait croitre n et m de maniére
que les différences xp — wp—y (A =1, 2,...,n) et 1p — i,
(h=1,2,...,m) deviennent infiniment petites. A cet effet, dé-
signons par X; , ..., X,4n—2les valeurs x; et 1y, rangées par
ordre croissant, et soit l'intervalle ¥;_; ... ¥, contenu dans
I'intervalle Xy~ --- ¥ etdans l'intervalle Dt - g)k;alors ilest
évident que nous aurons:

m-4-n—1
S :E(?ﬁl— ¥, _y) f(?;')\i—i) ,
=1
m4n— 1
=N =% )5 )

r=1

Mais écrites de telle maniére, les sommes S et T rentrent
sous la forme des sommes Si, Sq prises dans le sens étendu,
parce qu'en réunissant les intervalles Xy gy €tly ...

i ‘i ko

5 b}
&

on obtient un intervalle ¢, _, ... ¢, qui contient les points &_,
3
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et Ekfi , embrasse a la fois l'intervalle X¥5_, ... X, et devient

infiniment petit en méme temps que X;_ ... X; . La condition

(3) est donc suftisante pour que S et T tendent vers une limite
commune, ¢. ¢. [f. d.

Il est évident que cette condition se trouve salisfaite, —
aussi dans le sens étendu, — si f'(x) est une fonction conti-
nue, au sens de Cavcuy, dans l'intervalle p...q.

11

Soient P(£, »), Q(%, 1) deux fonctions des variables réelles &, »
qui, & l'intérieur d’un domaine S simplement connexe du
plan des (£, ), sont uniformes et finis et admettent des déri-
vées partielles par rapport a £ et 5. Si la condition d’intégra-
bilité.
2P 0Q

1 . — _=
) 0y D€

se trouve satisfaite a 'intérieur de S, I'équation différentielle
(2) du = Pd& 4+ Qdn

possede une solution « qui est une fonction des deux va-
riables indépendantes £, » uniforme a I'intérieur de S, et qui
s'évanouit pour un point (&, %, de S, donné arbitrairement.
C’est ce que nous allons démontrer, sans faire usage des no-
tions de l'intégrale curviligne et de l'intégrale double ; au
contraire, notre démonstration nous va permettre de démon-
trer d’'une maniére extrémement simple les théorémes clas-
siques, relatifs aux intégrales curvilignes. Nous allons procé-
der suivant EuLER L. 1

1. Soient (£, »,) et (£, #) deux points de S, tels que le rec-
tangle déterminé par les points (&, n,), (£. ng), (&, )y (&g, #) —
qui seront désignés aussi par A, B, C, D — se trouve en-
tierement a 'intérieur de S. Nous considérons les deux ex-
pressions

1 Voir Institutiones calculi integralis, t. I, caput 1I, art. 448 et suiv.




	I

