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fait remarquer plus haut. Mais ce cas particulier représente
des avantages considérables et se trouve à un degré de

développement plus haut que la méthode générale. Nous avons
déjà vu que son introduction diminue considérablement la
durée de la solution du problème. Mais ce n'est pas tout; il
apporte dans le procédé de la recherche de l'inconnu d'après
la méthode des essais une plus grande précision, et dans

quelques cas, comme par exemple dans le problème envisagé
plus haut, dans la règle d'alliages, il rend ces procédés
absolument précis. Enfin, exigeant une compréhension
fondamentale du problème, et, en général une certaine maturité
d'esprit, il constitue la plus haute expression de la méthode
des essais, dont la possession et l'usage conscients ne peuvent

être accessibles à l'homme avant qu'il soit parvenu à

un degré assez élevé de développement intellectuel. Grâce à

ces qualités, beaucoup de questions deviennent parfaitement
accessibles à la méthode des essais ; le succès de leur solution

représente, d'après ce qui a été dit, des difficultés
considérables, souvent insurmontables, ou bien il est dû qelque-
fois, au hasard.

V. Bobynix Moscou).

(Traduit par V. Fréedericksz, Genève).

SUR QUELQUES POINTS ÉLÉMENTAIRES

DU CALCUL INTÉGRAL

Dans les lignes suivantes je me permets de communiquer
deux remarques qui m'ont été utiles dans mon Cours universitaire

sur le Calcul intégral; la première se rapporte à la
démonstration de l'existence de l'intégrale définie d'une fonction

d'une seule variable réelle, l'autre à la notion de l'intégrale

curviligne d'une différentielle exacte et à la démonstration

des théorèmes fondamentaux, relatifs à ces intégrales.



CALCUL INTÉGRAL 357

desquels découlent les théorèmes de Cauchy sur les intégrales
des fonctions monogènes d'une variable complexe.

I

Soit f (x)une fonction de la variable réelle uniforme et
finie dans l'intervalle.

p < x <

Pour démontrer l'existence de l'intégrale
b

(1) f(x)d,a

a, bélant deux valeurs situées entre et il faut démontrer,
selon Riemann \ que la somme

il

(2) xk — il — 1*

k i

tend vers une limite déterminée, si l'on augmente le nombre
a-1 des points x^...— partageant l'intervalle ,r0,

b xn)enil parties, de manière que l'étendue de chacune
des parties devienne aussi petite que l'on veut, et que cette
limite soit indépendante du choix des points _ i et
des points intermédiaires _i

xk-î< < xk •

Si l'on forme la somme (2) pour les mêmes points i,
mais, pour deux séries différentes de valeurs intermédiaires
^k — i Ct i

Si —,rÄ-— j) '

k

s2 =2.^ — A?*-!) -

k

1 Werke, (1892), p. 239.
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la condition nécessaire et suffisante pour que la différence
Si — S2 devienne aussi petite que Ton veut en augmentant le

nombre nde la dite manière, consiste — comme on sait —
en ce que

en désignant par <rk_l Xoscillation de la fonction f dans

l'intervalle Xk—i xk c'est-à-dire, la différence entre les
valeurs extrêmes, dont la fonction f (x) est capable dans cet
intervalle. Quant à la démonstration que cette condition est
suffisante pour que les sommes (2), formées avec des séries
différentes de points de partition .ri, xn—{, tendent vers une
limite commune, elle se fait ordinairement en appliquant le

principe de la superposition des partitions, due à Gauchy1.
Je vais montrer, en m'appuyant à une remarque due à Kro-
necker2 que l'application du principe mentionné devient
superflu, si l'on étend de la manière suivante le sens de la
condition (3).

Soient Ç/c—iÇades intervalles embrassant les intervalles
Xk—i... mais tels que Çk — Ça.- —1 tende vers zéro en
même temps que^ — xk—1 ; ces intervalles plus grands pourront

d'ailleurs pénétrer l'un dans l'autre. En désignant alors

par <Jk_{ l'oscillation de f(x) dans l'intervalle Ça.- — 1 ••• Ça et par

|*-i, Ça.-—1 deux valeurs intermédiaires du même intervalle, la
condition (3) continuera d'être nécessaire et suffisante pour
que les sommes Si, S2 se rapprochent indéfiniment.

Augmentons maintenant le nombres des parties *a
selon une loi arbitraire, de manière que ces parties tendent
vers zéro, et soient

les sommes (2), formées pour les partitions successives avec
des valeurs intermédiaires quelconques ; il faut démontrer

il
lim

n 2 (•>< — «A—1 0

1 Résumé des leçons, etc. (1823), p. 81.
2 Vorlesungen über Integrale (1894), p. 6-7.
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qu êtant $ une petite quantité positive donnée à l'avance,-on
puisse déterminer le nombre N de manière que l'on ait

I S n — S« < d
I À -f- v v

pour v > N et A arbitraire, c'est-à-dire quelimvS,, existe. Puis
il faut démontrer que cette limite soit indépendante de la
manière, dont le nombre na été augmenté. Soient donc

Xi, JCn — h avec les valeurs intermédiaires £o ^ ••• £/> —u et

&n —\,avec les valeurs intermédiaires £o, ••• i
deux partitions, et

n

^ ^xk ' Xkl) d >

k= 1

m

A:=l

les sommes correspondantes, il suffira d'établir que la
différence T-S tende vers zéro, si l'on fait croître n et m. de manière
que les différences xk — xk-.i(k= 1, 2,..., n) et —%k_l
{k=l,2,...,m) deviennent infiniment petites. A cet effet,
désignons par 36i X»+,„_2 les valeurs xk et %k, rangées par
ordre croissant, et soit l'intervalle contenu dans
l'intervalle .î^.et dans l'intervalle £}_! g, ; alors il est

évident que nous aurons:

m -f- n— 1

S 0 '

À 1

m -)- n— i

k
A — l

Mais écrites de telle manière, les sommes S et T rentrent
sous la forme des sommes Si,S2 prises dans le sens étendu,
parce qu'en réunissant les intervalles Cj et t... g.

on obtient un intervalle Ç, qui contient les points ^
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et £x—i •> embrasse à la fois l'intervalle 3£x—i ••• X* et devient
k

infiniment petit en même temps que Sé^—i...£>. La condition
(3) est donc suffisante pour que S et T tendent vers une limite
commune, c.q./. d.

Il est évident que cette condition se trouve satisfaite, —
aussi dans le sens étendu, — si est une fonction continue,

au sens de Cauchy, dans l'intervalle

II

Soient P(£, y;), Q(£, y?) deux fonctions des variables réelles £, y?

qui, à l'intérieur d'un domaine S simplement connexe du

plan des (£, yj), sont uniformes et finis et admettent des dérivées

partielles par rapport à £ et yj. Si la condition d'intégra-
bilité.

m ^
se trouve satisfaite à l'intérieur de S, l'équation différentielle

(2) du P di + Qdn

possède une solution a qui est une fonction des deux
variables indépendantes £, nuniforme à l'intérieur de S, et qui
s'évanouit pour un point (£0, y;0x de S, donné arbitrairement.
C'est ce que nous allons démontrer, sans faire usage des
notions de l'intégrale curviligne et de l'intégrale double ; au
contraire, notre démonstration nous va permettre de démontrer

d'une manière extrêmement simple les théorèmes
classiques, relatifs aux intégrales curvilignes. Nous allons procéder

suivant Euler L t

1. Soient (£0, y?0) et (£, yj) deux points de S, tels que le
rectangle déterminé par les points (£0, yj0), (£, yj0), (£, yj), (£0, y;) —
qui seront désignés aussi par A, B, C, D — se trouve
entièrement à l'intérieur de S. Nous considérons les deux
expressions

1 Voir Institutionescalculi integralis, t. I, caput II, art. 448 et suiv.
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«

(3) e

v,

V

:jTQ(?o ' V)d* + j^^ ' 13 >

«

(4) v=J P (Ç u0| dg + j*Q (§ m) dm

%o *0

qui pourront être caractérisées de manière, que la première
v se rapporte à la marche supérieure (AD, DC), l'autre c à la
marche inférieure (AB, BC), joignant les points A et C. Nous
allons démontrer que v et c satisfont à l'équation (2) et que ces
deux expressions sont identiques, c'est-à-dire que l'on a les

équations

(5) J P Q
Ôç ÖVJ

(6) Q J p «

(7) r — v 0

Les deux équations (5) se vérifient immédiatement ; quant
aux équations (6), il suffira de donner la démonstration de la
première.

Posons à cet effet

(8) «'= P(Ç, y?)/5o

nous aurons 1

/r\ \
Ö P _ ÖPP

(9) r_ Q(5o'*)+ — •

Mais

ö* U '
ÖV3

âK—s)=ï-5(5
1 C. 1. Eulkr, c., art. 448. Pour que les calculs suivants soient légitimes, il faut imposer

aux fonctions P, Q encore certaines conditions supplémentaires ^que l'on va tirer facilement
de ces calculs mêmes.
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donc en vertu de la condition d'intégrabilité (1)

(i°) 8i(Q(5'")-S) ° '

c'est-à-dire que l'expression.

(H) QiÇ, «) - ^ l'M
otj

est indépendante de £. Etant

(12) lim w zr:0lim -— r=z 0

r_£ ötj
"= So 5—'0

on aura donc

Q|Ç0, n)F (y?)

et d'après les équations (11) et (9),

~ Q (5 TQi — Q (50 ' ^ '
ôï?

~ — Q (Ç 73) e. q- t. d.
dTJ

Pour démontrer l'équation (7), nous remplaçons dans les
limites supérieures de c, vles£, yj par £i, y?i ; l'équation (7)

s'écrit alors :

fi Ui £0

(7 ai P (f 770) <v) ' v) dn+ ÇV (I %)*/£ -fJ Q (Ç0, u) 0

ç0 5i »1

équation qui peut s'énoncer en disant que l'intégrale de la
différentielle exacte P d% -f- Q menée au sens positif sur
la périphérie du rectangle (A B G D) s'évanouit; l'équation (7)

n'est donc autre chose que le théorème de Riemann-Cauchy 1

pour le cas du rectangle (A B C D)2.

1 Riemann, Werke (1892), p. 15, I«
2 Quant à l'équation (7), Euleh n'en donne pas de démonstration explicite, il s'exprime

comme il suit (1. c., art. 452) : « Ex rei natura patet, perinde esse utra via procedatur ne-
cesse enim est ad eandem aequationem integralem perveniri ». Mais la démonstration qu'on
va lire dans le texte, ne fait usage que des moyens qu'Eui.KR avait à sa disposition.
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Soit (£, yi) un point quelconque à l'intérieur de (A B G D) et

posons
S i

5 ;Ç n)V (Ç u) Q (?0 ïî)

?o

nous aurons, d'après ce qui précède,

05 „(13) — Q(Ç,u),' ôr;

et le premier membre de l'équation ila) pourra s'écrire :

ht

t
y

CQ (fi, ri)dn— 6-

ou encore

h

t
D,

às\
Q(£i, ïj)

Î>7J /

intégrale qui s'évanouit d'après l'équation (13).
2. Soient maintenant (£0, yj0) et (|, y?) deux points quelconques

à l'intérieur du domaine S, on pourra intercaler d'une
infinité de manières des points en nombre fini

(5l fil) (Ï2 1)2) '

appartenant également à S et tels que pour deux points consécutifs

(Ix-i V3X—1) et & < ^x) (0Ll I« I • Vn V?) ou la marche

supérieure ou la marche inférieure, joignant ces deux points,
se trouve entièrement à l'intérieur de S. Suivant le cas qui se

présente désignons par ou l'expression

h h
(15) j*Q 1

-• ^clrl p ' V c

x-i n-i
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ou l'expression

/
(15 a) fV{*' di+JQ1h-i \-i

si toutes les deux marches étaient situées à l'intérieur de S,

les deux expressions (15) et (15a) seraient identiques d'après
le théorème (7). La somme

(16) -j- *'2 "f ••• ~h

représente alors une fonction de £, y?, satisfaisant à l'équation
différentielle (2) et s'évanouissant pour £0 yj0. Pour démontrer
que cette fonction est uniforme à l'intérieur de S, il suflit de
faire voir qu'elle est indépendante du choix des points intercalés.

Soit donc

(14fl) ß'i > V ' ••• ' <C-J > 1>

une autre série de points intercalés, et

(16 a) + v'% + + vm

la somme des intégrales correspondantes ; les séries (14) et
(14a) vont déterminer deux joignant les points
(£0, v}0) et (£, yj) et situés entièrement à l'intérieur de S. L'aire
limitée par eux pourra évidemment être partagée en un
nombre fini de rectangles, tels que (AB CD) ; en appliquant
donc le théorème (7) sur chacun de ces rectangles, on démontrera

immédiatement l'identité des sommes (16), (16a).
La somme (16) fournit la solution u de l'équation différentielle

(2), dont nous nous sommes proposés de démontrer
l'existence ; elle sera représentée par le symbole

(S tq)

u S j (Prf? + QdvY

k. i„)

1 Le principe de la définition de l'intégrale (17) indiqué dans le n° 2, a été imaginé à

peu près en même temps par mon ami Heffter et par moi (voir la communication de M.
Heffter, Göttinger Nachrichten,1904, p. 196). Pour moi les considérations de la note pré-
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3. Pour passer encore à l'application des résultats obtenus

à la démonstration des théorèmes fondamentaux relatifs aux

intégrales curvilignes, soit C une courbe menée dans 1

intérieur de S entre les points (£i, 731), (£2, et représentée par
les équations

Ç çp (t), ri —-p

y (/), [p (t)étantdeux fonctions uniformes du paramètre t, et

admettant des dérivées continues dans 1 intervalle
Oil

?,•= ?(C a c 211-

Alors l'intégrale curviligne prise suivant C n est autre chose

que

C Ç(Prff -I- Qch\ j (P. fin + Q.ii'i/lirfi •(18)

ili.iîi) h

Comme la fonction uniforme u (£, 77), donnée par l'expression

(17) satisfait à l'équation différentielle (2\ on a

f -h it j

P (cp it), éit))çp it) + Q(© tf| (0 p t) — — —

donc
^21 ^2)

C j*(P -j- Q//73) u(© (f2) » (A> — (cp UP ^ (fii I

£

Ifi, ïhl rj2) — q (?i. TQii

ce qui montre que l'intégrale (18) est indépendante du chemin
d'intégration C, et que partant l'intégrale relative à une courbe

sente ne forment qu'une application très particulière des développements analogues que
j'ai établis relativement aux solutions des systèmes d'équations différentielles linéaires, et
qui seront publiés ailleurs.

1 On sait d'après les travaux de MM. Goursat, Transactions of the Soc.,
I (1900), Moore, ibid., Pringsheim, ibid., II (1904), Heffter, Gött. Nachrichten. 1902.
1903, 1904. que la définition de l'intégrale curviligne peut être donné pour des courbes
d'un caractère beaucoup plus général, mais comme pour la plupart des applications
analytiques la définition adoptée dans le texte est assez générale, elle suffira pour les buts
de l'enseignement, et c'est à quoi nous nous restreignons dans cette note.
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fermée se réduit.à zéro 1. Le passage aux théorèmes de Cau-

chy, relatifs aux intégrales de fonctions monogènes, se fait
maintenant de la manière usuelle.

Remarquons enfin que les considérations du n° I s'étendent

sans difficulté aux intégrales multiples, aussi bien que
celles du n° II, aux intégrales des différentielles exactes, à un
nombre quelconque de variables indépendantes.

Kolozsvar, 18 décembre 1904.
L. Schlesinger.

SUR UNE MANIÈRE

D'EXPOSER LA GÉOMÉTRIE PROJECTIVE

1. On sait que von Staudt exposa, indépendamment de

toute notion de distance, les principes de la Géométrie
projective.

Son exposition est fondée sur les propriétés du quadrilatère

complet. Je vais ici exposer la Géométrie projective
d'une façon différente et que je crois plus simple. Je ne me
servirai pas du quadrilatère complet.

J'admettrai les axiomes ordinaires concernant le point, la

ligne droite, le plan.
On regardera deux droites situées dans un même plan

comme se coupant toujours. Si le point d'intersection n'existe
pas en réalité, on dira que les droites se coupent en un point
fictif, ou idéal. Il sera toujours possible de projeter les
droites sur un autre plan (en projection conique) de façon
que leurs projections se coupent. Trois droites d'un plan se

couperont en un même point idéal, si leurs projections se

coupent en un même point réel.

1 C. f. Heffter, l. 1903, p. 123.
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