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396 L. NSCHLESNINGER

fait remarquer plus haut. Mais ce cas particulier représente
des avantages considérables et se trouve a un degré de déve-
loppement plus haut que la méthode générale. Nous avons
déja vu que son introduction diminue considérablement la
durée de la solution du probléme. Mais ce n’'est pas tout; il
apporte dans le procédé de la recherche de I'inconnu d’apres
la méthode des essais une plus grande précision, et dans
quelques cas, comme par exemple dans le probléme envisagé
plus haut, dans la regle d’alliages, il rend ces procédés abso-
lument précis. Enfin, exigeant une compréhension fonda-
mentale du probleme, et, en général une certaine maturité
d’esprit, il constitue la plus haute expression de la méthode
des essais, dont la possession et l'usage conscients ne peu-
vent étre accessibles a 'homme avant qu’il soit parvenu a
un degré assez élevé de développement intellectuel. Grace a
ces qualités, beaucoup de questions deviennent parfaitement
accessibles a la méthode des essais; le succes de leur solu-
tion représente, d’aprés ce qui a été dit, des difficultés consi-
dérables, souvent insurmontables, ou bien 1l est du qelque-

fois, au hasard.
V. Bosy~ix Moscou).

(Traduit par V. Fréedericksz, Geneéve).

SUR QUELQUES POINTS ELEMENTAIRES

DU CALCUL INTEGRAL

Dans les lignes suivantes je me permets de communiquer
deux remarques qui m’ont été utiles dans mon Cours univer-
sitaire sur le Catcul intégral; la premiere se rapporte a la
démonstration de l'existence de I'intégrale définie d'une fone-
tion d'une seule variable réelle, 'autre a la notion de I'inté-
grale curviligne d'une différentielle exacte et a la démonstra-
tion des théoremes fondamentaux, relatifs a ces intégrales.
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desquels découlent les théorémes de CaucHy sur les intégrales
des fonctions monogenes d’une variable complexe.

I

Soit f (x) une fonction de la variable réelle .x, uniforme et
finie dans I'intervalle.

p<ax<gq.

Pour démontrer I'existence de l'intégrale

b
(1) f flx)da

a, b élant deux valeurs situées entre p et ¢, 1l faut démontrer,
selon Rremann?, que la somme

n

(2) E(xk = gy 18y

k=1

tend vers une limite déterminée, si I'on augmente le nombre
n-1 des points.vy, ... 2,1, partageant 'intervalle «...b (@ = x,
b = x,) en n parties, de maniere que 'étendue de chacune
des parties devienne aussi petite que 1'on veut, et que cette
limite soit indépendante du choix des points @y, . x,_ et
des points intermédiaires &; _, ,

Ty T8y <y -

Si I'on forme lasomme (2) pour les mémes points .y, ... .x,_y,
mais, pour deux séries différentes de valeurs intermédiaires
Er—y et &y

Sy

hHA -\

(.I‘k _— 11‘_,1) f‘gk_j) )

Sy ('T;c — Xy _y) ﬂglc—i) )

1 Werke, (1892), p. 239.
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la’condition nécessaire et suffisante pour que la différence
S1 — Sz devienne aussi petite que I'on veut en augmentant le

nombre n de la dite maniére, consiste — comme on sait —
en ce que
n
(3) limzt.rk — 2 _ e, =0,
k=1

en désignant par g, _, 'oscillation de la fonction f (x) dans
I'intervalle x._, ... x;, c'est-a-dire, la différence entre les va-
leurs extrémes, dont la fonction f (x) est capable dans cet
intervalle. Quant a la démonstration que cette condition est
suffisante pour que les sommes (2), formées avec des séries dif-
férentes de points de partition xy, ..., .x,_y, tendent vers une
limite commune, elle se fait ordinairement en appliquant le
principe de la superposition des partitions, due a Cauvcuy'.
Je vais montrer, en m’'appuyant a une remarque due a Kro-
NECKER? que l'application du principe mentionné devient su-
perflu, si I'on étend de la maniere suivante le sens de la
condition (3).

Soient &,_y ... L des intervalles embrassant les intervalles
Xk—y ... Ly, mais tels que ¢ — & —y tende vers zéro en
méme temps que xp — Xx—1; ces intervalles plus grands pour-
ront d’ailleurs pénétrer 'un dans l'autre. En désignant alors
par ¢, _, l'oscillation de /' (x) dans l'intervalle £, _y ... ¢ et par

Er—1, Er—y deuxvaleursintermédiaires du méme intervalle, la
condition (3) continuera d’étre nécessaire et suflisante pour
que les sommes Si, Sz se rapprochent indéfiniment.

Augmentons maintenant le nombre n des partieS(i.J(:k_i... X
selon une loi arbitraire, de maniére que ces parties tendent
vers zéro, et soienl

les sommes (2), formées pour les partitions successives avec
des valeurs intermédiaires quelconques; il faut démontrer

1 Résumé des lecons, etc. (1823), p. 81.
2 Vorlesungen iitber Integrale (1894), p. 6-7.
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qu’étant ¢ une petite quantité positive donnée a l’avance, on
puisse déterminer le nombre N de maniere que l'on ait

' Sn)\+v—- Snv ’ <d‘

pour v > N et} arbitraire, c’est-a-dire que limy S, existe. Puis
il faut démontrer que cette limite soit indépendante de la
maniére, dont le nombre n a été augmenté. Soient donc
Xy, ..., Xn_1, avec les valeurs intermédiaires &, ... £,_4, et
Ly, .oes Lm—1, avec les valeurs intermédiaires &, ..., En—1,
deux partitions, et

n

S :E (r, — ap_y) (1€, )
k=1
m
t :/_14 G — Le—y) 118, _y)
=

les sommes correspondantes, il suffira d’établir que la diffé-
rence T-S tende vers zéro, sil'on fait croitre n et m de maniére
que les différences xp — wp—y (A =1, 2,...,n) et 1p — i,
(h=1,2,...,m) deviennent infiniment petites. A cet effet, dé-
signons par X; , ..., X,4n—2les valeurs x; et 1y, rangées par
ordre croissant, et soit l'intervalle ¥;_; ... ¥, contenu dans
I'intervalle Xy~ --- ¥ etdans l'intervalle Dt - g)k;alors ilest
évident que nous aurons:

m-4-n—1
S :E(?ﬁl— ¥, _y) f(?;')\i—i) ,
=1
m4n— 1
=N =% )5 )

r=1

Mais écrites de telle maniére, les sommes S et T rentrent
sous la forme des sommes Si, Sq prises dans le sens étendu,
parce qu'en réunissant les intervalles Xy gy €tly ...

i ‘i ko

5 b}
&

on obtient un intervalle ¢, _, ... ¢, qui contient les points &_,
3
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et Ekfi , embrasse a la fois l'intervalle X¥5_, ... X, et devient

infiniment petit en méme temps que X;_ ... X; . La condition

(3) est donc suftisante pour que S et T tendent vers une limite
commune, ¢. ¢. [f. d.

Il est évident que cette condition se trouve salisfaite, —
aussi dans le sens étendu, — si f'(x) est une fonction conti-
nue, au sens de Cavcuy, dans l'intervalle p...q.

11

Soient P(£, »), Q(%, 1) deux fonctions des variables réelles &, »
qui, & l'intérieur d’un domaine S simplement connexe du
plan des (£, ), sont uniformes et finis et admettent des déri-
vées partielles par rapport a £ et 5. Si la condition d’intégra-
bilité.
2P 0Q

1 . — _=
) 0y D€

se trouve satisfaite a 'intérieur de S, I'équation différentielle
(2) du = Pd& 4+ Qdn

possede une solution « qui est une fonction des deux va-
riables indépendantes £, » uniforme a I'intérieur de S, et qui
s'évanouit pour un point (&, %, de S, donné arbitrairement.
C’est ce que nous allons démontrer, sans faire usage des no-
tions de l'intégrale curviligne et de l'intégrale double ; au
contraire, notre démonstration nous va permettre de démon-
trer d’'une maniére extrémement simple les théorémes clas-
siques, relatifs aux intégrales curvilignes. Nous allons procé-
der suivant EuLER L. 1

1. Soient (£, »,) et (£, #) deux points de S, tels que le rec-
tangle déterminé par les points (&, n,), (£. ng), (&, )y (&g, #) —
qui seront désignés aussi par A, B, C, D — se trouve en-
tierement a 'intérieur de S. Nous considérons les deux ex-
pressions

1 Voir Institutiones calculi integralis, t. I, caput 1I, art. 448 et suiv.
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n £
(3) v:fQ(Eo,mdn-}—/P(gwn)dE,
" G
E n
(%) 7:] P(E,mﬂd&—i—fQ(&,n)dn,
& %

qui pourront étre caractérisées de maniére, que la premiere
v se rapporte a la marche supérieure (AD, DC), 'autre ¢ a la
marche inférieure (AB, BC), joignant les points A et G. Nous
allons démontrer que ¢ et ¢ satisfont 2 I'équation (2) et que ces
deux expressions sont identiques, c’est-a-dire que l'on a les
équations

% bs_'
5 — — P — = Q ,
(5) o0& on Q
Y oy
6 — =0 — — P
(7) v—y =0 .

Les deux équations (5) se vérifient immédiatement; quant
aux équations (6), il suflira de donner la démonstration de la
premiere.

Posons a cet effet

g
(8) w::fp(f,mdg,
&

nous aurons!

oy Ow
9 - =Q -
( ) on (Eo ' ) on

d ow\  0Q o [ow

1 C.f. EuLer, L c., art. 448. Pour que les calculs suivants soient légitimes, il faut imposer

aux fonctions P, ) encore certaines conditions supplémentaires \que 'on va tirer facilement
de ces calculs mémes.

Mais
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donc en vertu de la condition d’intégrabilité (1)

(10) (g<()é n—%-:):ﬂ,
c’'est-a-dire que ’expression.

(11) Q(E,n)———:l’(n)
est indépendante de £. Etant

(12) lmw =20, lim — =0,
:E g:EO K

on aura donc
Qi,, n) = F(q),

et d’apres les équations (11) et (9),

o

— = Q. m— Q& ,

on

oy
— = Q (&, , soq. f. d.
e 2(8, ¢ q
Pour démontrer 1'équation (7), nous remplacons dans les
limites supérieures de ¢, ¢ les £ » par &, »1; I'équation (7)
s’écrit alors :

51 LR

(7 a) fp(g,no)d?;' f()m,n)dn—i—fpli ) d& -}—‘JK(EO»" =0,

gO 7]0 01

équation (ui peut s’énoncer en disant que l'intégrale de la
différentielle exacte P d§ 4+ () dn, menée au sens positif sur
la périphérie du rectangle (A B G D) s’évanouit; 'équation (7)
n’est donc autre chose que le théoreme de Riemann-CavcHy !
pour le cas du rectangle (ABCD)?

1 RieMANN, Werke (1892), p. 15, I.

2 Quant a ’équation (7), EuLER n’en donne pas de démonstration e\{plicite, il s’exprime
comme il suit (1. c., art. 452) : « Ex rei natura patet, permde esse utra via procedatur ne-
cesse enim est ad edndem ®equationem integralem perveniri ». Mais la démonstration qu’on
va lire dans le texte, ne fait usage que (les moyens qu’EULER avait & sa disposition,
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Soit (£, ») un point quelconque a l'intérieur de (ABCD) et
posons
3 n

SE,m) = /.P(E,n)dé +fQ(so,md'n :
n

0

e

(1423

0
nous aurons, d’apres ce qui précede,

bs_

(13) —=Q . q),

o%

et le premier membre de I'équation (7«) pourra s'écrire :

i1

fQ(51, n)dn——é‘(éu n) + s (&1, o)
%

ou encore
™ .
. DS ' -1 TZ\
/.(Q,(él, n) — -—————) dy
o 0y
R

intégrale qui s’évanouit d'apres 'équation (13).

2. Soient maintenant (&, »,) et (£, ») deux points quelcon-
‘ques a 'intérieur du domaine S, on pourra intercaler d'une
infinité de maniéres des points en nombre fini

(gl; 01) s (‘%27 T}2, ) eer (EIL—I’ 7)”_1\

‘appartenant également a S et tels que pour deux points consé-
ccutifs (Ey_y h)—1) €t (&, m) (ou &, = £. 0, = n) ou la marche
supérieure ou lamarche inférieure, joignant ces deux points,
se trouve entiéerement a I'intérieur de S. Suivant le cas qui se
présente désignons par vy ou l'expression

)
(15) (/Q (Ey_y» 0ldn —i—fP(E, ny) d€
A , Ek-i
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ou l'expression

5 "
(15 a) //QP(E, n1_~4)d6-+—}[(2r51. 6} dn ;
Si—1 -

s1 toutes les deux marches étaient situées a l'intérieur de S,
les deux expressions (15) et (15a) seraient identiques d’apreés
le théoréeme (7). La somme

(16) vi+ Ve ...+ vn

représente alors une fonction de &, », satisfaisant a4 I’équation
différentielle (2) et s’évanouissant pour &, , »,. Pour démontrer
que cette fonction est uniforme a 'intérieur de S, il suflit de
faire voir qu’elle est indépendante du choix des points inter-
calés.

Soit done

!

(14 a) E L m) s e (B g,y
une autre série de points intercalés, et
(16 a) . v, + v!—f—... + v,

la somme des intégrales correspondantes; les séries (14) et
(14a) vont déterminer deux escaliers, joignant les points
(&4 o) €t (&, n) et situés entierement a 'intérieur de S. L'aire
limitée par eux pourra évidemment étre partagée en un
nombre fini de rectangles, tels que (AB CD); en appliquant
donc le théoréme (7) sur chacun de ces rectangles, on démon-
trera immédiatement l'identité des sommes (16), (16a).

- La somme (16) fournit la solution « de I’équation différen-
tielle (2), dont nous nous sommes proposés de démontrer
I'existence ; elle sera représentée par le symbole

(f,n)
o == S/ (PdE + Qdn)t .

(3

(& » m,)

1 Le principe de la définition de lintégrale (17) indiqué dans le n° 2, a été imaginé a
peu prés en méme temps par mon ami HEFFTER et par moi (voir la communication de M.
HEFFTER, Gottinger Nachrichten, 1904, p. 196). Pour moi les considérations de la note pré-
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3. Pour passer encore a I'application des résultats obtenus
5 la démonstration des théoremes fondamentaux relatifs aux
intégrales curvilignes, soit C une courbe menée dans l'inté-
rieur de S entre les points (&1, n1), (§2, n2) et représentee par
les équations

E—=9glt), n=101(1) ,

o (), ¢ (£) étant deux fonctions uniformes du parametre ¢, et
admettant des dérivées ¢'(f). ¢/i7) continues dans I'intervalle
ti...l2, ou

EL' = :P(-ti) y Ny — ",b(fi) (1 =1,

Alors ].’intégrale curviligne prise suivant C n'est autre chose
que

lgﬁe Ti2) t,
(18) C [(Pc]?;‘ + Qdn) = /(P.go'(ﬂ LoQ. i dt
((‘51-‘01] ;1

Comme la fonction uniforme « (£, ), donnée par l'expres-
sion (17) satisfait a I'équation différentielle (2!, on a

Proitl, $it1) o't + Qe . Yit1 41t = d”““"i}{' AL
donc
(&5, Mg)
C /(Pdi + Qdn) = uloty) , Vb)) — wlgity . Yity)
‘(51»7?1\ = wl(Zy, my) — Wik W

ce qui montre que l'intégrale (18) est indépendante du chemin
d’intégration C, et que partant l'intégrale relative & une courbe

sente ne forment qu'une application trés particulicre des développements analogues que
jal établis relativement aux solutions des svstémes d’'équations différentielles linéaires, et
qui seront publiés ailleurs.

1 On sait d’apres les travaux de MM. GouRrsar, Transactions of the American Math, Soc.,
I (1900), Moorg, ibid., PriNgsHEIM, ibid., II (1904). HerrTER, GOtt. Nachrichten. 1902,
1903. 1904, que la définition de l'intégrale curviligne peut étre donné pour des courbes
d'un caractére beaucoup plus général, mais comme pour la plupart des applications ana-
Iytiques la définition adoptée dans le texte est assez générale, elle suffira pour les buts
de Penscignement, et c'est a quoi nous nous restreignons dans cette note.
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fermée se réduit a zéro !. Le passage aux théoremes de Cau-
cHY, relatifs aux intégrales de fonctions monogénes, se fait
maintenant de la maniére usuelle.

Remarquons enfin que les considérations du n° I s'éten-
dent sans difficulté aux intégrales multiples, aussi bien que
celles du n°II, aux intégrales des différentielles exactes, a un
nombre quelconque de variables indépendantes.

Kolozsvar, 18 décembre 1904.
L. SCHLESINGER.

SUR UNE MANIERE

D’EXPOSER LA GEOMETRIE PROJECTIVE

1. On sait que von StaupT exposa, indépendamment de
toute notion de distance, les principes de la Géométrie pro-
jective.

Son exposition est fondée sur les propriétés du quadrila-
tere complet. Je vais ici exposer la (Géométrie projective
d’une facon différente et que je crois plus simple. Je ne me
servirai pas du quadrilatere complet.

J'admettrai les axiomes ordinaires concernant le point, la
ligne droite, le plan.

On regardera deux droites situées dans un méme plan
comme se coupant toujours. Sile point d'intersection n’existe
pas en réalité, on dira que les droites se coupent en un point
fictif, ou idéal. Il sera toujours possible de projeter les
droites sur un autre plan (en projection conique) de facon
que leurs projections se coupent. Trois droites d'un plan se
couperont en un méme point idéal, si leurs projections se
coupent en un méme point réel.

1 . f. HEFFTER, {. c., 1903, p. 123.

L
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