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SUR L’APPROXIMATION DES RACINES

D’EQUATIONS NUMERIQUES

1. Les approximations successives.

Etant donnée ’équation

(1) xr = F(r)

dont on connait une solution approchée x,, formons les
quantités xv suivant la formule
(2) rypg = Flry) (v=0,1,2, ..
x, sera une valeur approchée de la racine &, si la différence
Xni1 — 2, est négligeable. Car on a

Xn — ¥ (,)";1,) = i'n — :7('11.—'—-1 .
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Pour juger I'approximation obtenue par la méthode, chan-
geons v en vy + 1, dans I'équation (2), et relranchons avec
l'équation 2 :

.1'.,_*_-2 —_— .1'\)_{_1 _- F(I‘J—}-l) — F (J'.J) .

Le théoreme de la moyenne ou de Rolle permet de con-
clure

2

(o) Xy4 3 — Ly | = (,1'."_}_1 — Xy) F’(E,) ,

ou &y, fait partie de U'intervalle (xy ... xy4+1). [l s'ensuit

(:i' <1'/1+l —_n == (.1'1 —_ 1’0) F/ (69) F’ (51) F, (5/1,—], .
Pour que la méthode soit applicable, il faut que la fonc-
tion F' £) soit petite aux environs de la racine cherchée.
Dans ['équation de Kepler

xr = a -+ £sinx
on a

F’'(x) = ccosx :

la méthode des approximations successives fournira de

, . 1 . , .
bons résultats, si | ¢ | < T ou sl | ¢ | étant toujours =< 1, la

. , ™ . . .
racine .r est approchée de = 5 » Ce qul exige que « soit ap-

proché de 4= (; —_ e> )

s

2. La solution de 'équation
flr) =10

dont on connait une valeur approchée x, se raméne au cas
précédent en faisant

Flr) = x — .]i((r)
[ {xg)
Faisant v = .r, 4 2, Pexpression de la dérivée se développe
en série
1 ., /T
Fiiey + h = [~ %) h [~ 1%l h* — ...

KNI N
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d’ou il suit qu'on ait sensiblement

oo
Py = Lol i, — 2.
Cette quantité sera petite, si la racine dont il s’agit, est
simple.

Remarquons que, pour déterminer des racines multiples,
on ne fait pas usage de l'algorithme du plus grand com-
mun diviseur, impossible pour des équations transcendantes,
et trés rarement praticables pour des équations algébriques.

S'il s’agit d'une racine de multiplicité p, on résout I'équa-
tion

f(P—“(J.) — 0

dont la racine en question est une solution simple.
3. La méthode de Newton successive.
Elle consiste dans la formation des quantités

f(.’l‘v) .
Xy g = Xy — m} (v=20,1,2, ..

et n'est autre que la méthode du numéro 1, pourvu que 'on
fasse
) (a
Flr) =ux — /,—‘—, .
/ix)
On a 1ci
") fla
F'(T):/ ( fi )
ey
et il s’ensuit d’apres (4).
II,—i f” (EV) /b(‘gu
X4l —xn = (x1 — xo; I —F 35—
n- n 1 ;:0 f {gv}z
Cetle méthode est plus rapide que celle du numéro précé-
dent, car ici le numérateur contient des facteurs f(&) qui
tendent vers zéro, tandis que les quantités F'(&) du numéro
2 sont presque constantes ; mais celte derniere présente cet

avantage que le dénominateur " (x,) dans les formules

Xy | = Xy —

est constant.
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4. Une méthode pour résoudre I'équation
fla) =0

consiste a effectuer l'inversion d'une série de puissances.
Posant en effet

(9) fle, + & = flay) + u
le probléme prend la forme
(5 bis) a & + a8 + a8 + ... =,

et on a, d’apres un algorithme connu,

(6) E—=bin -+ byn® 4+ bz0® + ... ;
il ne reste qu'a prendre n = — f(x,) pour avoir
fleg + & =0 .

5. Le développement (6), borné a ses deux premiers termes,
devient |
[ 1 "y flzx,)?
f1—_—-7'o—“/, o)___ !/Of(30)~
1712, 2 1 (2
- x; étant la nouvelle valeur approchée de laracine x =x, + §.
- Cette formule nous amene a prendre, pour employer la mé-
~ thode du numéro 1,

P('r):x—/,(——x—‘-}—.f—_7’_.(,1"—)8-—.(1,”_%‘1:}?(1‘”) .
On a ici

3//! (.1')2 — f’{x)/”’(x) .
27\t fixf

¥ ) =

et il est manifeste que la convergence est beaucoup plus ra-
~ pide que dans la méthode de Newton; mais elle est aussi
- plus pénible, puisque elle emploie des valeurs de la dérivée

' seconde.

- 6.0n aura une géneralisation de la regula falst, si T'on
- effectue I'inversion de 1'équation

flx) =17
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o

au moyen de la formule d'interpolation
r— .y -+ B 'y — voi 4+ Baiy — VoY — Y1 4= Bgly — Yol IV == 1Y — ye) 4.

ou l'on a poseé

en prenant pour les £y des quantités arbitraires aux environs

de la racine cherchée ' : en faisant y = 0, il vient

!
o) 2" = xy — Biye 4+~ Bzyvovi — Bervovive - ..

Quant aux quantités By, on les calcule au moven des équa-
tions
r1 = 1y +— Biiyr — o)

& 2o + Brive — voo 4= Baive — vorine — a1y,

TN~ N
N ~
N

Pour avoir une approximation commode, on choisit .ro, .1
et calcule 7o. y1: cela permet dévaluer Bi:; puis on fait,
pour se tenir a la méthode 7).

X2 — 1y — Bivo .

et on détermine y2 = flr2): la deuxieme équation (8 donne
alors aisément la valeur de Bz. Ensuite, on [ait

]

rs = 29 — B1yo 4+ Bevoyvi =y 4 Bevovi , vs = frars |

et on tire du svsteme /8 la valeur de Bs, et ainsi de suite.

M. Lercu (Fribourg, Suisse).
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