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ce qui donnera r respectivement r — 1 systèmes possibles,
d'où

/ a a + 71 a -f (//.— l)7r\«
Slll — sin s 111 I

p2 _ \ n n " [_
2 f.a a-f-2îr oc —{— (// — 2)tt\-

sin — sui sm —
/?, n n ]

ou bien, en vertu de (18),
n

p2 (sin a)w (1 — &>2) 2

2in-l;2 4
2 sin2 ^ 2'n 11

t1 — ^)
Âà

de sorte que nous obtenons pour n pair

n--x
/i (1 — co2) ~ (1 —j— &>)

71 2|W — *)2

Niels Nielsen (Copenhague).

SUR L'APPROXIMATION DES RACINES

D'ÉQUATIONS NUMÉRIQUES

1. Les approximations successives.
Etant donnée l'équation

(1) x — F

dont on connaît une solution approchée formons les
quantités Xvsuivantla formule

(2) Fl'rv) b 0, 1, 2,

sera une valeur approchée de la racine si la différence
xn+1 — xn est négligeable. Car on a

Xu — t1 (.Tu) Xn — Xn -(-1 •
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Pour juger l'approximation obtenue par la méthode,
changeons v en v -p 1, clans l'équation (2), et retranchons avec

l'équation 2: :

'j -j- 2 y -|- i ^ V -f~ i ^ P'v 1 '

Le théorème de la moyenne o.u de Rolle permet de
conclure

;3i V -j- 2 '^V 1 j y _j_ ^ ' F (?v) '

où £v fait partie de l'intervalle (.#v... ,rv + i).- 11 s'ensuit

(4| xn+1 — xn(.rx — xo) F' (Ço) F' (Çi)... F' (E/i — i)

Pour que la méthode soit applicable, il Faut que la fonction

F' '£) soit petite aux environs de la racine cherchée.
Dans l'équation de Kepler

x ~ a-j- £sin x
on a

F' U") m s cos x ;

bons résultats, si I s|^ ou si | I étant toujours ^ 1, la

la méthode des approximations successives fournira de
i

Fo

racine xest approchée de -+- ~ ce qui exige (pie a soit

approché de zt (yj

2. La solution de l'équation

fix) — 0

dont on connaît une valeur approchée x0 se ramène au cas
précédent en faisant

V (.r) =x— /Vo

Faisant x x0 -f- h l'expression de la dérivée se développe
en série

F'i,r0 + /,, _ Çz»1 h — LAX h2
/ (,r0) 2. f (,r.
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d'où il suit qu'on ait sensiblement

F'(g) — L:J^°i(r g)rw '

Cette quantité sera petite, si la racine dont il s'agit, est
simple.

Remarquons que, pour déterminer des racines multiples,
on ne fait pas usage de l'algorithme du plus grand commun

diviseur, impossible pour des équations transcendantes,
et très rarement praticables pour des équations algébriques.

S'il s'agit d'une racine de multiplicité /?, on résout l'équation

f{P-{Ux)0

dont la racine en question est une solution simple.
3. La méthode de Newton successive.
Elle consiste dans la formation des quantités

/'W
-f- 1 —— f'{x|

^v ~ ^ ^ ^

et n'est autre que la méthode du numéro 1, pourvu que l'on
fasse

l7, » f{-r)
'• <*' * - /V) '

On a ici

_ f"i-r)ßr)
1 ' ~ ~

et il s'ensuit d'après (4).

»-1 f" (?*) /'I?V

X,1-fl — x„ — (,Ti — .rof II
V—0

Cette méthode est plus rapide que celle du numéro précédent,

car ici le numérateur contient des facteurs f(%v) qui
tendent vers zéro, tandis que les quantités F'(£v) du numéro
2 sont presque constantes ; mais cette dernière présente cet

avantage que le dénominateur f (.r0) dans les formules

fix.j)

/Vo)

est constant.

1 ,A V
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4. Une méthode pour résoudre l'équation

f(x)0

consiste à effectuer l'inversion d'une série de puissances.
Posant en effet

(5) f[xo + Ç) — o) "f" T' >

le problème prend la forme

(5 bis) Oi£O2H2-f- Os£8-f~ ••• — V »

et on a, d'après un algorithme connu,

(6) £ — fjiv^2 *J2 ~f~ *Î8 ~1~ • •• >

il ne reste qu'à prendre n— /(.%) pour avoir

f (xo "h — ^ •

5. Le développement (6), borné à ses deux premiers termes,
devient

f(.T0)1 2

^0 /V0) 2

étant la nouvelle valeur approchée de la racine x +
Cette formule nous amène à prendre, pour employer la
méthode du numéro 1,

Ü, f[x] 1 f"(xF(" * - /V) - 2 rw • •r*+1 =•
On a ici

3 f" (x\2 — f {x)j"'•
——27VI « ^

et il est manifeste que la convergence est beaucoup plus
rapide que dans la méthode de Newton ; mais elle est aussi

k plus pénible, puisque elle emploie des valeurs de la dérivée
seconde.

6. On aura une généralisation de la régula si l'on
effectue l'inversion de l'équation

f(x) =r
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au moyen de la formule d'interpolation

X ~ X() 4- Bl I Y — vol -4- B2 1 Y Vol 1 V vi I 4- Bs I V Vu) 1 V Vil f V — V2) -I-
o t L. t. L. t, t, '

où Ton a posé
vy /',rvl

en prenant pour les x-jdes quantités arbitraires aux environs

de la racine cherchée x;en faisant y 0, il vient

i/ 1 xXt)— Bi vo -j—B2 vo vi — Bsvovi V2 -j-
L

1

L <, C t, '

Quant aux quantités By, on les calcule au moyen des équations

^ X\ X() —j— Bl 1 vi Vo

,Q
I ' X2 Xo -j- Bl I V2 VO1 -j- B2 1 V2 Vol i V2 Vl* ^

^
1

c
1

K t t, e

»»•**•*•»•»*»• i 1 »•
Pour avoir une approximation commode, on choisit.ro, .ri

et calcule yo, yi ; cela permet d'évaluer Bi ; puis on fait,
pour se tenir à la méthode 7),

X-2 — Xo Bl VO

et on détermine y2, —fix2);la deuxième équation (8 donne
alors aisément la valeur de B2. Ensuite, on fait

,rs xo — Bi vo B2 vo vi — 4- B2 v0 vi vs — s-
L t C C C t, t

et on tire du svstème (8 la valeur de B3, et ainsi de suite.

M. Lerch (Fribourg, Suisse).
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