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SUR LES FONCTIONS TRIGONOMETRIQUES

[. — Supposons n positif entier, puis posons

) . — e R n-2 e M=%
(1 cos (ng) = a, ,(cose)” 4 an’2 (cosp)™ " 4 Uy 4 (cos g A+

n,(
Heizne! a délerminé les coeflicients @, s en applicant, pour
X = cosg = isiny ,

la série de puissances ordinaire qui représente log(l + .x).
Les mémes coeflicients et les coeflicients de quelques déve-
loppements analogues sont déterminés par YvoN DE VILLAR-
ceau? qui a appliqué les propriétés différentielles des fonc-
tions trigonomélriques et sa méthode a été modiliée par
CATALAN®,

En étudiant pour le moment les fonctions sphériques gé-
néralisées, jai trouvé une détermination tout a fait élémen-
laire de tous les coeflicients susdils, et cela en m’appuyant
sculement sur la formule binomiale a exposant positif entier
el sur la série géométrique ordinaire,

A cel effet, nous avons a partir de 'identité

1 n-+ 1

(2) T—:(;:1+(/+(/2+"'+{/n+l(/—-—(7

posons d’abord
G = xicose 4 rsing)

puis

¢ = x (cosp — Lsing),

1 Mathematische Annalen, t. 11, p. 187, 1870.
2 Comptes rendus, t. LXXXII, p. 1469-1471, 1876.
3 Nouvelles Annales, 3¢ série, t. 1I, p. 529-536, 1883.
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nous aurons, en additionnant puis soustrayant les formules
ainsi obtenues, ces deux aulres

I —xcoso
1 — 2xcosg + a?

—1 4 xcosg 4 x%cos2¢ + ... + a" cos(ng) + 2 TQ

rsing

= rsing 4+ a?sin 29 + ... 4 a"sin (ng) + 2T Q.

(%)
1— 2xcosy + at

ou Q et Q1 désignent des quantités qui resteront finies pour
x=0.

Cela posé, mettons encore dans (2)
g = 2xcosp — a?,
nous aurons de méme

1

(3 ‘
) 1—2xcosp + a?

=14 x(2cose — ) + a2%(2cos9 — x)® + ... +
" (2cos — ) + 2" T Qs

ou Q, est fini pour.xr = 0.

Ordonnons maintenant suivant les puissances positives
entiéres de & les premiers termes du second membre de (5),
nous aurons a chercher le coeflicient de " obtenu du terme

' TP 2cosy — ) TP, 2p =g,

pour lequel la formule binomiale donnera immédiatement
cetle expression

(— 1P (r ; P> (2cos )"~

de sorte que nous obtenons, en vertu de (5), une nouvelle
identité de cette forme

1

i0) — : Sl 2
' T—2rcosg + a2 1 + A1 (cosg) x 4+ Az (cosoja® + ... +

A (cosg) a™ 4 2" T Qs

n

ou Qs restera fini pour x = 0, landis que nous avons posé
pour abréger

) A (cosy) = (2coso) — <'Tl) (2coscp)r’_2-{—(r—__ 2)(‘2003@:)"—4——

[\
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Multiplions maintenant par xsing¢ les deux membres de 6,
il résulte. en vertu de 4). une identité de cette forme

(8 ¥sin2g — 3sindy +— ...+ a'sining = 2?Aricospising +
13y cosg sing + ... 4+ 2"A icosgising + 2TQy
ou ()4 restera fini pour .r = 0. Divisons ensuite par .r? les

deux membres de 8, puis mettons x =0, il resullera
sin2g = Ay cosgp i sing

d'ou en divisant par 2® l'identité nouvelle obtenue de '8
en supprimant le premier terme de ses deuxmembres. I'hv-
pothése r = 0 donnera de nouveau

sin 3? — Ae 1COS @) singp .
et ainsi de suite. Nous aurons généralement
‘9 sining = A, _,cosg . sing .

Cela posé. multiplions par 1 — rcoss les deux membres
de 6.puis comparons avec 3 la formule ainsi obtenue. nous
aurons. en suivant le meéme procédé. l'autre formule géné-
rale analogue a (9 :

10, cos nw. — A coser — A COS @ . COSD .
i n 7 n—1 T T

Or. la formule 10 nous permet de déterminer les coefli-
cients «, figurant au second membre de 1 : nous aurons
en effet, pour » > 0.

. rf(N—T\on—.r rfn—r—1 an—2r—1
@, 4 = _1.( )T — ( L) .

d ou, apres une simple réeduction

9D ,, R ‘/ . )
ro2n 7 (n-—r—l

on—2r —1
ro—1 ) '

tandis que nous trouverons particulierement. pour » == (

11 a

= — 1
Do -
n.zr . 7

9

‘11 bis) a, ,=2"7"

Pour déduire d'autres tformules fondamentales, mettons




SUR LES FONCTIONS TRIGONOMETRIQUES 295

dans (9) (10) T—;- — g au lieu de g, nous aurons poeur 7 pair, en

mettant 2n au lieu de n.:

(12) sin (2ng) = (— 1)" [A2n——1 (sing) . cosq)] .

(13) cos(2ng) = (— 1)" [A2n (sing) — A,, _; (sing) sincy] ,
et pour n impair, en mettant 2n + 1 au lieu de n:

(12 bis) sin (2n 4+ g = (— 1)" [A2n+1 (sing) — A, (sing) sin go]

(13 bis) cos(2n 4+ 1)g = (— 1) A, (sinyicosg .

Cela posé, remarquons ensuite que le produit

2 . 1 —1
P, = sinxsin <.1' + 7—T-> sin <7c + —”> .. sin <.7(: + (,————)—n>
n n n n

/

, . ™ \ , . .
s’évanouira pour .1::%— , ou p désigne un nombre entier

quelconque, puis appliquons l'identité

sin <.1.' + P)—f) sin <.1: -+ QZ—TH—R)—lr> — sin <p’_:r + 7(> sin <—’; — I‘> ,

ou, ce qul revient au méme,

sin <1 - E) sin <x -+ (_n_:ﬁ)_r) —sint 2T sinfx

n n n
il est évident que P, est un polynome entier de sin.r, abs-
traction faite du facteur cos .x dans le cas, ou n est pair; c’est-
a-dire que P, est une expression complélement de ia méme
nature que le second membre de (12) et (12 bis) si nous y
remplacons ¢ par x; de plus P, s’évanouira pour les mémes
valeurs de sinx que sin(nx), d’ou il résulte une identité de
cette lorme

. . x . x4 . x4 2= . x4+ (n—Nh=w
(14) sinx = «_. sin — . sin T . sin e ... Sln nal K
n n n n n

»

ou x, désigne un facteur indépendant de x.
Pour délerminer maintenantla valeur de a, divisons d’abord




296 : NIELS NIELSEN

par x les deux membres de (
aurons

1= LT
(15) no= e .Ssin—. sin
n 17

14), puis posons x =0, nous

2 Cn-—Thrw
—_— ... 8SIn —
n n

tandis que 'hypothese w = 5 donnera de méme
. =« . 9 o 2n—1im
(16) 1 = & . sin ~= . sin o= . . sin n—im
" 2n 2n 21
d’ott en multipliant (15) (16
P . 27 . 3w o 2n—1r
2n = 2w % sin z sin il Sin — ... sin ‘——~
" 2n 21 2n 2n

ce quil donnera, en vertu de (15),

(17)

=n

Cela posé, mettons dans (15)

a, =— 20 ? .

‘n

3

. 2prw )T I3 .opwo . (n )) T
sin P — 2c¢os Pr sm[)— — 2sIn i sin —j—[—— ,
n 7 2n 2n 2n
nous aurons de lntA‘,]]’lC
9
n — on—1 =
" ain
ou bien,
_ on,
azn - an ?
d’ou, en vertu de (17),
__ on—1
w, = 2

car la valeur o, = 0 est impossible ici: nous avons ainsi dé-
montré cette autre formule générale

. -1 . x . x4+
(18) sina=2" sin — sin

I 1t

mériq nes

sin

x -+ 2r . r+in—hx
— ... NIl

n n

tandis que les formules (15) (16) donnent ces résullats nu-

\ o7 . 27 . 3w .o (n—Nh=w 7
(19) Sin — sin —— sin - - ... sin —
n n n n gn—1
. B S . o 2n— Uiz ]
(19 bisj Sin = sin — ... sIn =
2 n 2n 2n gn—1
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II. — Pour donner une application des derniéres formules
que nous venons de développer, cherchons le discriminant
A, de cette équation algébrique

. n Hn—2 n—=4a —
(20) Ay o X @y 5 + a, 47 + o= w

ou » est une quantité donnée, tandis que les coeflicients @,z
sont les mémes qui figurent dans (1).

A cel effet, désignons par « un des angles qui satisfont a
I'égalité

COosS o — W,

de sorte que « deviendra imaginaire, quand o n’est pas égal
a une quantité réelle, telle que — 1 = o = + 1 ; mais, en
tous cas, toutes les racines de (20) deviendront
« o + 2w o+ (2n —2)m
S —

COS —, COS . ee. , €COS
n 7 n

Cela posé, nous trouverons =+ /A, égale au produit de
tous les facteurs de la forme

“T AT 2p —- CO$ a____—}— 24w = 2sin (-————(/ —fp)ﬁ . sin £ + (/),_l_ ki )

(21} cos
n I n n

oug>p,etould=p=n—21=g=n—1. Or, le nom-
n(n—1)

bre de facteurs possibles de la forme (21) étant 5

, hous

aurons évidemment

2

>

_— c’ll(? —1) 2 b

(22) g, =280 0p P

ou P1 et Pz désignent les produits de tous les facteurs pos-

sibles de ces formes
(¢ —pl=

sin ——0 " respectivement  sin . . .
n n

x4 g+ pim

b

) \ . )
c¢'est-a-dire que nous aurons d’abord

n—1 ‘ —2
N . w . {27\ . (n—1 m\!
Py, = { sin = sin { = e sin ———— )
n n n
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ou, ce qul est la méme chose,

. =N\ . m—2m 2 om )\
P, = { sin —— s$in —————— ... | sin — :
n n n

car nous avons toujours

sin ———~4 . — sin

Multiplions ensuite les deux expressions ainsi obtenues
pour P1, il résultera, en vertu de (19),

2 n n
(23) Pi=(m=1) -

La détermination du produit P2 est un peu plus difficile,
parce qu’il faut considérer séparément les deux cas, ou n est
pair ou impair.

1° n impair, savoir n = 2r + 1; je dis que lasomme p + ¢
peut avoir une des deux valeurs sou s + 2/ 4+ 1 =4r—1,0u

s—=1,2,3, ... ,2r

K

précisément pour r combinaisons des valeurs possibles de
p et g; on aura en effet pour s pair

q:s,s—’l,s—?,...,%-{—’l
p—{—q:Spour} .
— /*2) y o
(p=01 2 !
et de méme, pour s = 2r — 2,

, g=2r,2r—1,2r—2, ... ,r+
p+q=s+ 2r + 1 pour
P:s+1,s+2,8+3,...,1‘+—,

tandis que le cas; ou s est impair donnera de méme

s+1
2

s—1

T2

Sq:s,s—-—l,s—Q, e
p—{—q:s pour ¢

p=20,1,2,
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et, pour s =< 2 — 3

'p:?.l','?.r——l,...,I‘—’,—Sj—l—{—l
p+ q=5S+ 2r + 1l pour s~—1
/(/:S+l,s+2, R 5

et voila la démonstration de notre énoncé.
Cela posé, nous aurons évidemment

n—1

\

. % . w4 . oa(n—1im\ 2
Pg:i<sm—sm T ... sin + ) ,

n n n

d’ou, en vertu de (18),

2 sine\" !
P = 3 :
2 c)n—'

or, la définition de « donnera

2

u—1— w?,

sin

d’ou finalement, en vertu de (22) et (23), pour n impair

n-—1
24) st —w?) 2
- 2(n—12

2° n pair, soit n = 2r; je dis que la somme p + ¢ peut

avoir une des deux valeurs s ou s + 2r = 47 — 3, ou
s—=1.2,3, ..., 2r —1,
pour r respectivement / — 1 combinaisons de valeurs pos-

~sibles de p et g, selon que s est supposé impair ou pair. On

" aura en effet pour p + ¢ = s les mémes solutions que dans

~1°, mais pour p + ¢ =s 4+ 2r, ou s = 2r — 3, les solutions
suivantes, savoir pour s pair

S

gq=2r—1, 2r — 2, ...,7*—{—5—}—1
p=s—+1. s 4+ 2, ...,r—}—%—'l
et pour s impair
g=2r—1, 2r—2, .. ., "_‘_s—.{?—l
s:—l

p=s-+1,s+2, ..., r+

o
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ce qui donnera r respectivement 7 — 1 systémes possibles,
d’ou
(. « . o+mw ) a—-}—(n——hn)ﬂ
S11 —  Sin ... SIN —/—m———
.P2 .\ n n n
2_<. « . at+2rn ) a—}—(n——?)rv>2
Sin — S1hn ..o SIn
n n n
ou bien, en vertu de (18),
_7£
p? (sin )" . (1 — ) 2
2 o n—1)2
gm—1%, QSinZ;— 27— w)

de sorte que nous oblenons pour n pair

n
1
n" (1 — w2) 2 (1 4+ o)

)2

An — gln—1

NieLs NieLseEn (Copenhague).

SUR L’APPROXIMATION DES RACINES

D’EQUATIONS NUMERIQUES

1. Les approximations successives.

Etant donnée ’équation

(1) xr = F(r)

dont on connait une solution approchée x,, formons les
quantités xv suivant la formule
(2) rypg = Flry) (v=0,1,2, ..
x, sera une valeur approchée de la racine &, si la différence
Xni1 — 2, est négligeable. Car on a

Xn — ¥ (,)";1,) = i'n — :7('11.—'—-1 .
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