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SUR LES FONCTIONS TRIGONOMÉTRIQUES

I. — Supposons a positif entier, puis posons

(1) eos(>y) alh()(cos?)'*-j- an2(cosy)n'2+ (cos y,n~'f-f

Heine1 a déterminé les coefficients «n)2p en applicant, pour

la série de puissances ordinaire qui représente log(l -f-

Les mêmes coefficients et les coefficients de quelques
développements analogues sont déterminés par Yvon de Villar-
geau 2 qui a appliqué les propriétés différentielles des fonctions

trigonométriques et sa méthode a été modifiée par
Catalan 3.

En étudiant pour le moment les fonctions sphériques
généralisées, j'ai trouvé une détermination tout à fait élémentaire

de tous les coefficients susdits, et cela en m'appuyant
seulement sur la formule binomiale à exposant positif entier
et sur la série géométrique ordinaire.

A cet effet, nous avons à partir de l'identité

1

- 1 H- <7 -f- <y2 + ••• + qn +

posons d'abord

(j — x(cos© -j- i sin y)

puis
(j — x(cosy — i s in y)

1 Mathematische A analen, t. II, p. 187, 1870.
2 Comptes rendus, t. LXXXII, p. 1469-1471, 1876.
3 Nouvelles Annales, 3° série, t. II, p. 529-536, 1883.
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nous aurons, en additionnant puis soustrayant les formules
ainsi obtenues, ces deux autres

(3) —
COS -—9— 1 -f- a?cos © -f- x22© -j- -j- xn cos (/?<p) "t"1 Q

1 — 2xcos f -f- x1

(4) - f S1"
„ «rsin© + x2sin2<p -J- -f- sin -f- Qi.

'1— 2xcos cp x*

où Q et Qi désignent des quantités qui resteront finies pour
x 0

Cela posé, mettons encore dans (2)

q — 2.TCOS f —

nous aurons de même

(5) - 1 -|- x(2cos © — x2 [2 cos © — x)2
1 2x COS rp-j- X *

xn (2 cos © — x)n -f- xn~^~^ Q2

où Q2 est fini pour.r 0.

Ordonnons maintenant suivant les puissances positives
entières de x les premiers termes du second membre de (5),

nous aurons à chercher le coefficient de xr obtenu du terme

x1 ^ (2 cos © — x)1 ~~P 2 r

pour lequel la formule binomiale donnera immédiatement
cette expression :

(— l?ClP) |2c°S?)r-2''

de sorte que nous obtenons, en vertu de (5), une nouvelle
identité de cette forme

16)
a _ 2,r cos y + -*'2 — 1 + Al {cos,x> + Aa + +

Aw (cos©) xn -p .xn + 1
Q3 ,•

où O3 restera fini pour'^=0, tandis que nous avons posé
pour abréger

<7) Ar(cos?) (2 cos ©)r — ^ Y1) <2cos?)r~2-r(r Y 2)(2cos<ï')r""4— —
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Multiplions maintenant par .rsino les deux membres de 6

il résulte, en vertu de 4), une identité de cette forme

181 .*-2sin2çp -r- .r'sin 3® X'1 si" ln¥1 — >ï'2 Ai icos cpi sin » -p
.r3 A2 cos » sin ^ -j- 4- xnAj cos »i sin » h- ,rh 1

O*
7 t

1 'a 1 1 «
* ^

où O4 restera fini pour ,r=0. Divisons ensuite par .r2 les
deux membres de 8 puis mettons x 0, il résultera

sin 2» z= Ai > cos ©> sin »
i l *

d'où en divisant par .r3 l'identité nouvelle obtenue de -'8'.)

en supprimant le premier terme de ses deux membres,
l'hypothèse .r 0 donnera de nouveau

sin 3» — A2 1 cos ftsin

et ainsi de suite. Nous aurons généralemento

•9i sin — A^ .'Cos»! sin»
1 n — 1 ' '

Cela posé, multiplions par i— les deux membres
de 6 puis comparons avec 3 la formule ainsi obtenue, nous
aurons, en suivant le même procédé, l'autre formule générale

analogue à (9 :
O * /

10.' cos /?». A„ cos » 1 — A„ .-cos©! cos».i n i n — 1 i *

Or, la formule 10 nous permet de déterminer les coeiïi-
cients anr2$figurant au second membre de 1 : nous aurons
en effet, pour r > 0.

an.2r
11 — 2r — 1- l,rp —rV2n--r — l,rp 2

d'où, après une simple réduction

»i' ^='r>'rV' ("7171; • 2"-2r-1

tandis que nous trouverons particulièrement, pour — 0

111 bis i an 0 — 2n~ 1

Pour déduire d'autres formules fondamentales, rnetton:
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dans (9) (10) j — tpaulieu de <j>T nous aurons pour pair, en

mettant 2/i au lieu de ra:

(12) si» (2n?) (— 1)" [A2n_, (sin?) • cos?]

(13) C0s(2n?) (— 1)"[A2b (sin?) — A2ä_, (sin?) sin?]

et pour ilimpair, en mettant In -H 1 au lieu de n :

(12 bis) sin (2n + 1)? (- l)n [â2u+ t (sin?) — A2b(sin?) sin?]

('13 bis) cos(2/i -P l)o (—1)M A2n (sinyl cos y

Cela posé, remarquons ensuite que le produit

/ ic\ I,2îr\ I l)n\P — sin a? sin x-4-— sin -p — sin x -pn \ fiJ \ nJV J

s'évanouira pour x— où désigne un nombre entier

quelconque, puis appliquons l'identité

*(-+Ç) •i" (' + (ç+«) - ')
ou, ce qui revient au même,

• f Pn\ ' r P^\ • 2 Pn '2sin x+ — sm x -p — — sirr — — sirx'n J \ni
il est évident que Pn est un polynome entier de sin.#,
abstraction faite du facteur cos x dans le cas, où n est pair ; c'est-
à-dire que Pn est une expression complètement de la même
nature que le second membre de (12) et (12 bis) si nous y
remplaçons y par.#; de plus Pn s'évanouira pour les mêmes
valeurs de sin,# que sin(/##), d'où il résulte une identité de

cette forme x.X"PTT.X -P 277 -P (n 1) TT

in sin.x* r= « sin — sin sin sm' n n nn n

où au désigne un facteur indépendant de ,#.
Pour déterminer maintenant la valeur de divisons d'abord
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par x les deux membres de (14), puis posons x =0, nous
aurons

_ 77 2t7! 'I I K
10) nnz a sin — sin — smy ' n n

tandis que l'hypothèse x ~ donnera de même

lo 1 — a sm slil — s i n1 1 n2n2 n

d'où en multipliant (15) (16)

É) o K 2K {2/1 — 1)77
2/i — 1a„Ä. sin — sin — sin — sinw 2 n2,i

ce qui donnera, en vertu de (15)

(17) 2%2

Cela posé, mettons dans (15),

2 pKDK pn pK {/} -b
si n —— ~ Lcossm — ~ 2 si» —— sin —*

n 2„2n

nous aurons de même

9n-1
2/7

» % •2 ÔC
2u

ou bien,
a2u '

d'oii, en vertu de (17),

«.>„ =- 2M-«,

9 ft — 1

an 2

car la valeur aIL0 est impossible ici ; nous avons ainsi dé

montré cette autre formule générale

1 X. X-j- K X -)- 2K X -}-(// — 11 K
(18) s in x~2 si il - sin —2— sin — ...sin

il n n n

tandis que les formules (15) (16) donnent ces résullats nu

méri(| ues

..v („ — 1)7T n
(19) sm — sm — s5n - sm —

TT 2;r <> _* 77

sin — sin — sm - -
// it fl

TT 77

sin
2 a

sin
Tn:

' " sin

// 2n—1

1 77 1

(19 bis) sm -- sm — sm —
\ ' •> > •>., 2,1 >)H—l
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II. — Pour donner une application des dernières formules

que nous venons de développer, cherchons le discriminant
An de cette équation algébrique

(20) anA).rn+ V2",'~2+"n,4*tt~4 +

où co est une quantité donnée, tandis que les coefficients anr2p

sont les mêmes qui figurent dans (1).
A cet effet, désignons par oc un des angles qui satisfont à

l'égalité
COS OL —CO

de sorte que a deviendra imaginaire, quand « n'est pas égal
à une quantité réelle, telle que — 1 r» + 1 \ mais, en
tous cas, toutes les racines de (20) deviendront

« a-f-277 oc -j- — 2) TT

cos — COS COS
n a

Cela posé, nous trouverons ± l/Alt égale au produit de
tous les facteurs de la forme

/ri « 2 pna -J- 2c/7r (q — a 4- 4- <7
21) cos —!—l- cos —! !— 2 sm l—— sin —n n n n

où q)> p,etoù 0 pn—2, 1 ^ ^ n — t. Or, le nombre

de facteurs possibles de la forme (21) étant ^ nous
Âà

aurons évidemment

(22) ^ p* p|

où Pi et P2 désignent les produits de tous les facteurs
possibles de ces formes

p)77 -f- f <7 -f- tc
s111 ' respectivement s 111 !——— 1 •

n il

c'est-à-dire que nous aurons d'abord
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ou, ce qui est la même chose,

ü (n — l)n\n1

[n — 2)7r\" 2 ttYP, ^smi - J ^S1„—;
car nous avons toujours

n—prr ött
sin - zzr sin —

n n

Multiplions ensuite les deux expressions ainsi obtenues

pour Pi, il résultera, en vertu de (19),

(23)
>' (—Y

1 V 2"-V '

p + q—S pour

La détermination du produit P2 est un peu plus difficile,
parce qu'il faut considérer séparément les deux cas, où n est
pair ou impair.

1° n impair,savoir n — 2r + 1 ; je dis que la somme +
peut avoir une des deux valeurs ou + 2/' + 1 — 4/*— 1, où

s 1,2,3, ,2/'

précisément pour r combinaisons des valeurs possibles de

p et q ; on aura en effet pour s pair

g
qs,s — i s — 2,
2" + 1

/> 0, 1, 2, i -1

et de même, pour s2/*— 2,

q2r 2r — 1 2r — 2 r + + 1

-j- — s -f- 2r -f- 1 pour
p z: 5 -f 1) 5 "1" 2, 5 ••• > r ~1~

2" '

tandis que le cas; où s est impair donnera de même

f „ n * + 1

\q — s, s— 1,6 — 2 ——
p+ q s pouv l

p=0,1,2. ' O
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et, pour 2/' — 3

\p — 2/* ' -r — J r -j- ''-i-1 + 1
• • j ' î r)

P+ <7 s H- 2'' + 1 Pour 5__ i
/ ([ — 5 -}- 1, s -j- 2, -}- ^

et voilà la démonstration de notre énoncé.
Gela posé, nous aurons évidemment

D / v. a + ~.a -j- I « — 1)7T'
P« — -f- sin — sin sin

n— 1

o

Q I M 11 Ciii • 01 LI I ;— 7z n n /

d'où, en vertu de (18),

(x n — 1

sin a

2—i

or, la définition de a donnera

?in*a i= 1 co
2

d'où finalement, en vertu de (22) et (23), pour n impair
71—1

(24) a _ nn(1— co2) —
2(n-l*

2° n pair,soit a 2r;je dis que la somme + peut
avoir une des deux valeurs sou s-f- 2r 4 ;• — 3, où

5 1 2 3 2r — 1

pour /' respectivement /- — 1 combinaisons de valeurs
possibles de p et <7, selon que s est supposé impair ou pair. On
aura en effet pour p+ qsles mêmes solutions que dans
1°, mais pour p-j- qs -f 2/*, où 2/* — 3, les solutions
suivantes, savoir pour s pair

q —2r —1 2,--2 r + | + 1

p J -f 1 s -f- 2 -}- — — 1

et pour s impair

m

q 2,. — 1 2r — 2 + S-±i

p s -|- I s + "2 —-—
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ce qui donnera r respectivement r — 1 systèmes possibles,
d'où

/ a a + 71 a -f (//.— l)7r\«
Slll — sin s 111 I

p2 _ \ n n " [_
2 f.a a-f-2îr oc —{— (// — 2)tt\-

sin — sui sm —
/?, n n ]

ou bien, en vertu de (18),
n

p2 (sin a)w (1 — &>2) 2

2in-l;2 4
2 sin2 ^ 2'n 11

t1 — ^)
Âà

de sorte que nous obtenons pour n pair

n--x
/i (1 — co2) ~ (1 —j— &>)

71 2|W — *)2

Niels Nielsen (Copenhague).

SUR L'APPROXIMATION DES RACINES

D'ÉQUATIONS NUMÉRIQUES

1. Les approximations successives.
Etant donnée l'équation

(1) x — F

dont on connaît une solution approchée formons les
quantités Xvsuivantla formule

(2) Fl'rv) b 0, 1, 2,

sera une valeur approchée de la racine si la différence
xn+1 — xn est négligeable. Car on a

Xu — t1 (.Tu) Xn — Xn -(-1 •
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