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kopische Doppelsterne (2 st.); Methode der kleinsten Quadrate
1 st.). — Scuram: Kalendariographie und Umrechnung von Da-
ten verschiedener Zeitrechnungen (2 st.).— M. Hgerz: Die Storun-
gen der Rotationsachse der Erde (2 st.). — G. JiGER: Prinzipicn
der Mechanik (2 st.). A. Lavwrea : Elementare Mechanik (2 st.).

Durant le semestre d'hiver 1903-1904) 'Université de Vienne a
compté 5906 étudiants réguliers et 1832 auditeurs parmi lesquels
90, respectivement 131 dames; la fréquenceest donc au total de 7738.

Zurich, Ecole polytechnique, section normale des sciences 772(1[/2,6'3,—
matiques (18 avril ; 4 aout). — IHirscr: Integralrechn. 4, Repeti-
torium 1, Uebg. 2; Funktionentheorie 4. — Fraxer: Calcul inté-
gral 4, Rép. 1, Exerc. 2. — Herzoc: Mechanik I, Rep I, Ucebg. 2.
— M. FreprLer : Darst. Geometrie 2, Rep. 1, Uebg. 4; Zentralpro-
jektion und Zyklographie 2; Elemente d. analyt. Geom. der Lage,
2. — Lacouse: Géométrie descriptive 2, Rép. [, Exerc. 4. —
Grisec : Analyt. Geometrie 11, 2 ; alg. Flichen 4.— Hurwirz: Alg.
Gleichungen 4; Fourier'sche Reihen 2. — Rosexyuxp: Vermes-
suegskunde 5, Rep. 1; Uebg. 1 tag. — Worrer: Geogr. Ortsbes-
timmung 3; Uebg. im ast. Beobachten3; Einl. in die Astrophysik.

Zurich, Universitat (12 April; 30 Juli 1904). — Burkuarpr: Alg.
Analysis, 3; Dilferential-und Integralrechnung 1, 2; Partielle Dif-
ferentialgleichungen derPhysik, 3; Mathematisches Seminar, 2. —
Weirer : Darvstellende Geometrie, mit Uebungen, 11. Teil, 3; Syn-
thetische Geometrie (IForts.), 2; Analyt. Geometrie, 11, 3; Poli-
tische Avithmetik mit Uebungen (fiiv Lehramtskandidaten), 2. —
5. Gusrer : Inhalt und Methode des geometrischen Unterrichts
in der Mittelschule, 2.5 Algebraische Analysis mit Uebungen {ir
Lehramtskandidaten!, 2, Politische Avithmetik mit Uebungen | fur
Lehramtskandidaten, 2. — A. Worrer (v. ci-dessus, Eecole poly-
techniquer.

-
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G. Rosin. — (Buvres scientifiques. Réunies et publid¢es sous les auspices
du Ministere de P'Instruction publique par L. Ravry. Thermodynamique
geénérale. Un vol. XVI-271 p.; Gauthier-Villars, Paris, 1901.

La Thermodynamique générale, ou la science des équilibres et des modi-
i lications de la matiere, et dont un cas particulier est la mécanique classique
qui n’étudic que les équilibres de position et les déplacements, forme le
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sccond volume des (Euvres scientifiques de Robin. M. Rafty, en profitant de
divers matériaux laiss¢s par Robin ¢t de quelques lecons professces a la
Sorbonne a reconstruit. avec des éléments fort ¢pars, 'ceuvre profondément
originale de Rebin.

Cette Thermodynamique générale s’¢loigne beaucoup de T'exposition
presque traditionnelle; Robin expose des idées si nouvelles et sous une
forme si originale, qu'on ne saurait en quelques pages, donner qu'une idée
bien imparfaite de son ouvrage. Ces idées ont en France un apodtre c¢n
M. Dahem dont les travaux sur la Thermodynamique, sur Pévolution de la
mécanique présentent biendes points de contact avec les idées de Robin.

Lintroduction, reproduite d’apreés lalecon inaugurale au cours de Chimie-
physique, jette d’ailleurs aussitot beaucoup de lumiere surles idées de Robin.
L.e but de la science étant de connaitre le nombre des phénomenes prévus
et de les prévoir avee une préeision ¢gale a celle de nos procédés d'obser-
vation, nous ne pouvons latteindre qu’avee I'induction. Done la méthode
inductive est la seule rationnelle. Au contraire on a toujours cherché a
procéder par déduction, comme on a fait dans presque toutes les théories
mcécaniques ou de physique mathématique. Robin est done anti-mécaniste
et ¢’est a peine s’il reconnait les mérites de ces théories pour la constitution
de lTa science. Et dans le cours du livre il est toujours aux prises avee la
mécanique classique: il va jusqu’a dire que le procédé habituel de la science
consiste a traduire des mots par des ¢quations. Il n'est pas méme de
I'école de Gibbs; il veut absolument écarter toutes les méthodes qui tendent
a déterminer les phénoménes par des considérations « a priori » mécaniques,
analvtiques, ete., pour ne se tenir qu'a U'induction. Pour cela il veut formuler
des inductions de manicre qu’elles soient susceptibles de verification directe
et quellessoientencore énoncées par deslois intégrales: caril veut s’interdire
toute hypothese portant sur Uinfiniment petit. Il ne raisonne que sur des
opérations réalisables et n’introduira que des grandeurs accessibles a l'exp¢-
rience : ce n’est pas tout; il bannit les mots d’énergie, d’entropie, de force:
concept vague et obscur qui doit étre substitué par celui bien plus précis de
travail qu’accompagne le déplacement de poids. On trouvera cela, peut-étre,
un peu excessif. Mais il est bien certain qu’apres avoir fait « tabula rasa»
les reconstructions ne laisseront subsister aucune indétermination, aucune
obscurité ?

Un systeme de poids est un systeme Si, composé par des solides indeé-
formables, fluides incompressibles, ete., dont les parties mobiles sont
bien polies, et qui ne peut ¢prouver d’autre modification qu'un changement
de configuration. Considérons un autre systéme S placé dans une source,
corps de masse tres grande par rapport a S et dont I'état est complétement
déterminé par sa température, qui, seule, peut changer, et ¢ui recueillera
ou fournira toute la chaleur qu’il pourra mettre en jeu. Supposons S en
relation avec S1 , avec lequel il ne peut changer de chaleur; enfin ces deux
systemes ainsi que les sources qui les entourent forment une partie de
I'univers complétement isolée. A deux états d’équilibre de S correspondent
deux autres de Si, qui different par le déplacement de certains corps exi¢-
rieurs. Soient: P le poids de 'un des corps déplacés; z;, et z, les coordon-
nées du centre de gravité (z est vertical, dirigé en bas); alors le travail mis
en jeu dans le passage du premier ausccond état est exprimé pav

T =3Pz, — z,) .
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[l est bien vrai que dans quelques cas particuliers, il est facile de former
Je systéme Si; mais on doit avouer qu’on ne voit pas bien si ce concept
nouveau a sur Pancien de plus grands avantages de précision et de clarté.
S étant donné, pourrva-t-on lui faire toujours correspondre (construire) Si?
Cette définition une fois admise (Robin a soin de faire voir sa coincidence
avec celle de Ja mécanique seulement en quelques cas), il est vrai, les
choses se passent tres bien et avee généralite.

Si S oest de méme nature (que S, rompons ses communications avec S et
mettons-le en relation avec un systéme de poids Se, de maniere qu'il puisse
passcr exaclement par les mémes ¢tats et dans les mémes conditions de temps
que quand 1l était en relation avec S. Une fois cette possibilité admise
iRobin ne la démountre pas), soit Ty le travail consommé par Si, suivant la
definition déja donnde, dans le passage de A & A’"; alors celui de S est, par
définttion, — Ty, pourvu que I'on prouve que si Sest mis en relation directe
avee un autre systeme de poids, il consomme précisément un travail — 1.

Cette preuve est donnée apres avoir établile principe de Mayer sur I'équi-
valence de la chaleur et du travail. C’est ici, selon nous, que commence la
partie la plus originale et fort ‘ntéressante de Robin.

Dans le principe de Mayer il distingue deux parties : le principe du cyele
fermé et celui de état initial et final. Daus le premier, un systéme en équi-
libre subit, sous I'action d’un systeme de poids une séric de modifications
qui le rameénent & son ¢état initial, en consommant un travail égal a la somme
des quantités de chaleur quiil a dégagées dans les diverses sources, multi-
plices par Péquivalent méeanique de la chaleur ; dans le second, siun systéme
dans deux processus qui P'amenent & deux états d’équilibre consomme les
travaux T et 17 et dégage les quantités Q et Q' de chaleur, alors

T—JQ =1 — JQ .

Ce second principe est essentiellement différent du premier auquel il peut
ctre réduit dans le cas des phénomenes renversables; ¢’ est-a-dire quand il
est possible de le ramener & son premier élat au prix d’un travail égal et de
signe contraive a celui qu'a mis en jeu la transformation directe.

De ces deux principes on peat déduire non seulement le théoréme sur le
travail, mais encore on peut démontrer les principes de Mayer lorsque S est
cn relation avee un systéme (quelconque. |

Le chapitee TIT est destiné a la notion si fondamentale de réversibilité,
ﬁuit un systéme S qui, mis en relation avee Sy, passe d'un état initial d’équi-
libre & un état final en traversant des états intermadiaires aussi nombreux
que Pon voudra et soit T la somme algébrique des travaux mis en jeu dans
chiaque ¢tape. |

Suapposons gu’en metlant S en relation avee S5 on puissc le faire repas-
SCroenosensinverse, par ces mémes élals intermdédiaives, et soit 17 le travail
total mis en jeu dans cette seconde traysformation. Les deux transformations
.\'unl‘rf"s'er.s'/'/)[cs si 1+ T tend vers zéro, lorsque le nombre des élats inter-
médiaires augmente indéfiniment; une transformation ne sera jamais consi-
df?r(zp comme véversible, tant que ne sera pasindiqué la compositiion et le mode
d'agir des deux systemes ¢lrangers Si, St 5 Pun déterminant la production
(lu' phénomene; Pautve effectuant sa réversion. Une opération réversible
doit s’(\”';f(l'(ucr avee une extréme lenteur; une modification réversible ost
renversable,
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La distinction essentielle de deux principes de Carnot est, croyons-nous,
de Robin. Le premier principe affirme que lorsqu’un systéme, primitivement
en équilibre, a parcouru un cycle de transformations qui le raménent a son
état initial, ce systéme n’a pu produire de travail que s’il a échangé de la
chaleur avec deux sources au moins. S’il a échangé de la chaleur avec une
source ou avee aucune (cycle monothermique) alors T = 0 | et si le cycle
est réversible T = 0.

Le second principe dit que dans tout cycle monothermique irréversible
il y a consommation de travail.

Ce second principe est bien distinet du premier dans lequel n’intervient pas
la notion de réversibilité et il est énoncé de maniére & étre directement véri-
fiable par lexpérience; ct s’il n’intervient que pour une faible partie dans
I’établissement des relations fondamentales de la Thermodynamique, il
constitue, a lui seul, le fondement de la statique générale.

Robin avec rigueur et élégance sait déduire beaucoup de conscéquences;
I'une des plus importantes est que le travail est un invariant des transfor-
mations thermiques réversibles ; ou, le travail isothermique réversible est
un invariant.

C’est icl vraiment qu’aurait du se placer la notion de potentiel interne
d’un systéme qui se rattache précisément aux modifications isothermiques.
En effet e travail d'un systéme est la différence des valeurs que prend une
certaine fonction, déterminée a une fonction pres de la tempcérature absolue;
¢’est le potentiel interne de Massieu, ou thermodynamique de Helmholtz et de
M. Duhem, identique a celui des forces intérieures de la mécanique classique.

I’application, bien simple, & la recherche du potentiel isothermique des
corps isolropes ¢élastiques et la recherche des conditions auxquelles doivent
satisfaire les constantes X et p de Lamé avait été déjaindiquée par Beltrami.
Apres avoir défind le potentiel externe et total, on est conduit a la condition
générale de I’équilibre isothermique stable (potentiel total minimum) et a la
démounstration du théoreme célebre de Lagrange-Dirichlet, par des consi-
dérations d’équilibre sculement, ce qui n’est pas possible, comme on sait,
dans la statique elassique.

D’apres les principes de Carnot nous ne pouvons affirmer qu'un cycle
monothermique déerivant un cycle au cours duquel il fait varier la tempéra-
turc de deux sources, doit emprunter de la chaleur a la source chaude et
en céder a la froide. Or, en étudiant les cycles ou les modifications isother-
miques s’allernent avee des modifications adiabatiques et en s’appuyant sur
un fait expérimental relatif & I'hydrogene. on peut démontrer ce principe
pour le corps thermométrique avant tout (hydrogeéne) et puis pour un
systeme queleonque

Les applications nombrcuses a la chimie; a la théorie de la pile; aux
gaz parfaits et aux déformations permanentes, montrent la grande généralite
des principes exposés. Un seul chapitre est dédié¢ a la dynamique générale.
Robin est toujours fidéle a sa méthode: I'extension du principe de 'équi-
valence, lui fournit, aprés 'introduction des variables intrinseques normales,
Péquation fondamentale. Par différentiation on déduira les équations dif-
férenticlles de la Dynamique qui peuvent s’interpréter d’une fagon tout a fait
semblable a celle de la mécanique classique.

Un dernier chapitre contient quelques résultats obtenus par Robin au com-
mencement de sa carricre scientifique.

i.e livee est derit avee une extréme clarté et on peut le lire sans avoir des
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connaissances trop élendues en Analyse. M. Raffy en publiant la partie
maitresse de 'ceuvre scientifique de Robin a rendu un véritable service a la

Science. R. Marcoronco (Messine).
C. Burari-Forti. — Lezioni di Geometria metrico-proiettiva. (Biblioteca
matematica, vol. X.) — Un vol. gr. in-8¢, 308 p.; prix : L. 8. —; Bocca

freres, Turin, 1904.

Ce nouveau livre de M. le prof. Burali-Forti n’est pas une reproduction
de U « Introduction « la Géoméirie différentielle » (Paris, 1897); en effet,
celle-¢i me parlait qu'incidemment de la méthode de Grassmann et de ses
applications a la Géométrie différentielle, tandis que le nouveau livre con-
tient un exposé tres complet de cette méthode et toutes les applications fon-
damentales a la Géomclrie projective et a la Géométrie métrique. Mais P'an-
cien traité est encore tres utile dans une premiére préparation : il peut servir
comme introduction au traité plus complet que nous allons analyser.

Un avertissemenl( est avant loul nécessaire: on ne doil pas croire que c¢
(rail¢ s’adresse seulement & ceux qui sont en possession de nombreuses con-
naissances mathématiques; non, car il ne demande que la connaissance de la
géométrie ¢lémentaire, de l'algebre, des premiers éléments du caleul diffé-
rentiel. De plus I'auteur a voulu conserver aux propositions leur forme habi-
(uclle, cc qui contribue a faciliter la lecture du livee : il a du faire une excep-
tion & propos des énoncés qui se rapportent a 'homographie (transforma-
tion projective), car il I'a considérée explicitement comme opération qui
~transforme les ¢léments d'une figure @ dans ccux d'une figure b et non
comme opération unique qui peut indifféremment s’appliquer & la premicre
¢t deuxicme figure.

Le livee se divise en cing parties. Daus les deux premicres on trouve les
points fondamentaux de Talgorithme géoméirique de Grassmann: apres
avoir étudiés les sommes et les produits de points el vecleurs, on en fail
des applications a U'¢tude des coordonuées cartésiennes et polaires et a
Panalyse de quelques-unes des courbes les plus importantes, sans excepter
I'hélice cireulaire et les courbes (racées sur le tore. I ¢tude des formations
géométriques (qui permettent d’exprimer lindairement toute transformation
par des (ransformations fixes) et de leurs coordonnées donne comme applica-
tion la Géométrie analviique cartésienne, et son algorvithme, consistant uni-
quement dans la recherche d’équations de poinls, droites, plans, lignes,
surfaces, cle., quoique virtuellement contenu tout entier dans le livre, ny
recoit aucune application, car la méthode de Grassmann permet d'introduire
direetement les notions géométriques dans les calculs.

L.a notion de position (posit a, notation qu’on doit lire position (positio)
de ay permet (ne 43) de définir (rés simplement les ¢léments projectifs point,
droite et plan. La loi de dualité énoncée sous unc forme plus précise que
dordinaire (19-51), découle directement des lois de dualité des formations,
qui sont les suivanies :

Pour lespace : de toute propriété des formations exprimable en les reliant
uniquement par les opérations somme, produit par un nombre, produit pro-
gressif ouw régressif, on conclut toujours une nouvelle propriété par le chan-
gement des Fy dans® les Fa, des Fg dans les Fi, laissant fixes les Fa ot Fy
(nombres).

P12 I, Fy, formes projectives de 1re, 2me cle. espéce.
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Pour le plan projectif : le principe de dualit¢ dans le plan subsiste si on
change les Fi1 dans les Fi, les Fz dans les Fi et les Fs (nombres) dans
les Fs.

Pour les éléments projectifs : de toute propri¢té de position des éléments
projectifs point, droite, plan, on peut déduire une nouvelle propriété par le
changement de point en plan, de plan en point, de droite en droite, lorsque
au lieu de dire il passe par on dira il est sur, ct réciproqucment.

Les homographies projectives dans les faisceaux et dans les ponctuelles
sonl traitées dans la (roisicme partic et on en fait un usage (rés remar-
quable dans Vexposition de la théorie projective ¢t métrique des coniques
propres, en obtenant une forme qui cst sans doute plus simple que celle
qu’on obticnt lorsquon a recours aux méthodes ordinaires, analytiques et
synthétiques. De la définition des faisceaux des Fi, Fz, Fs on passe a 'étude
des bi-rapports :

U1 us U U4

rapp u = rapp (e, we, us, us) — TR
est le rapport anharmonique de la succession w, ou aussi le bi-rapport de
la succession w qui est fonction de la position des formes w et qui peat
prendre les valeurs 0, 1, e lorsque sculement deux au moins de ses ¢lé-
ments onl méme position. Lorsque on a rapp w = — 1, la succession est
harmonique. On peut remarquer que de cette maniere le bi-rapport se
trouve introduit comme notion générale, ce qui n’est pas indispensable,
comme dans fa Géométrie projective ordinaire. — Les homographies dans
les faisceaux sont définies aux numéros (95-57): lopération ¢ qui trans-
forme les éléments de U dans les éléments de U7, U et U étant deux fais-
ceaux de formation, scra une (ransformation linéaire ou homographique
lorsque seulement, les éléments «, b de U et le nombre m étant invariables,
on auara toujours,

ala + b) = ga + ab, a(ma) = misa),

¢'est=a-dire “si Lopération est distributive par rapport a la somme ¢t com-
mutative par vapport au produit par un nombre.

L'homographic ¢ est renversable st @’b 550, c'est-a-dire s7il est permis
de considérer 'homographie = L L homographie projective est caractérisée
par le symbole posit a. c¢’est-a-dire par le symbole d'une opération déter-
min¢e qui transforme les U dans les ¢léments de posit U7, U et U’ ¢tant deux
faisceaux de formations. A = posit g est déterminée univoquement si ¢ est
connu; mais quand au contraire A est connu, il existe un nombre infini de
solutions posit ¢ qui se déduisent Pnne de Pautre par multiplication par un
nombre.

Si « et b sont les éléments de U, tels que ab =0, alors, de quolqu.e facon
que Pon fixe les éléments p el g de U, on a toujours,

pleg) — qlaop) = %}l [alah) — bla)].

Si 6 est renversable et «/, b sont des ¢léments de U7,

. Ly iam i

g ! b’y — b(a " a') = [alah) — blaa)] .

ab
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Si U et U’ sont des faisceaux de Fi (ou de Fz), du méme plan, ayant les
supports (ou centres) distincts, alors,

posit la(ab) — bloa)]

est une droite (ou un point) qu'on nomme axe (ou centre) de collinéation de
I'homographie ¢ et de son inverse, si elle existe. Les substitutions (58), la
transformation de Steiner (59) conduisent & la construction de Steiner (60)
fondée sur le théoréme, « si i est une correspondance de Steiner pour la
circonférence I', i S est un point de I' et Nopération o est lelle que, étant
le point P 3£ S de I' quelconque, on a g [posit (SP)| = posit |S (AP)], alors
¢ est une homographie projective renversable (qui transforme les rayons SP
dans les rayons S (XP) qui fait correspondre & la tangente en S au cercle T
la droite S (25). LLe théoréeme réciproque lui aussi esl vrai.

De cette manicre les homographies dans les faisceaux cn font dériver
des transformations lindaires dont on trouve la théorie complete aux numdé-
ros 100-105. Comme D'a montré aussi M. Carvallo, ces (ransformations
donnent des remarquables applications dans la physique ¢t dans la méca-
nique lorsqu’on a recours aux symboles de Grassmann. L’auteur se limite
dans ce livee @ nen montrer que les applications & la Géométrie projective.

I involutionest considérée comme unc substitution qui n’est pas un nombre,
mais dont le carré est un nombre. La substitution 6 qui nest pas nulle est
une involution sous la coundition nécessaire et suffisante que si les éléments
a. b du faiscecau sont quelconques, on doit avoir toujours : «a(eh) — b(aa)
= 0 dounc il est aussi nécessaire et suflisant que Uinvariant de ¢ soit nul.

s < ) .. , . . .
= o0 cexprime les conditions nécessaires et suffisantes pour que l'involu-

G
tion g soit elliptique (les éléments unis manquent), ou parabolique (posit ¢ a
un ¢lément uni), ou hyperbolique (’posiz‘, g a deux éléments unisj.

L’étude des coniques (64-68) dépend directement de I'homographie dans
les faisccaux, ce qui évite la discussion de 'équation générale du deuxieme
degré, analyse qu'on trouve dans (ous les traités ordinaires de Géométrie
analytique, et qui, au fond, n’a rien de géométrique.

Iy a lieu de mentionner le passage (65) de la construction par points a
la construction par tangentes, ainsi que Popération (qui substanticllement
cst une polarité) donnant le diametre (67) et aussi la méthode pour obtenir
équation géndrale des coniques proprement dites (67).

Dans la quatricme partie 'autear pose d’abord la notion de limite. Sui-
vant le formulaive de M. Peano, il indique par la notation lim (f, w. x) la
limite de la fonction [ lorsque la variable, dans ses variations dans la classe
i des nombres réels, se rapproche de x, ¢lément de la classe dérivée de w.
Sioa est une IY (fixe, constante), onalim (f, w, x)=a quand, quel que soit
le produit K de %-r points, ona toujours pourla fonction numérique Kf'I'éga-
We lim (kf, w, x) = ka. Ainsi la définition de limite d’une formation variable
se trouve ramence a la définition d’une fonction numérique. Si [ est un ¢lé-
ment projectif (point, droite ou plan) et @ est encore un ¢lément projectif de

meme espeee. on aura lim (f; w, x) = o quand il sera possible déterminer
une formation géomeétrique f7, fonction des w, telle que, posut [y = fr. et

ausst posit [lan (7, w, k)] = a, ¢tant les y de w quelconques. Les deux sym-
holes posit et lim sont commutatifs. La dérivée de [ dans la classe w, pour
la \'.nlcur' x de la variable, estla limite de ([y—[x)/(y—x), lorsque y dans ses
variations en w, sc rapproche de a. Si la dérivée d’une F, existe, clle est

L'Enscignement mathém, 6¢ annde : 1904 17
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toujours une F, ; celle d'une coustante est zéro; donc la dérivée d’un point
propre est un vecteur ; la dérivée d'un vecteur, d’un bi-vecteur, d'un tri-
vecleur est encore un vecteur, un bi-vecteur, un tri-vecteur. Les coordon-
ncées de la dérivée sont les dérivées des coordonnées (car la dérivée d'une
somme est somme des dérivées de ses termes) ; Uopération « dérivation » est
commutative avec ’homographie. Ces principes et les développements qui ¢n
découlent sont tout de suite appliqués par l'auteur aux lignes et enveloppes
de droites et de plans (71-78), aux surfacesréglées, aux enveloppes et tratet-
tories des systemes de lignes, aux surfaces en général, et toutes ces questions
géométriques sont rapidement développées d’une maniére trés élégante et
générale, montrant encore une fois la grande utilité qu’on retrouve a faire
un vecteur du parametre différentiel.

Les formules de Frenet (79-86), qu'on nomme ordinairement de Serret
meénent sous forme vectorielle, tout directement a des importants résultats
géométriques, particulierement dans la théorie de I'hélice, ou les démons-
trations acqui¢rent une extréme simplicité, Comme on ne fait pas usage de
coordonnées, les invariants disparaissent naturellement dans la théorie or-
dinaire des coniques (64-68, 114-120), des quadriques (121-125), des lignes
de courbure, des géodésiques et asymptotiques (97-99). Le parameétre diffé-
rentiel (95) est défini au chapitre cinq de cette méme partie: Siw est un nombre,
fonction d’un point propre variable P, et si le champ de P ne seréduit pas a une
ligne ou a une surface, nous nommerons paramétre diftérentiel de u, et nous
indiquerons par yu, le vecteur tel que du = vu > dP.» De cette maniere
le parameétre est introduit comme vecteur (Hamilton) et non comme nombre
(Lamé), ce qui permet d’étudier plus simplement assez de questions géo-
métriques dont les équations se réduisent a des expressions tres élémen-

taires : on a, par exemple, dP.dK = o comme équation différentielle des
lignes de courbure (K =vecteur unitaire, PK = normale en P a la surface};

on a K. dP d*P = o comme équation différentielle des géodésiques; dP > dK
comme équation différentielle des lignes asymptotiques ; et la détermination
des lignes de courbure d’une surface se fait (97) enrecourant a une homogra-
phie de vecteurs au lieu de I'invariant différentiel quadratique. Pour donner
un exemple de la simplicité qu’on retrouve dans les démonstrations, il suf-
fira de reporter celle du théoréme de Terquem : « Si une ligne commune &
deux surfaces est ligne de courbure d’elles, alors les deux surfaces se cou-
peunt sous un angle constant le long de cette ligne. » « Au point P com-
mun aux deux surfaces soient PK, PK1 les normales: on a, d(K><Ki)=(dK)
> Ki + (dK1) > K. Si P est ligne de courbure des deux surfaces, alors
dK, dKi sont paralleles a dP et normales a K et Ki, c’est-a-dire que
d(K < K1) =0, ce quil fallait démontrer. » .

L’usage du parameétre différentiel permet encore de traiter avec les géo-
désiques des surfaces (99) les questions analogues a celles qu’on a pour les
droites sur le plan.

Dans la cinquiéme partie on retrouve développée d’une fagon complete et
dans un espace trés petit, la théorie générale de 'homographie dans tous les
systémes projectifs. T,es collinéations (106-113) fournissent les opérations
qui ont unc importance capitale dans la Géométrie projective. Toute homo-
graphie ¢ qui transforme Fi en Fi (substitution) est telle que 1o, il ex-
iste une F1 W avec laquelle F1 et sa correspondante, par rapport & ¢ sont col-
linéaires; 20, I’homographie ¢! (ransforme chaque F1 en un multiple de W,

i i),
=
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est une collinéation. Si ¢ est une collinéation, il existe du moins une Ky %%
et une Fsfl telles que, FiP étant quelconque, on a toujours: 6P =P+ PO.W,
ou bien, ce qui est le méme, ¢ P =(1+ WIn)P+PW.II.

Les collinéations donnent les homographies et les projectivités avec les
théorémes fondamentaux de la Géométrie descriptive et les polarités qui
dans le plan conduisent a la théorie des coniques et dans 'espace a celle
des quadriques.

L’homologie est définie en posant : homologie = collinéation renversable,
et alors on a directement le théoréme : homologie = collinéation & bi-rapport
qui n’est pas nul. L’homologie ¢ est involutive si son carré est un nombre :
pour A = posit &, A est une involution projective : toute homologie différente
de l'identité et qui a le centre propre et la base qui n’est pas entiérement a
I'infini, est propre. Si son plan limite et celui de son inverse coincident, elle
est une homologie involutive.

I affinité, 'homothétie, la congruence sont” étudiées en posant, affinité —
homologie & centre impropre et base propre; homothétie = homologie a
centre impropre et base & I'infini : congruence — homologie & centre et base
a Iinfini.

Chaque homographie de la forme (¢ ; @}, ot ¢ est une projection centrale
(collinéation non renversable, c’est-a-dire a bi-rapport nul) et « une Fs non
nulle, et qui ne sort de cent a, est appelée une projectivité. — TL’¢tude des
corrélations [homographies qui transforment les Fy (ou F3)d’un plan dans les
F2 (ou F1) du méme plan, ou bien qui transforment les F2 (ou Fs) d'une étotle
dans les F3 (ou Fg) d’'une étoile concentrique a la premiere] meénent a Pétude
des polarités (114-124) dans le plan, dans 1'étoile, dans I’espace, et cela sous
une forme plus générale que celle qu’on obtient par les ordinaires po-
larités projectives qui sont plus compliquées et ne donnent rien de la partie
géométrique ne pouvant s'occuper de ce qui se rapporte aux coordonnées
usuelles. Les théorémes de Desargues et Sturm y recoivent une démonstra-
tion aussi simple qu'on peut le désirer, et 'étude de la fonction générale du
deuxi¢me ordre en dérive directement.

A Ja fin du volume sont des notes ott I'on obtient sous forme élémentaire
el en peu de lignes, quoique sans supprimer aucun développement, les sur-
faces de révolution & courbure (totale ou moyenne) constante, avec d’autres
remarquables propriétés des trocoides a base rectiligne, dont I'examen est
d'ordinaire trés long et tres difficile.

De l'apercu des mali¢res contenues dans ces Lezioni, il ressort que
M. Burali-Forti se sert de la méthode géométrique de Grassmann non
sculement comme d’instrument de démonstration, mais aussi comme moyen
de recherche : et, il faut en convenir, elle s’y préte mieux que toutes les au-
tres méthodes, & cause de son algorithme tout & fait semblable & celui de
analyse ordinaire ; il opére directement sur les éléments géométriques,
point, droite. plan, sans se servir des coordonnées, en substituant ainsi com-
plétement aux invariants numériques les simples opérations géométriques et
perme.lt:mt d’¢tudier par un procédé unique et avee la méme rigueur tant les
propriétés métriques que celles projectives. Et pour mettre encore plus en
évidence I'utilité de la méthode adoptée par M. Burali-Forti, il suffit de rap-
peler combien l'usage des coordonnées cartésicnnes est malaisé dans étude
des propriéiés projectives et que, d’autre part, les coordonnées projectives
ne se prétent pas a Pétude. des propriétés mélriques, sans introduire les
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imaginaires en exprimant I'¢lément trés simple «angle » comme le produit
par ‘/——1 du logarithmenéperien d’un bi-rapport imaginaire. De plus 'algo-
rithme de Grassmann contient comme des cas particuliers toutes les méthodes
analytiques ct graphiques : les coordonnées cartésiennes (13-15, 19-22),
polaires (64) et projectives (25), les homographies (3¢ et 5¢ parties), les ¢qui-
pollences (de Bellavitis), les barycentriques (de Mobius), les quaternions (de
IHamilton), ete.'-- Lia Mécanique y trouve une préparation naturelle dans la
théorie des formes (41), dans les opérations / et >< (74, ¢) et la cinématique
en résulte comme traitée implicitement (26-39, 8% trocoides).

Le livee a été éerit pour Académie militaire italienne, mais comme toute
la théorie qu'il développe est fondée sur des notions élémentaires d’algebre
et de calcul différentiel, on peut aussi le recommander pour les cours uni-
versitaires ol il représenterait un cours plus organique que celui qu'on y
recoit ordinairement, et particulicrement dans les cours des Facultés ita-
liennes ot Ienseignement de la Géométrie supérieare se (rouve réparti, en
donnant licu & beaucoup de doubles emplois, sous des formes différentes
dans les dénominations de Géométrie analytique, projective, descriptive, ete.

C. Arasia (Tempio, Sard.)
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