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SUR UNE FORMULE TRIGONOMÉTRIQUE

D'INTERPOLATION

U Nous allons nous occuper dans cette Note de la question
suivante :

Déterminer la fonction entière et homogène de sin^c et
cos.#, de plus petit degré, qui prend, elle et ses dérivées, par
rapport à x,les valeurs

y y 'y " y (oC — i)
m #•••# » « I •ïi•y/ • r/' • y//5-1' >

y* • y*' • y*" y*a_1) •

quand on donne à.#, les valeurs x{, .#s,
Nous avons étudié déjà ce problème dans un article publié

en 1885 aux Nouvelles Annales de Mathématiques (3me série,
t. IV); mais nous allons le résoudre ici par une analyse plus
simple, au moyen d'une représentation des fonctions entières
et homogènes de sin.# et cos a?, qui donne immédiatement
sa solution.

Je partirai,pour cela,de la fraction rationnelle de sin.# et cos.#:

f(sin^rsina [oc—x)...sinß(jz —... sin^ —

où /'(sin.#, cos.#) représente une fonction entière et homogène

de sin.# etcos^r du degré oc + + + -F X — 1, et, en
posant

/"(sin x,cos x) — eos^.r F I a ri g x)
771OC —J— -j- ß -j- —|— X 1
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je l'écrirai de la manière suivante :

F (tang a?)

w cos a? (tang a? — tanga^)01... (tang a?— tan (lang .a?—tanga?k

on

to — cos a X. COS Px. COS Xk

Ensuite je considère la fonction rationnelle de tang#?

F (tang a?)

F (tang a?)

OU

Fj lang a?) (tang a? — tang a?1)a (tang a? — tang x^P (tang a? — tangx^

el je la décompose en fractions simples ; ce qui donne

i=k r Mi® M2(î'F (tanga?)
Fi (tang,r) S

i
-j-

tanga?—langax (tang a? — tang a?.)

M (0

+ +
(tang a? — tanga?-)ß _

OÙ M(°, Mi0,..., M'i' rep résentent des constantes qui
coïncident avec les coefficients de 1 A'3—2,...,A° dans
le développement de

ifi F (tang a? -f- h)

Fi (tang a? ^ -j- h)

et par conséquent

F (tang,r
Fi (tang

i k

S
» 1

COS Xjcos
sin (a?' — +

IVh^cosFrj cos2a?

sin2 (x — x •)

Mg^cos^a?. cosPx

nursiur (a? — x>

Mais d'un aulre côté, si l'on décompose en des fractions
1

simples la fraction p—— et si l'on représente par
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,A 2 i • •• 5 i** * 1 i ^2 ' * * * 1

^

de ces fractions, on trouve

les numérateurs

F (tang.r) AiF (tang.r)
_j_

A2F (langr)
Fi (langr) langr— langa^ (langr — lang.r^2

Aa F (lang.r)

I angr— t a ngri a

+
BiF (lang r) B2F (langr)

langr—1 angr •
' (lang.r— langr râ + ••• +

BßV (langr)
_

(tang.r —tang.r^r

+
Pi( tang.r)

1 .—— ;— ~r
P2F (lang,r)

1 an g ,r — tan g ,r,((1 a n g x — t a ng r^):
~h ••• ~f~

P^F (tang.r)

(tang.r —tangrfc)'
1 >

et, par conséquent, en posant tanga? tang.r^ -)- /z,

ißF langr^-j-h)
Fi t a 11 g -{-

ß ~ 1 rwt I an ü".rIangr • -j- hft V' (tangr • )-f

-|-B2^äP
2

F (tang.r.) -f- iß1F'((ang.r|.) -f- ~ F" (lang.r^ +

+

i- ßß F ang r •) -f- AF'(langr.) -f- -j-
lß~l rFr I;

(ß~ 1)1
(lang .ré +

-f- Bhß

oit Whß représente la partie du développement consfdéré

qui provient des fractions

A i hB F t a i 1 g r • -f- h A 2iß F lang a' -f- h)

lang.r. -f--h— tangr^ lang.r^-f- h — lang.rj)
etc

On a donc

— BiF (langrj -f- B2F'(langrJ.) -f-

— B2F(langr .-f- BsF'f langr.) -f

I

Bß F«3 (lang.rj' + lp-1)!
8 '

+"—— F(P—,iß — 2)! ' '

MpW }ipF(lang.»'(.)
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où F' (tang.ry, F" tangly) représentent les valeurs que
les dérivées F' i),F "if),de F [t. prennent, quand on y
pose / tang.r*

De ces formules et de la suivante :

/'(sin*, cost) F(lang*)

si„a|.r-.r,) siiAr x.|. siAr- ,rfc) »cosj-Filtangx)

il résulte la suivante :

/'(sinr, cosr)

fiX) \ r Bi cos,r,- Bko^V08-»'
V < - ' sin'lx - .r - + +

M
t 1 sm(r—ry ollL •*{>

B ficosßjr-cosß * *
smr(*ft* — *,•)r

B2COs.r, B3COS2r.cos * Bccoxfi ix 2r
+ --V7V — + - + '

sin(r-ry sin2(r *t-) - smß-l(x-x,.)+

+
1 Bp cos*.

+ T7T -r-7 (lang*;)
/S — I sm(r— x{)

F (tang*^)

F'(lang*-)

$
'3 ou

.»(*) — sina,,r xL) sinftr •— *}... sinA(r—

qui est celle que nous proposions d'obtenir.
Au moyen de cette formule on peut résoudre immédiatement

le problème antérieurement énoncé.
En elfet, l'équation

/'(sin.r cos.r) — cosm*F(lang*)

et celles qui résultent de sa dérivation par rapport à

déterminent les quantités

F(langr-) F'(tang.r.) F "(lang*.)

î quand sont données les quantités

f(sin*. cos.!.), f'Jsinx.,cos*.) /""^(sin*., cos *.),

L'Enseignement mathém., 6e année; 1904. 15
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2. —Voici encore un autre problème qu'on peut résoudre
au moyen de la formule qu'on vient de trouver, en remarquant
que l'expression qu'elle donne pour /^(sin.r, cos,r) peut être
réduite premièrement à la forme

/(sin.r cos#) K coswir -|- Km — 2cosm~^x -|-

sinx [Lm_ j_cosm _j_ LTO_3cosm— + ]

et qu'ensuite, au moyen des égalités connues

l
2a-- ieosa.r — cos ax-f- | ^ j cos — 2) x 4~ | 2

Jcos 4)# + +2

si a est un entier pair, et

2a~^cosax~cos ax| ^
jcos (a—2)xjcos— 4),r —j— I

(a_i)
)e os,r,

si a est un entier impair, elle peut être réduite à la forme
suivante :

f(sinx cosx)=r R^cos mx Rm_2cos(7;? — 2)«r -j- -f- RjCOs#
(2)

I Smsin nix-\~Sw__2soi (m—2).r -j— -j- sin#

quand m est impair,et à la suivante:

i fisinx cos;r)=R cos mx-(-R 2cos(w—-2)# + + R0
(3) I

4" Sw s in mx -)- Sm__û}Sin (m — 4" ••• 4~ S2sin.2#

quand m est pair.
On peut donc résoudre, au moyen de la formule (1), le

problème qui a pour but de chercher les coefficients qui
entrent dans une des expressions (2) ou (3), quand sont
données les valeurs qu'elle et ses dérivées prennent aux

points#^, œk en déterminant premièrement, au

moyen de ces valeurs et de la formule (1), la fonction /'(sin x,
cosa?), et en la réduisant ensuite à une des formes (2) ou (3).

F. Gomes Teixeiha (Porto).
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