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SUR UNE FORMULE TRIGONOMETRIQUE
D’ INTERPOLATION

1. Nous allons nous occuper dans cette Note de la question

sulvante: :

Déterminer la fonction entiére et homogéne de sina et
cosx, de plus petit degré, qui prend, elle et ses dérivées, par
rapport a «, les valeurs

. L/ L . —1),
Yoy o N ""’ﬁl(a )
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quand on donne a x, les valeurs Xys Lgyeney Ly

Nous avons étudié déja ce probleme dans un article publié
en 1885 aux Nouvelles Annales de Mathématiques (3™° série,
t. IV): mais nous allons le résoudre ici par une analyse plus
simple, au moyen d’'une représentation des fonctions entiéres
et homogénes de sin.z el cosz, qui donne immédiatement

sa solution. .
Je partirai,pour cela,delafractionrationnelledesinx etcosx:

f(sinx , cosx)

: : ) ’
sm“(x———xi)...smﬁ(x—xi)...sm ( —ay)

ou f(sinx, cosx) représente une fonction entiere et homo-
genedesinzetcosy dudegré « 4 ... +8+ ...-+1—1, et, en
posant

sinx, cosa) — cosMx K (tangx)
g

m=—o-+..+L4+..+r—1,
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je 'écrirai de la maniére suivante :

F (tangx)

A

w cos x (tangx — tangxl)“... (tang x tangxz) g ... (tangx ﬁtzlngxk)

ou
A

w=rcos%x ... (:osﬁ:vz . cos”

Ensuite je considere la fonction rationnelle de tanga

F (tang x)
F (ti\rlgx) ’

1
ou

29
F, (tangx) = (tangx — tangxl)a ... (tangx — tangxz-)p .. (tanga tangxk))‘ ,

el je la décompose en fractions simples; ce qui donne

F{tangx) i:z'k M;® + Mz
Fi(tangx) ;<= | tangx—tangx, (tangx — tangxi)2
M @ .
+ o é ] )
(tangx — tangx;) p

ou MW NMW M‘ﬁ” représentent des constantes qui

coincident avec les coeflicients de 28—, RB—2 .. 1° dans
le développement de
L4
hﬁ]:“(langxi—{— h)
F1(tangx; + h)

1

et par (:onséquent

=k ) )
Fltangx) ? M, ) COSXjCOS T Mz(“cos2 x; cos?x
h—-J

Fi(tangx) R sin (x — ) sin®(x — a;)

Mﬁ(i)cosﬁ x, cos@x
P J

S (9(:~—;7(:i)

Mais d’un aulre coté, si 'on décompose en des fractions

Iy (tang )

simples la fraction et s1 l'on représente par



216 F..GOMES TEIXEIR A
AL A A o By, By s, ”(3 ... lesnumérateurs
de ces fractions, on trouve

2 o 9

A, Fltang x)

F (tang.x A1F (tang.x) AeF (tangx
- gx) =3 (tang + (tang.x) - d
Fi (tangx) tangx — tangx;  (tangax — tanga,) (lanng’—t;lng.I‘l)a
3
A T P
B1F (tang.r) BeF (tang x) T bﬁk (tang x)
tang lzmg‘.z‘i (tang .y — lnng.z‘ljz (t'mg r t'mg v )ﬁ
L€ 2 C . l.
N Pi(tang x) Pol (tangx) o Py {tang x)
tang xr —tlang.x, (tang x — lang‘rk)?‘ (tang x — tang Tk)']‘

et, par (:onséquent, en posant tangax — tang.x; +- I,

hﬁ l*'(Lang.)('z.—i—/t)
Fitangx; + /t)

-1
= Bi1 [ /L‘B F (tanga;) 4 /1,{3 F7 (tang x4 ... }

-+ B2 [/’UB —2 F(tang.x,) + /U6> Lyor (lang .x;) —|— /1{5}4 Hanu)( D ]

+
/18

)

bB [ “(lang Xy ) + /L,l“’(l:mg,rz) + ...+ 5 Y

—1 7
}‘ﬁ (tang @) + ... J

1+ REP

N " . , 9 , ,
ot RAP représente la partie du développement considéré
qui provient des fractions

Alhl“’ Fltang x; 4 h) AglzﬁF(lang.l' —+ k)

’ 9 ete.

ltang x; + h — tang .y (lang x,~- h — tang.rq)?

On a donc

. ] Bﬁ F(@—i) o
M) — ByF (tang.x;) 4 B2l (tangx;) + ... + 75 i : (tang.x;)

M) — BoF (tang .x o Bsl(tange)) . 4 TP ﬁ Bp piB— ‘1(“,0 X
(B — 2!

l\]@(i) — ]"}ﬁl*‘(léll]g-ri ’
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ou F'itang.w;, F"tangay) , ... représentent les valeurs que
les dérivées F’ 1, "), ... de F{¢. prennent, quand on y
pose { —= tang.x; .

De ces formules et de la suivante :

flsinx, cos.x) F(tang x)

sin®(r — ) ... sinﬁ(.r Xl sin}(.x'—— Xy wcosxFiftangx) -

il résulte la suivante:

fistna, cosx)

' S ST S ,
[ B cos ; Bacos?r;cos

sin*(ax — x)

4+

|
se
&
ipal

sin(x — x)

Bﬁcosﬁxicos[3 —lx
F(tangx;)

sinﬁ(.’r — ;)

-1 0—9
Becos x; Bscos® x,cos Bﬁcosﬁ x cost” T .
+1 Sy - T — + ... + — ‘(lang )
st {a — 1] sEx — @) Sinﬁ 1(.1'——1';‘)
+ . ’
\ Bpcos.a.
1 5 _
LT e ' oylf H(lang.x‘,') ,

(B—1! " sin(x—x;)

ou

wlr) = sin%ler —x ) ... sinﬁ(,r — X)) sin®(x — L)

qui est celle que nous proposions d’obtenir.

Au moyen de cette formule on peut résoudre immédiate-
ment le probleme antérieurement énoncé.

En eflet, I'équation

- \ m ~
fisinx , cosxj = cos xF(tangx)

et celles qui résultent de sa dérivation par rapport & o déter-
minent les quantités

AR DR 4 . ? a1 oo
Fitangx,) , F (tangx,) , P”(ldng(rz-) ) e
quand sont données les quantités
r i . MG e eaa :
/(blll.Il. , (os.zi), f w(sm,ri, (‘OS.IZ.) , mx(sm.zi, cos .rl.),

L’Enseignement mathém., 6¢ année ; 1904. i
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2. — Voici encore un autre probléme qu’on peut résoudre
aumoyen de la formule qu’on vient de trouver, en remarquant
que l'expression qu’elle donne pour f(sinx, cosx) peut étre
réduite premierement a la forme

f(sinx , cosx) = chosm.r -+ Km__g('o.sm_g.fr + ..

+ sina L, jeos™ 1y + Lom—gcos™ 3¢ 1 . ],
et qu’ensuile, au moyen des égalités connues

a a a

1
20—1cos%r = cos ax + (,1 )cos(a—— 2) x —}—(2)('05((1——4),1: +...+3 L.

2
sl « est un entier pair, et

a a a
20 —1.0s%—cos ax—f—( 1)Cos{a—~—2)x—§-(2 )cos(a——— e + ...+ L(a_“ cos.x,
2

si @ est un entier impair, elle peut étre réduite a la forme

suivante:

bl
8 f(sinx , cosx) = R cosmx 4 R gcos(m—2)x + ... + R cosx

(2) L : :
s + S,sinmax 4+ S gsin(m—2)x 4 ...+ S sinx ,
quand m est impair, et a la suivante:

flsina, cosx)=R, cosmax 4 R _qcos(m—2)x 4 ... + R,
+ S, sinmax S, gsin(m —2)x 4 ... 4 Sysin2x,

(3)

quand m est pair.

On peut donc résoudre, au moyen de la formule (1), le
probleme qui a pour but de chercher les coelflicients qui
entrent dans une des expressions (2) ou (3), quand sont
données les valeurs qu’elle et ses dérivées prennent aux

points &, , « x, , en déterminant premierement, au

20 Y
moyen de ces valeurs et de la formule (1), la fonction f(sin x,

cosx), et en la réduisant ensuite & une des formes (2) ou (3.

I. Gomes Trixemra (Porto).
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