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Résumé. — A YAnalysis situs ressortissent les propriétés
relatives à un groupe de notions, qui se ramènent aux
suivantes : point, continuité, ligne, surface, transformation

ponctuelle, connexion.

III
GÉOMÉTRIE PROJECTIVE

Axtomes PROJECTiFs. — On appelle projectiles les
transformations dans lesquelles toute ligne droite est transformée
en une ligne droite.

Les propriétés projeclives des figures sont, par définition,
celles qui sont invariantes (conservées) dans toute transformation

ponctuelle projective de l'espace.
L'ensemble de ces propriétés constitue la Géométrie projective.

Il est clair, d'après cela, que les propriétés projeetives
sont celles qui, en plus des notions constituant l'objet
de YAnalysis situs,font intervenir la notion de ligne droite.

Quelle que soit l'origine de la notion de ligne droite, cette
notion doit être considérée, en Géométrie projective, comme
primordiale, c'est-à-dire qu'elle n'est pas susceptible d'une
définition la ramenant à des éléments appartenant à ce

domaine; autrement dit, elle doit être considérée comme
donnée, ou bien acquise par un processus étranger.

On pourrait, il est vrai, prendre pour notion primordiale
celle de transformation ponctuelle projective, mais elle ne s'impose

pas assez directement à notre conception sensorielle.
A défaut de définition, il est nécessaire d'énoncer les

propriétés fondamentales de la ligne droite qui, jointes aux
axiomes AI-et AIL doivent servir d'axiomes à la Géométrie
projective.

Les axiomes projeetifs sont au nombre de trois, savoir:
PI. — Les lignes droites forment une famille de lignes

continues j telles qu'une d'entreelles est déterminée par
condition de passer par deux points donnés.

P IL — Lorsque deux droites sont deux
autres droites respectivement concourantes avec chacune d'elles
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(sans que trois de ces droites soient concourantes ensemble)
sont concourantes entre elles.

P III. — Par un point on ne peut mener qu'une droite
asy mptotiqueà une autre droite.

Ce dernier axiome, qui représente le postulat des
lèles^ n'intervient pas dans les propriétés projektives,

lorsqu'on se borne à leur signification analytique, en faisant
abstraction des idées figurées qui leur correspondent. Nous
ne le comprendrons parmi les axiomes projeetifs que lorsque
nous l'indiquerons expressément.

La condition pour qu'une ligne passe par un point donné
s'exprime par deux équations.

L'axiome P I équivaut donc à ceci: que les droites forment
une famille de lignes à quatre paramètres et que le système
des quatre équations exprimant qu'une de ces lignes passe
par deux points donnés a une solution unique.

L'axiome P II est la condition d'existence du plan, en ce

qu'il permet de construire une famille à trois paramètres de

surfaces, telles qu'une ligne droite qui a deux de ses poinls
sur une de ces surfaces y est située tout entière.

u

Nous prenons ces axiomes au sens c'est-à-dire
que, pour nous, la « condition de rencontre » de deux
droites est la relation entre les paramètres de ces droites
qui résulte de l'élimination des coordonnées entre leurs
équations, étant admis que, lorsque la condition est remplie,
les valeurs qui en résultent pour les coordonnées peuvent
être impropres, par exemple imaginaires, si le système de
coordonnées est univoque.

Cette généralisation de l'idée du concours de deux droites
étend la portée des axiomes P I et PII-- seuls axiomes
projectifs proprement dits — à certaines familles de lignes qui
n'y satisferaient pas sans cela. 11 est facile de voir notamment

que le second axiome, si on se bornait à sa signification
figurée, ne pourrait être exact pour une famille de lignes ne
satisfaisant pas à l'axiome de l'asymptotique unique. En
outre, au sens analytique, plusieurs lignes asymptotiques en tie
elles sont concourantes.

Les axiomes P 1 et P II, même au sens analytique, repré-
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senlent forcément des propriétés construclives; mais, celles-

ci, lorsque le point de concours n'est pas réel, n'ont pas la

simplicité nécessaire pour être introduites dans des axiomes.
Au lieu de prendre la ligne droite pour notion fondamentale

de la Géométrie projective, on peut prendre le plan.
Les axiomes seraient alors :

P IY. — Les plans forment une famille cle telles

(pce Lune d'entre elles est déterminée par la condition de passer

par trois points donnés.
^P 11)'. — Troisplans ayant en commun plus cl'un point ont

en commun tous les points qui appartiennent à la fois à
deux d'entre eux.

Nous laissons au lecteur le soin de démontrer l'équivalence

des deux couples d'axiomes, après avoir d'abord établi
la genèse du plan par le mouvement d'une droite passant par
un point donné et s'appuyant sur une droite donnée, et
montré que, en vertu de P II, une droite ayant deux points
dans un plan y est située tout entière.

Lignes satisfaisant aux axiomes projecttfs. — Il est clair
que les axiomes posés jusqu'ici, qui particularisent les droites

et les plans (en tant que familles plutôt qu'en ce qui
concerne leur forme), ne les déterminent nullement et qu'il
existe des infinités de familles de lignes et de surfaces
jouissant de ces mêmes propriétés, de sorte que les propositions

de la Géométrie projective, lesquelles, comme nous le
démontrerons, résultent entièrement des axiomes projectifs,
sont applicables à des figures où les surfaces et les lignes
choisies pour répondre aux termes de « plans » et de « droites

» ne seraient nullement identiques aux surfaces et aux
lignes désignées habituellement par ces noms.

Les conclusions d'un raisonnement s'étendent en effet
partout où sont applicables les propriétés réellement mises
en œuvre, et c'est pour cela qu'il est toujours très scientifique

de dégager nettement ces propriétés. Ce qui fait la
ralité des raisonnements analytiques, c'est qu'ils s'appuient
uniquement sur des propriétés que possèdent, définition^
les éléments dont ils s'occupent.

Nous signalerons brièvement les particularités que peu-
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vent présenter les familles de lignes satisfaisant aux axiomes
P I et P II, sans toutefois nous écarter des cas les plus
simples, la généralité nécessitant des développements dans
lesquels nous ne pouvons entrer.

1° Les lignes considérées sont fermées.
La surface engendrée par une ligne fermée variable

passant par un point et s'appuyant sur une autre ligne fermée
ne peut être que fermée: les surfaces jouant le rôle des

plans seront donc fermées.
Si une telle surface est à simple connexion, deux lignes

fermées tracées sur elle se rencontrent en un nombre pair de

points ; l'axiome P I ne saurait donc être valable en toute
rigueur. On peut toutefois en maintenir la portée essentielle
en admettant que les points de l'espace soient associés deux
à deux, de manière que, lorsque l'une des lignes
considérées passe par un point, elle passe également par son
associé. Une telle combinaison est réalisée par la famille à

quatre paramètres constituée par les cercles avant leur centre
sur un plan donné. Les axiomes P 1 et P II seraient
rigoureusement applicables, si l'on ne considérait que les points
situés d'un même côté du plan donné ; si ce plan est rejeté
à l'infini, on retombe sur la Géométrie ordinaire.

Mais on peut aussi supposer que les lignes jouant le rôle
des droites, tout en étant fermées, ne puissent avoir, deux
à deux, plus d'un point commun. Il est alors nécessaire que
les surlaces jouant le rôie des plans soient et, par
suite, a fortiori,doublement connexes.

2° Les lignes considérées sont ouvertes et ne satisfont pas
à l'axiome de i'asymptotique unique. Les surlaces jouant le

rôle des plans peuvent être alors simplement connexes et
doublement infinies, comme les plans eux-mêmes.

Admettons que l'on ait déterminé sur une de ces surfaces,

que l'on peut, pour la facilité de la représentation visuelle,
supposer être un plan, un système de coordonnées univo-

ques, et soit

(1) ajXxy) + bf{.ry) + c =z o

l'équation générale des lignes considérées, f(xy) o et
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y(xy) o étant respectivement les équations de deux d'entre
elles, et b,c, des paramètres (homogènes).

Supposons en outre que le système d'équations en xy :

(2) f[xy)=zX, Y,

où X et Y sont des nombres réels donnés, n'ait jamais plus
d'une solution composée de valeurs réelles de et quelles
que soient les valeurs attribuées à X et Y.

Moyennant ces conditions, la famille de lignes (1) se prêtera
à une interprétation de la Géométrie projective plane, dans

laquelle cette famille sera substituée à celle des lignes
droites.

En faisant varier les fonctions et <p, on obtiendra, pour
ces lignes, des formes très différentes entre elles, ainsi que
des particularités diverses dans leurs relations.

Laissant de côté le cas où les valeurs des fonctions /'et ©

ne sont pas toujours réelles pour tout système de valeurs des
coordonnées x et y,casoù il existe des points par lesquels
il ne passe aucune des lignes (1), nous nous bornerons à

signaler plus spécialement un cas où, au contraire, les fonctions
/'et y ne prennent pas tous les systèmes de valeurs réelles
lorsque Ton donne successivement à et toutes les valeurs
réelles possibles, le cas limite étant celui où la transformation

ponctuelle que représentent les équations(2), lorsqu'on y
regarde X et Y comme constituant un second couple de
variables, est univoque.

Supposons, par exemple, que, quelles que soient et
les valeurs X et Y de / et <p satisfassent toujours à l'inégalité

(3) X2 + Y2 < R2.

de sorte que, pour tout système de valeurs de X et Y n'y
satisfaisant pas, le système d'équation (2) n'ait pas de solution

réelle en x et y.
Les coordonnées xet y du point commun à deux lignes,

déterminées respectivement par les paramètres a, &, c et
cl //, c! sont données par les formules

p, x bc'— cl/ca'—ac'fw w=bK>'
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Les valeurs correspondantes de et y ne seront réelles
que sous condition et en particulier elles ne le seront pas
lorsque le dénominateur commun sera suffisamment grand.

Il est facile de voir que, par tout point de la surface,
passent une infinité de lignes (1) ne rencontrant pas une autre
de ces lignes donnée.

Les deux séries de lignes seront délimitées par deux d'entre

elles qui seront asymptotiques à la ligne donnée.
C'est l'hypothèse de Lobatchewski sur les lignes droites.
Si, à la limite, on suppose que la transformation (2) soit

univoque, les valeurs des coordonnées et y ne seront
infinies que dans le cas où l'on aura

et les deux asymptotiques susceptibles d'être menées par un
point à une ligne donnée de la famille (1) se confondent
toujours en une seule : c'est l'hypothèse euclidienne.

Il est d'ailleurs facile de former des fonctions et cp dont
les valeurs satisfassent à l'inégalité (3).

Considérons, pour cela, un cercle de rayon R ayant pour
centre l'origine des coordonnées, et représentons le plan
entier sur la région intérieure à ce cercle de la manière
suivante :

A tout point M du plan faisons correspondre un point AL

situé sur le même rayon et tel que les distances respectives
/ et /*' des deux points au centre du cercle soient liées par
la relation

En désignant par xet y les coordonnées rectangulaires
du point M et par X et Y celles du point M', on aura

al/ — b— o,

r
p R + >•'

r U log — oilLv — r

(/A'2-t- r2
Y r + i/A'2 + r2

10 :n IV i / T/9 IR — Vx2jrJ"*

et

V •/* + J2

— I

+ 1
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on a

Cr2 +7" y 2

X2+ } 2 R2 |e
* ' ~ 1

I < R2
h*2 + J2

\e R + 1 I

Il suffit donc de prendre, pour f(xy) et les expressions

ci-dessus de X et Y, pour que l'équation (1) soit l'équation

de lignes jouissant des propriétés projectives des lignes
droites dans le plan et telles que par un point on puisse mener
à l'une d'elles deux asymptotiques.

3° Lignes ouvertes et satisfaisant à l'axiome de l'asympto-
tique unique.

Pour obtenir une famille de lignes satisfaisant, non seulement

aux axiomes PI et P I L mais encore à l'axiome Pill,
il suffit de considérer les transformées des lignes droites dans

une transformation ponctuelle univoque, par exemple celle
qui est définie de la manière suivante : x, y> z, étant les
coordonnées d'un point, celles du transformé ont pour
expressions

x' —± e(&) — 1, y — ± eAy) — 1. z' it eu) — P

oil (x),(y), (z) représentent les valeurs absolues de x, 5

et où les signes placés devant les exponentielles sont à

choisir de manière que x', yj soient respectivement de

même signe que x,y,z.
Portée du théorème de Desargues. — Un théorème pro-

jectif important cle Géométrie plane est le théorème de

Desargues, qui peut être énoncé cle la manière suivante :

Théorème de Desargues. — Lorsque deux triangles situés
dears un même plan sont tels que les trois droites joignant
leurs sommets deux (t deux sont les côtés
respectivement opposés aux dits sommets se coupent deux à
deux sur une même droite,et réciproquement.

Ce théorème résulte facilement de l'axiome PII, en regar-1 O
dant les deux triangles comme les projections, faites de deux
points de vue différents, d'un même triangle de l'espace.

Les axiomes P I et PHI sont tout autant planaires que
spatiaux.
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Ils constituent,avec le théorème cle un groupe
d*axiomes projectifsplanaires,de sorte que le théorème de

Desargues est le représentant, dans le plan, de l'axiome
PII.

Ce fait important, mis en évidence sous une autre forme
par M. Hilbert1, résulte des propositions que nous énoncerons

sans démonstration (pour ne pas trop allonger cet
article) au paragraphe suivant.

Calcul segmextaire de M. Hilbert. — Pour la facilité
du langage, nous appellerons « droites » des lignes constituant

une famille satisfaisant aux axiomes PI et PII, mais
il reste entendu qu'elles peuvent présenter les formes les
plus diverses.

Nous allons établir un système de coordonnées sur une de

ces lignes au moyen d'une construction exposée par M.
Hilbert, dans laquelle toutefois nous remplacerons, en vue de la
généralité et pour éviter l'hypothèse de l'asymptotique unique,
la droite de l'infini par une droite quelconque. La construction

ainsi généralisée ne perd d'ailleurs aucune de ses pro-
priélés essentielles, lesquelles tiennent uniquement à l'axiome
PI et au théorème de Desargues.

Nous supposerons seulement qu'on sache déterminer,
dans le plan, le point de concours de deux droites ainsi que
la droite joignant deux points, étant d'ailleurs observé que
lorsqu'un des points n'est pas réel ou est rejeté à l'infini, le
tracé est toujours possible par l'application du théorème de

Desargues.
Sur la droite considérée DD', prenons

deux points 0 et A, traçons deux lignes
droites passant l'une par O, l'autre par
A et se coupant en B, et choisissons sur la

ligne AB un point!.
Etant donnés deux points a et h de la

droite DD' situés entre O et A, effectuons
les constructions suivantes :

Déterminons et par l'intersection de \a

1 Hilbert, loc. cit.
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et OB, puis a" par l'intersection de Ad et Bö, enfin par
l'intersection de la" et DDL

Désignons par le signe -f- l'opération que nous venons de

définir par ces constructions, c'est-à-dire posons

Cl —j— I) — C.

Cette opération jouit de propriétés importantes que l'on

peut démontrer directement en s'appuyant soit sur 1 axiome

PII, soit sur le théorème de Desargues, qui le représente
dans le plan.

On peut aussi déduire logiquement ces propriétés d'un
certain nombre d'entr'elles, que nous exprimerons de la

manière suivante, ou nous représentons par l'élément initial

0, en raison de ses propriétés :

fa:-j- h — .r a toujours une et une seule solution eue
[ci -"f- h) —{— c — ci -f- [h —j— c)? ci -|— o — ci,

Cl —j— l) Cl m ci —J— h h.

lorsque l> > c. on a a + h > a + c.

Le signe a pour objet d'exprimer l'ordre des éléments

par rapport au sens de parcours de 0 vers A.
Appelons opération additive une opération -H possédant

les propriétés I et s'appliquant aux éléments d'un continu
simplement étendu (on à une dimension), ayant un élément
initial représenté par 0 et pouvant soit se prolonger indéfiniment

soit avoir un second élément extrême A.
Nous énoncerons, sans démonstration, quelques-unes des

conséquences des propriétés 1 :

1° a + b=b-\~a,c'est-à-dire que l'opération additive,
qui, par hypothèse, est associative, est en outre commutative

;

2° L'expression a -f- x représente une fonction croissante
et continue de x\

8° Lorsque b>a,ilexiste toujours un élément tel

que
'

Cl ~ l) *

4° L'expression nx, oil n'est un nombre entier, représente
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une fonction continue et croissante de x, étant définie par
la formule

nx— x -f- Xx;

n

5° Il existe toujours, entre oet un élément x, tel que
I on a, nétant un nombre entier donné,

a
nx — ci.i ou •*' — — '

n

(3° Il est dès lors possible de définir, au moyen de procédés

calqués sur ceux de la numération, l'élément représenté
par n a, n étant un nombre entier, frationnaire ou
incommensurable ;

7° L'expression na,où a est un élément constant, représente

une fonction continue et croissante du nombre ;

8° L'élément na, lorsque n augmente indéfiniment (peu
importe que ce soit par valeurs entières ou par variation
continuel, a pour limite l'élément extrême du continu, ce qui
exprime : d'abord que l'opération dont le résultat est est

toujours possible (lre ligne des formules II, ensuite qu'elle
permet de dépasser un élément quelconque.

Nous exprimerons la propriété 8° en disant que l'opération
fondamentale envisagée (opération -f-) est par
allusion au principe d'Arehimède, qui s'énonce ainsi:

Si a etb désignent deux nombres il est

jourspossible cdajouter a à lui-même un nombre de fois suffisant

pour cjne la somme qui en résulte ait la propriété :

a —|— a —(— —[— et b.

Axiomes du continu linéaire. — Observons que les
opérations qui jouissent des propriétés que nous venons de
mentionner se définissent analytiquement avec beaucoup de
facilité.

»

Faisons correspondre à tout élément du continu à une
dimension considéré un nombre positif, la valeur o étant attribuée

à l'élément initial et ce à l'élément extrême. L'élément
résultat de l'opération + effectuée sur les éléments x et ?/,
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devra être déterminé par une formule (algébrique cette

fois) de la forme

H) /'(=) f(x) + fir).

f(x)étant une fonction de xpositive, continue, croissante,
uniforme et ayant, ainsi que son inverse, une détermination
toujours réelle, cette dernière propriété ayant pour
conséquence que f(x)croitindéfiniment avec x.

M. Hilbert1 admet qu'il existe des opérations qui satisfont
à toutes les conditions I, et qui ne possèdent ni la propriété
commutative ni la propriété archimédienne, celle-ci entraînant

d'ailleurs celle-là.
Le savant géomètre construit, dans ces conditions, une

Géométrie plane arguésienneet dans
laquelle certains théorèmes projectifs ne sont plus vrais,
notamment le théorème de Pascal sur fhexagone inscrit dans
une conique (limité au cas où la conique est réduite à deux
droites).

Pour nous, au contraire, les théorèmes projectifs plans,
y compris le théorème de Pascal, résultent du théorème de

Desargues, à l'exception des propriétés qui tiennent à

l'axiome Pill, lesquelles pourraient être aussi bien classées
dans la Géométrie métrique, comme on le verra plus loin.

La d ivergence de ces résultats tient à ce que nous supposons

expressément, en plus des hypothèses I, que le continu
considéré est à une dimension, ce qui n'a pas lieu dans la
conception de la droite de M. Hilbert, conception qui n'en
présente pas moins d'ailleurs un caractère nettement
analytique.

Il conviendrait donc de faire précéder les formules J, qui
définissent les propriétés des opérations additives, d'axiomes
défini ssant celles du continu à une dimension.

On pourrait peut-être adopter à cet effet les définitions
suivantes :

Définition, — Un ensemble A d'éléments est dit continu,
lorsque, étant donné deux éléments quelconques de cet en-

1 H II. HICHT, loc. cit.
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semble, il est toujours possible de former un ensemble B

d'éléments jouissant des propriétés suivantes :

1° fis sont susceptibles d'être et cela cle manière

que les éléments donnés soient les extrêmes de la série,
Vordre étant une propriété représentée par un signe > soumis

à une seule règle, savoir :

Si l'on a a^> bet b>c, Ton a a c. (L'élément b sera dit
compris entre a et c,)2° Entre deux éléments quelconques de l'ensemble B il en
existe toujours un troisième.

3° Si un élément x varie toujours dans le même sens en
ne dépassant jamais un élément déterminé a, c'est-à-dire si

les déterminations successives xi, x% de satisfont à

la condition

il existe toujours un élément 6, tel que, quelque soit un
élément c arbitrairement choisi, x puisse toujours devenir et
rester ensuite compris entre b et

Il est à observer que la définition de la contenue
dans ce dernier membre de phrase, ne fait pas appel à l'idée
de différence et par suite est indépendante de toute opération
additive.

Définition. Lorsque entre deux éléments quelconques de

l'ensemble A, on ne peut former qu'un nombre déterminé
d'ensembles B, l'ensemble A est

On déduit facilement de ces définitions la possibilité de

représenter les éléments d un continu à une dimension par les
nombres et par suite de leur appliquer les considérations
analytiques qui conduisent à la formule r4).

L'opération représentée par la formule (4) n'est pas néces-
s a i re m en t a rehi médienne.

Supposons, par exemple, que l'on prenne soit
%

9 c — c)x
f[x)2clogx soit /"(•*•) - 2« tang ^

Dans le premier cas, f(x)représenteune distance lobat-
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chewskienne, au sens que nous indiquerons au paragraphe
suivant, et la répétition indéfinie de l'opération donne lieu à

un point limite x=2 c.
Dans le second cas, f(x)représenteune distance rieman-

nienne, et la répétition indéfinie de l'opération est impossible,

car l'on obtient le point x oo après un nombre fini
d'opérations.

L'opération ne satisfait d'ailleurs pas, dans ces cas, à la

première des propriétés I; dans le premier cas, cette opéra-
ration n'a pas de résultat, lorsque l'un des termes est représenté

par une valeur de la coordonnée supérieure à 2 c; dans
le second cas, elle donne lieu à une détermination multiple.

Coordonnées projectiyes. —Nous avons, dans ce qui
précède, raisonné sur les points de la droite DD', mais en fait,
ce que nous avons établi, c'est une correspondance, sans
lacune ni double emploi, entre l'ensemble des droites rayonnantes

autour du point I et le continu numérique, pourvu
toutefois que l'on ferme celui-ci sur lui-même en faisant coïncider

+ x e t — ce.Pour que cette correspondance se poursuive sur la ligne
droite, il faut et il suffit que deux points quelconques
déterminent toujours une ligne droite et que deux droites copla-
naires se rencontrent toujours en un point réel; ces conditions

sont d'ailleurs indépendantes de la forme qu'on attri-
I bue aux lignes droites.

Dans le cas déjà signalé où l'on peut mener par un point
deux droites asymptotiques à une autre droite, les nombres
qui correspondent aux lignes de construction comprises dans
l'angle formé par les deux asmyptotiques à la droite DD' ne
représentent aucun point réel de cette droite.

Dans le cas, au contraire, où il existe, sur cette droite, des
points par lesquels il ne passe pas de lignes droites contenant
le point I, ces points seraient dépourvus de coordonnées.

Dans le cas de l'unicité de l'asymptotique, pour avoir un
système de coordonnées rigoureusement univoques, il suffit

j de iàire coïncider la ligne de construction IA, cotée -j- x,
'] avec l'asymptotique unique menée par le point 1 à DDL

j Signalons qu'on réalise ainsi, par l'emploi de la règle
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seule, la mesure des segments sur une droite, à condition
toutefois d'admettre que Ton puisse apprécier, avec telle
approximation désirée (au moyen du rayon visuel, par exemple),

l'asymptotisme de deux droites.
11 résulte des propriétés 7° et 8° que, a étant un élément

(ou, si I on veut, un segment) quelconque, l'expression na,
oit nest un nombre positif quelconque, représente toujours
un des éléments du continu et est susceptible de représenter

Tun quelconque de ces éléments.
Pour établir une correspondance univoque (ou presque)

entre les nombres positifs et les points de la droite DD'
compris entre 0 et A, il suffit donc de choisir un élément e,

auquel Ton fait correspondre l'unité et de faire correspondre
à un élément quelconque le nombre tel que ne coïncide
avec cet élément : le point O correspondant d'ailleurs à o,
et A à x (cette dernière correspondance justifiant notre
restriction : « presque » univoque).

L'opération inverse de l'addition permet de compléter la

correspondance en dehors du segment OA, en déterminant
les points représentés par les nombres négatifs, lesquels
peuvent être en effet définis par la formule

— n — o—

Le système de coordonnées rectilinéaires que nous venons
d'exposer d'après M. Hilbert n'est autre que celui de von
Staudt1, obtenu au moyen de constructions plus simples.

Nous avons encore à mentionner quelques propriétés
indispensables pour le développement de notre sujet.

On démontre, toujours par l'application.du théorème de

Desargues, qui constitue bien l'axiome projectif planaire,
que le résultat de l'opération appliquée à deux points
d'une droite dépend uniquement des points limitant le
segment considéré, que nous avons désignés par O et A, et
nullement des autres éléments de la construction.

L'échelle numérique que cette construction nous a permis
d'appliquer sur la droite ne dépend donc que du choix des

1 Von Staudt, Geometrie der Lage,p. 43; Beiträge zur Geometrie der p. 266, Korn,-
Nürnberg.
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points correspondants aux nombres 0, 1, go ou, plus
généralement, à trois nombres donnés quelconques.

La valeur nde la coordonnée est le rapport anhavmonique

déterminé par les points 0, 1, oo et n et peut d'ailleurs

lui servir de définition ; le rapport — est le rapport anhar-

monique déterminé par les points o, ce

La valeur du rapport anharmonique, étant liée à des

constructions purement projectives, est un invariant pro-
jectif.

En particulier, il se conserve lorsque l'on projette,
d'un point du plan, les points de la droite sur une autre
droite.

On peut établir, entre les points de deux droites, une
correspondance dite homographique,caractérisée par le fait que
le rapport anharmonique déterminé par quatre points
quelconques de l'une des droites est égal au rapport anharmonique

déterminé par les quatre points correspondants de
l'autre droite.

Cette correspondance est déterminée par la connaissance
de trois couples de points correspondants, de sorte que lorsque,

sur deux droites qui se rencontrent, le point commun
se correspond à lui-même, les droites joignant deux à deux
les points correspondants sont concourantes. Cette propriété
permet de démontrer le théorème de Pascal dans le cas où
la conique est réduite à deux droites.

Parmi les relations que l'on démontre entre les rapports
enharmoniques, nous signalerons la suivante, qui va être
appliquée pour déterminer l'équation d'une droite.

a, h, c. d) —|— (a, Cm h, d) ~ 1
„

Nous sommes maintenant en mesure d'établir des svs-
V

lèmes de coordonnées projectii's pour le plan et l'espace.
Pour le plan, on choisira trois droites et un point à l'intérieur

du triangle qu'elles forment; l'on donnera pour
coordonnées à l'un des sommets : xet au point situé à

il intérieur du triangle: x y1 ; la droite opposée au pre-
jinier point comprendra les points de coordonnées infinies;
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enfin toute droite passant par Tun des deux autres sommets
du triangle aura pour équation, suivant le cas,

x — cte ou y cte-

On déterminera, au moyen des constructions exposées dans
le paragraphe précédent, une correspondance entre le continu

numérique et l'étoile de droites x Cte, les droites
correspondantes à x0, 1, oo étant d'ailleurs données par ce

qui précède, et l'on opérera de même pour les droites Cte.

Les coordonnées d'un point quelconque du plan seront
déterminées par les droites de ces deux familles passant par
ce point.

Enlin l'on établira l'équation d'une ligne droite rencontrant

l'axe des x en un point x a et l'axe des y en un

point y b,en démontrant, au moyen des propriétés
mentionnées du rapport anharmonique, que x et y étant les
coordonnées d'un point de la droite, l'on a

Les lignes droites sont donc représentées par les équations
linéaires.

Mentionnons également que I on démontrerait par des
procédés analogues que l'équation d'une conique, définie comme
lieu du point de rencontre des rayons correspondants de
deux faisceaux homographiques, est une équation du second

degré.
Dès lors la Géométrie projective plane est réduite à une

application de l'Analyse, et par cela même se trouve démontré

le fait déjà énoncé que l'effet de l'axiome PII sur la
géométrie plane est intégralement représenté par le théorème
de D esargues, auquel on peut aussi substituer le théorème
de Pascal limité au cas oil la conique est réduite à deux
droites.

Passons à la Géométrie dans l'espace.
Un système de coordonnées projectives sera déterminé au

moyen d'un tétraèdre et d'un point suivant un procédé
analogue à celui qui a été exposé pour le plan.
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On démontrera que, dans un tel système de coordonnées,

un plan quelconque est représenté par une équation linéaire.
On passe d'un de ces systèmes à un autre au moyen de

formules de la forme

f ax -f- by —|— c z —{— d
X a'"x + l>'"y + c'"s + d'" '

a'x-f- l/y-)- c'z -f- dr
^ a"'x -J- b"'y -}- c'"z -f- d!"

a"x b"+ c"z -j- d"
z — amx yÉy _|_ c*- _f- dm

'

Ces formules sont également les équations d une
transformation ponctuelle projective dans un des systèmes de

coordonnées ainsi définis.
Il en résulte que les propriétés projectives des figures sont

représentées, dans un de ces systèmes de coordonnées, par
des formules indépendantes du système choisi.

La Géométrie projective se trouve maintenant réduite à

une application de l'Analyse, et, par suite, est virtuellement
établie, et cela sur les axiomes PI et PII.

Les observations faites au sujet des cordonnées projectives

sur la droite dans l'hypothèse de l'unicité de l'asympto-
- tique (axiome Pill) s'étendent facilement au cas de l'espace
î et l'on obtiendra, dans cette hypothèse, un système de

coordonnées univoques en faisant éloigner indéfiniment le plan
des coordonnées infinies.

Le système de coordonnées est alors déterminé par trois
5 droites concourantes, appelées axes de coordonnées et par
1 nn point auquel on attribue les coordonnées
A

Signalons que, ainsi que nous l'avons fait observer à propos

des coordonnées recti linéaires, sur chacun des axes, les
j valeurs de la coordonnée réalisent une détermination mé-

| trique. Mais rien ne permet de passer d'un axe à l'autre : la
^ Géométrie projective ne permet donc pas la comparaison des

I segments appartenant à des droites différentes.
On voit toutefois que la frontière entre la Géométrie pro-
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jeetive et la Géométrie métrique n'est pas absolument nette,
et que, si l'axiome Pill paraît, au premier abord, de caractère

projectif, il a aussi des conséquences métriques.
Avant d'abandonner les conséquences de l'axiome PIII,

observons que l'idée du plan de que nous retrouverons

en Géométrie métrique, est introduite par le fait que,
dans un système de coordonnées projectives, les coordonnées

d'un point qui s'éloigne indéfiniment tendent vers des
valeurs satisfaisant à une équation de la forme.

ar -{- ßf -j- yz-f-=r

Enfin observons qu'il résulte des considérations
précédentes que l'axiome Pill est équivalent au suivant :

(PHI)' Il existe des systèmes de coordonnées qui
sont ilnivoques.

Cet axiome suppose l'existence de systèmes de coordonnées

univoques et par suite l'admission de l'axiome Ail.
Réciproquement, si l'axiome Ail est admis, il est toujours

possible de déterminer une famille (et par suite une infinité
de familles) de Homes continues et ouvertes satisfaisant auxO

axiomes PI, PII et Pill. Dans la conception ordinaire de

l'espace, une de ces familles est constituée par les droites.
L'on voit que les axiomes AI et Ali résultent en somme

des propriétés attribuées aux lignes droites, de sorte que les

propriétés de Yespace sont, en dernière analyse, l'expression
de propriétés de certaines lignes.

Pour pouvoir donner, ainsi que nous l'avons fait, aux
axiomes PI et PII une signification analytique, ce qui entraîne
l'introduction des imaginaires, il est nécessaire que les lignes
auxquelles s'appliquent ces axiomes soient analytiques, c'est-
à-dire soient représentées par des équations analytiques
dans un système de coordonnées univoques.

Ces lignes sont évidemment analytiques par rapport aux
systèmes de coordonnées qu'elles déterminent par les
procédés que nous avons exposés. Elles resteront analytiques
dans tout changement analytique de coordonnées, conduisant
à un système de coordonnées univoques.

R ésumÉ. — Les propriétés projectives proprement dites se
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déduisent des axiomes PI et PII, pris au sens analytique.
Ce second axiome est représenté dans le plan par le théorème

de Desargues.
Il existe une infinité de familles de lignes satisfaisant à

ces axiomes, qui fournissent chacune une interprétation des

propositions de la Géométrie projective.
On sait, au moyen de chacune de ces familles, établir des

a 1

systèmes de coordonnées, qui sont univoques lorsque les

lignes considérées satisfont à Faxiome PIII.o

IV

GÉOMÉTRIE MÉTRIQUE

Groupes métriques. — La Géométrie métrique met en

œuvre, en plus des notions que nous avons déjà exposées,
celle de déplacement sans déformation, base de l'idée de

l'égalité des figures, dont l'étude est l'objet essentiel de cette
Géométrie (la perpendicularité qui intervient dès les
premières propositions est définie au moyen d'une égalité
d'angles).

Sophus Lie a énoncé les propriétés fondamentales des
déplacements sans déformation.

Nous choisirons, parmi les deux systèmes équivalents
d'axiomes qu'il a donnés, celui dont l'interprétation géométrique

est la plus directe. Mais nous entendons toutefois,
suivant le principe constamment suivi dans cette étude, les
employer dans leur signification analytique, signification
toujours précise en vertu des axiomes AI et AIL

ML — Les déplacements sans déformation (Bewegungen)
sont des transformations ponctuelles constituent un
groupe réel etcontinu comprenant les inverses cle toutes ses

\ transformations.
MIL — Sil'on fixe un point tous les points

I susceptibles d'êtreatteints par un autre point quelconque sont
j situés sur une surface contenant second point et ne conte-
f] 7 •

\nanl pas le premier.
L'Enseignement mal hem., G° année ; 1904. 14
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