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LES PRINCIPES ANALYTIQUES DE LA GEOMETRIE

I

INTRODUCTION

Le raisonnement géométrique. — Précisons d'abord ce que
l'on doit entendre par la question des Principes de la

Géométrie.

Si l'on examine avec quelque attention les démonstrations
géométriques — et les considérations que nous allons développer

s'étendent facilement aux autres sciences rationnelles —,
on reconnaît rapidement que les arguments employés se divisent

en deux catégories.
Les arguments de la première catégorie consistent à met-

trent en évidence l'identité logique (de langage) d'une
proposition avec une autre déjà admise, combinée généralement

avec des définitions de mots n'ayant pas d'autre effet

que d'abréger le discours.
C'est à ce procédé de raisonnement que s'appliquent presque

exclusivement les conseils généralement donnés — par
Descartes, Pascal et bien d'autres — en vue d'enseigner à

o
ra i s o n n e r c o rre c te me n t.

Il ne s'agit là que de combinaisons plus ou moins
transcendantes de mots ou de signes, et la possibilité d'introduire

des définitions nouvelles assure l'extension indéfinie
de la science.

On conçoit la possibilité virtuelle de remplacer, pour
une telle opération, le cerveau humain par une machine à

raisonner.
C'est là le raisonnement proprement logique.

L'Enseignement math dm.. 6e année; 190'k 12
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Ce procédé de raisonnement n'est pas le seul employé en
Géométrie.

Considérons, par exemple, la démonstration donnée par
Legendre de la proposition : « D'un point A pris hors d'une
droite CD on peut abaisser une perpendiculaire sur cette
droite. »

« Prenons sur CD un point B, et menons AB; faisons
« l'angle DBA' égal à l'angle DBA; prenons BA' BA, et ti-
« rons la droite A V. Les deux triangles ABL, A'BE, ont le
« coté BE commun; A B B A', et l'angle ABE est égal à

«l'anode EB V; ils sont donc és^aux. On en conclut, etc. »o O 1

Le raisonnement ci-dessus n'a une signification que moyennant

une ligure. Nous devons effectuer, ou tout au moins
nous représenter, les diverses opérations indiquées et en
constater ainsi la possibilité, en confondant dans une même
évocation les éléments géométriques et leurs propriétés.

Ce n'est plus de la pure logique.
Si, à la rigueur, la deuxième phrase du raisonnement cité

peut être assez facilement ramenée, par une interprétation
purement logique, à des propositions antérieurement énoncées,

il ne saurait en être de même de la première phrase et
celle-ci suppose que l'on suit les opérations indiquées sur une
figure, en évoquant mentalement les propriétés que comportent

implicitement les notions de droite, d'angle et d'égalité
géométrique.

L'on effectue ainsi un raisonnement par images
sensorielles.

C'est là le raisonnement imag— certains disent
intuitif.

Ce procédé, dans lequel on se contente de constater de

visu les propriétés admises pour les notions mises en œuvre,
dispense de la tache difficile d'exprimer explicitement ces

propriétés.
Son danger cohsiste en ce que, entraîné par l'image

sensorielle, forcément particulière, qui sert de guide au

raisonnement, on risque d'attribuer aux conclusions une généralité

illégitime; bref ce procédé distingue mal ce qui découle

logiquement des propositions antérieures de ce qui est du



LES PRINCIPES ANALYTIQUES DE LA GÉOMÉTRIE 171

aux propriétés de la figure particulière que l'on a devant les

veux.
Les deux sortes de raisonnement que nous avons

caractérisées par les qualificatifs de logique et peuvent
l'être aussi par ceux de analytique et ces termes
se justifiant par cette considération que la première
catégorie nécessite une décomposition préalable des notions en
leurs différentes propriétés, afin de préciser nettement celles
qui interviennent, tandis que, dans la deuxième catégorie,
chaque notion se présente avec toutes ses propriétés, sans

que l'on distingue nettement celles qui sont réellement
utilisées dans la déduction.

Avertissons, à cette occasion, que, dans la suite de la
présente étude, les mots analyse et analytique se rapporteront
exclusivememt à l'Analyse mathématique, c'est-à-dire à la
Théorie des Nombres.

La question des fondements. — La question des Principes

de la Géométrie a pour objet la détermination précise
de tout ce qui, en Géométrie, ne peut être rattaché à la pure
logique et la distinction de la part d'influence qui revient
aux différents concepts qui seront ainsi mis en évidence.

La solution de la question comporte l'établissement d'un
système àe fondements permettant d'éliminer totalement (du
moins théoriquement) le raisonnement imaginatif et
comprenant :

1° des notions fondamentales, au moyen desquelles toutes
les autres puissent être construites par de simples définitions

logiques [alias : définitions de mots);
2° des axiomes,c'est-à-dire des propositions exprimant

certaines propriétés de ces notions fondamentales, telles que
les autres propositions de la Géométrie puissent en résulter
par déduction logique, avec combinaison des définitions
que l'on est successivement conduit à introduire.

Observons tout de suite que, au point de vue auquel nous
nous plaçons, les axiomes ont pour unique caractéristique
d être admis sans démonstration.Il n'est donc nullement
question de décider s'ils sont vrais ou faux — question qui
ne pourrait avoir qu'une signification physique —; évidents
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ou non — question sans signification précise — ; d'origine
empirique ou aprioristique— question d'ordre exclusivement

psychologique.
Dans la voie qui conduit aux éléments irréductibles de

la Géométrie, on peut s'arrêter plus ou moins loin, et l'on
néglige des points de vue fort intéressants, lorsque l'on
pousse d'une traite jusqu'aux régions dénudées où la raison
s'exerce sur de pures abstractions.

Dans ces dernières années, les principes de la Géométrie
ont fait l'objet de beaux travaux, et l'on est parvenu à

plusieurs systèmes de fondements, également acceptables, mais
totalement abstraits : les notions prises pour bases sont de

purs symboles (symboles non définis de M. Padoa *), n'ayant
pas d'autres propriétés que celles qu'on leur attribue au

moyen des axiomes, et à ces propriétés n'est attachée aucune
image sensorielle.

Toute image sensorielle est ainsi éliminée, non seulement
du raisonnement, mais encore des notions.

(Test ainsi que, pour M. Hilbert2, les « Points », les
« Droites », les « Plans » sont des êtres ou éléments n'ayant
pas d'autres propriétés que celles d'être susceptibles d'avoir
entr'eux certaines relations mutuelles exprimées par les
mots « SONT SITUÉS », « ENTRE », PARALLELE »,
CONCLUENT ».

Les mots écrits en majuscules représentent les notions
fondamentales. Chacune d'elles n'a pas d'existence par elle-
même et ne saurait avoir de propriétés intrinsèques.

Les axiomes expriment les propriétés de relation permettant

de combiner ces notions telles, par exemple, que :

« Deux points distincts déterminent toujours une droite. »

Une telle théorie ne fait appel qu'aux éléments les plus
abstraits de notre conception, savoir ceux qui n'ont pas
d'autres propriétés que d'être des concepts.

Même lorsqu'il se présente des éléments qui, au fond, sont

1 Padoa. Un nouveau système de definitions pour la Gèo/nctrie Compte rendu
du Congrès international de mathématiques). Gauthiers-Villars, Paris. 1902.

2 IIiujkht. Grundlagen der Geometrie, Teubner, Leipzig. 1899: traduit en français par
.M. Laugel, Gaulliier-Villars. Paris, 1900.
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des nombres, on est obligé d'établir leurs propriétés, comme
si F Analyse algébrique n'existait pas, ce qui oblige à

consacrer une large place à des considérations qui intéressent

plutôt cette dernière science que la Géométrie,
Cet ostracisme de l'analyse est d'autant moins avantageux

que, ainsi que l'on s'en rend facilement compte, toutes les

[ combinaisons d'axiomes envisagées par les divers auteurs
| notamment la Géométrie non-pascalienne de M. Hilbert —
I sont au fond des conceptions analytiques, de sorte que l'eue
j ploi de l'Analyse apporterait la clarté, tout en laissant,
\ semble-t-il, la porte ouverte aux hypothèses,
j Sont également des conceptions analytiques les métriques
] édifiées par M M. Minkowski1, Hilbert2 et 11 am el 3, oil dispa-
1 raît l'idée de déplacement, l'idée de mesure étant basée uni-
; quement sur la notion généralisée de la distance, qui n'est
< plus qu'une fonction d'un couple de points soumise à certai-

;j nés conditions très générales.
j 11 est donc permis, avant d'essayer de créer des concep-
•j lions géométriques non susceptibles d'être représentées par
-j des propriétés numériques — nous n'en connaissons d'ail-

; leurs pas —, de demander à l'Analyse tout ce qu'elle peut
1 donner.

En outre, sans méconnaître le grand intérêt que présente,
tant pour la philosophie des Mathématiques que pour l'élude
de l'intelligence, la réduction de la Géométrie à des conceptions

purement logiques, l'on peut trouver utile de ne pas
é pousser aussi loin la dissociation des idées et de s'arrêter à

un stade intermédiaire, où les notions fondamentales et les
axiomes présentent encore une signification figurée (ou,
proprement, géométrique).

Nous nous sommes donc proposé, dans ce travail, d'établir
les fondements de la Géométrie en prenant pour notions
fondamentales les seuls concepts inhérents à l'idée de figure,
savoir: le point, la ligne et la surface.

|

1 Minkowski. C.eomctriederZahlen,Leipzig, Teubner, 1896.
1 2 Hii.bkht, Mathematische Annalcn, Bd. 34.

'i
3 H am Ki.. (Jeher die C.eometriecn, in denen die die. kürzesten sind, Göttingen, Dic-

,.j te rieh. 1901.
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(^uant aux axiomes, ils auront pour objet de réduire la
Géométrie à n'être qu'une application de l'Analyse algébrique.
Ce résultat atteint, on se trouve sur un terrain solide et bien
connu: la Géométrie est fondée.

Ce point de vue est loin d'être nouveau : c'est celui de Rie-
mann, Helmholt/, Cayley, Sophus Lie, et nous ne pouvons
avoir la prétention de faire œuvre bien originale. Nous
croyons toutefois qu'il n'est pas sans intérêt, dans l'état où se
trouve actuellement la question des Principes de la Géométrie,

de coordonner, en vue d'une idée d'ensemble, des
matériaux qui, à notre connaissance, sont demeurés épars.

Ajoutons que nous y avons trouvé l'occasion de présenter
quelques observations, qui n'ont peut-être pas encore été
faites.

Divisions de la (tÉométrie. — Il est d'ailleurs remarquable
que le point de vue analytique soit précisément celui

d'où les principes de la Géométrie se présentent sous
l'aspect le plus clair et qu'il conduise à un classement des
notions géométriques conforme à la division qui s'est
naturellement établie.

La géométrie vulgaire ou euclidienne — on s'en rend
facilement compte par l'examen de ses principales propositions
— est la science de la « mesure ».

Ses fondements doivent donc être constitués par les
propriétés primordiales de l'égalité géométrique, qui est définie
elle-même par la superposabilité, de sorte que, en dernière
analyse, comme l'a vu pour la première fois Heimholt/, les
vrais axiomes de la géométrie vulgaire ne sont autre chose

o
que les propriétés des déplacements d'une ligure
invariable.

C'est pourquoi, les opérations employées dans les
raisonnements que nous avons qualifiés à"imaginatifs, consistent
toujours — directement ou indirectement — dans la
superposition d'une figure à une autre.

Ce procédé joue, en Géométrie, le rôle tenu en arithmétique

parle raisonnement par qui s'impose là en
raison de la genèse même des nombres entiers, laquelle
s'opère par récurrence.
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Mais ia Géométrie s'est enrichie, depuis Euclide, d un
beau domaine, d'où est exclue l'idée de mesure.

On a d'abord établi, au commencement du dernier siècle,

sous le nom de Géométrie cle situaGéométrie projective,
un ensemble de propriétés basées sur Ja seule idée de ligne
droite.

Plus récemment s'est constituée, sous le nom d

situs, une doctrine qui s'attache à des propriétés encore plus
générales des figures.

Tels sont donc les trois domaines : Analysis situs, Géométrie

projective, Géométrie vulgaire ou métrique, que nous
allons voir apparaître par l'introduction de notions de moins

en moins générales.

II

ANALYSIS SITUS

Réduction de la géométrie a l'analyse, — Le premier
des axiomes qui permettent l'application de l'Analyse
algébrique à la Géométrie est le suivant:

A I. L'espace ponctuel peut êreprésenté par une variété
(ou multiplicité,Mannigfaltigkeit) numérique triple.

Cet axiome ramène à des idées analytiques les notions de

continuité, de ligne, de surface, d'intersection, de contact.
Mais rien n'empêche d'associer les idées géométriques aux
expressions analytiques correspondantes.

Nous conserverons donc, comme concepts essentiels de la
Géométrie, les concepts de point, de continuité, de ligne et
de surface, c'est-à-dire ceux qui sont inhérents à l'idée de

figure.
Pour pouvoir donner une interprétation géométrique à

l'axiome A I, il faudrait concevoir des géométries où cet
axiome ne fut pas réalisé.

M. Hilbert1 a établi une Géométrie, où les points ne
constituent pas une variété numérique (Géométrie non-pasca-
lienne), mais la théorie ainsi édifiée a une existence pure-

1 Hii.HKiiT, (Grundlagender (Geometrie.
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ment analytique, et les éléments auxquels elle se rapporte
ne sont susceptibles de correspondre à aucune idée
comparable à celle de point, tout au moins dans l'exemple donné
par le savant géomètre.

Coordonnées. — Les trois nombres qui, en vertu de
l'axiome AI, représentent un point de l'espace sont appelés
ses coordonnées.

L'établissement d'un s\steine de coordonnées nécessite
évidemment l'intervention d'opérations géométriques, ou
cc constructions », déterminant la correspondance entre les

points de l'espace et les systèmes de valeurs des trois
coordonnées.

A vrai dire, l'on ne voit guère Je moyen de définir un
système de coordonnées en utilisant uniquement les notions qui
se rattachent à l'axiome Al, les constructions géométriques
étant toutes basées sur l'emploi des corps solides, dont les

propriétés doivent être classées parmi les propriétés mé-
t riq ues.

Mais rien n'empêche d'en admettre la possibilité virtuelle.
In système de coordonnées .r, s, une fois défini, on en

obtient une infinité d'autres en effectuant des transformations

de la forme

it) .*' — <ff (.r,r,z),y' — [.r,y,z) — (,r,y,-,)

oii y, ^ et y sont des fonctions quelconques.
Les équations (li représentent, à volonté, un changement de

coordonnées ou une transformation ponctuelle, c'est-à-dire
une opération transformant un point de l'espace en un autre
point (avec possibilité de détermination multiple, imaginaire,

singulière ou présentant toute autre particularité), de

sorte que l'on peut dire indifféremment que telle propriété
est indépendante d un certain changement de coordonnées
ou qu'elle est invariante par rapport à la transformation
ponctuelle correspondante à ce changement.

Les propriétés qui découlent uniquement de l'axiome A 1

sont évidemment indépendantes du choix des coordonnées.
On peut encore dire qu elles sont invariantes dans toute

transformation ponctuelle de l'espace. Autrement dit, les
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î formules analytiques qui les expriment se conservent, lors-
qu'on opère sur les coordonnées une transformation (L.

C'est là leur caractéristique, et Ton est tenté, pour cela, de

les qualifier de générales et de désigner leur ensemble sous
le nom de Géométrie générale.

Ne se rapportant qu'à un petit nombre de notions — celles

que nous avons énoncées plus haut—, elles ne peuvent qu'être
en nombre restreint.

Elles sont d'ailleurs, le plus souvent, fort simples.
Elles sont d'un ordre plus général que celles qui constituent

proprement VAnalysisdont nous allons
maintenant nous occuper.

Observons que la notion de transformation ponctuelle, que
i nous venons d'introduire analytiquement, constitue un concept

géométrique dont l'importance s'affirmera au cours de

cette étude et qui a sa place, en Géométrie générale, à côté
des concepts fondamentaux de point, de ligne et de sur-

: face.
Dans une transformation ponctuelle d'une figure, les points,

; les lignes, les surfaces, restent respectivement points, lignes,
surfaces.

Degré de coxxexjon de l'espace. — Les propriétés eonsti-
: tuant YAnalysis situs peuvent être également ramenées a

des propriétés analytiques, moyennant un complément à

l'axiome A I.
7 Nous le donnerons sous une forme telle que l'axiome com-
7 plémentaire comprendra le premier, cette dérogation au

f principe de l'indépendance des axiomes ne présentant pas
grand inconvénient et nous permettant d'éviter des compli-

- cations de laima&'e.
O O

AIL On peut établir une correspondance entre
les points de Vespace et lessystèmes de valeurs réelles et
déterminées de trois nombres.

Cet axiome peut encore s'énoncer:
(A il)' L'espace est une variété numérique triple et triple-

\ ment infinie ci simple connexion.
H Cet axiome particularise l'espace parmi les variétés triples,
g NOUS signalerons brièvement les propriétés que peuvent
uI
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présenter, au point de vue où nous nous trouvons, les variétés

numériques.
L'ensemble de tous les svstèmes de valeurs de n nombres

constitue la variété /j-uple type.
Mais on peut concevoir des variétés non susceptibles de

correspondre, d une manière univoque, à ces variétés types,
et en établir une classification d'après les particularités que
peut présenter la correspondance.

Fixons d'abord la terminologie pour tout le cours de cette
étude, en observant que, dans le qualificatif « continue »,

appliqué à une variété géométrique : ligne, surface ou volume,
nous comprenons toujours » non limitée», de sorte qu'une
variété continue sera dite fermée ou ouverte, ce dernier qualificatif

indiquant qu'elle s'étend à l'infini.
Les lignes sont des variétés simples, et les seules lignes

susceptibles d'une correspondance univoque avec la série
constituée par tous les nombres positifs et négatifs sont les

lignes continues, sans points multiples et ouvertes, à l'exclusion

notamment des lignes fermées.
De même, les seules surfaces (variétés doublement

étendues; qui satisfont à la condition analogue sont les surfaces
continues, simplement connexes, et doublement infinies,
ce dernier qualificatif ayant pour but l'exclusion des surfaces
fermées et des surfaces tubulaires (ou evlindroïdes;, celles-

N %J

ci pouvant aussi être dites « simplement infinies ».

Sur ces surfaces seules (les plans par exemple), il est
possible d'établir des svstèmes de coordonnées rigoureusement

>j o
u nivoques.

Sur une surface simplement connexe, non tubulaire, une
ligne fermée est rencontrée en un nombre pair de points par
une ligne continue, fermée ou ouverte.

Le degré de connexion d'une surface continue (fermée ou
ouverte) entraîne des propriétés correspondantes pour les
deux domaines qu'elle détermine généralement dans l'espace.
Mais ce degré peut être déterminé comme propriété intrinsèque

de la surface, sans faire appel à la troisième dimension,
en définissant cette surface comme variété numérique double.
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Il en est de même en ce qui concerne les propriétés par
rapport à Tin fini, dont il vient d'être question.

Il existe également un degré de connexion pour les variétés

triples sans qu'il soit besoin de faire appel, pour en avoir
la notion, à une quatrième dimension.

Enfin on peut également distinguer, parmi les variétés
triples et en se bornant aux variétés simplement connexes,
les variétés fermées et les variétés simplement, doublement
et triplement infinies.

Nous n'envisagerons pas l'hypothèse suivant laquelle
l'espace serait une variété numérique à connexion multiple.
Mais nous n'exclurons pas celle suivant laquelle l'espace
serait une variété fermée, malgré les difficultés de conception
qu'elle comporte, tenant notamment à ce que cette hypothèse
entraîne la non-existence de lignes infinies.

Mais que peut-on entendre par existence ou non-existence
d'une conception idéale

Gomme on ne voit pas que l'affirmation ou la négation de
cette hypothèse soit susceptible de conséquences objectives,
il semble que l'on doive admettre que nous demeurons libres
de concevoir l'espace ponctuel comme une variété ouverte
ou com m e une va ri é té fe rm é e.

Coordonnées univoques. — Les systèmes de coordonnées
qui établissent une correspondance satisfaisant à la condition
au seront appelés univoques.

11 est évident qu'on obtiendra tous les systèmes de coor-i
données univoques en appliquant à l'un d'eux une transformation

L) telle qu'à tout système de valeurs réelles et
'terminées àe x, y,z corresponde, d'une manière univoque, un
système de valeurs réelles et déterminées de y,' etil
est du reste entendu que nous ne comprenons pas le symbole

zh co parmi les nombres déterminés.
Nous appellerons également univoques de telles transformations.

Enfin nous dirons que deux systèmes de coordonnées
susceptibles d'être transformés l'un dans l'autre par une
transformation univoque appartiennent au même type. C'est
notamment ce qui a lieu pour tous les systèmes univoques.
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On pressent l'importance des conséquences d'une

hypothèse affirmant que tel système de coordonnées est uni-
voque.

Si l'on ad met par exemple (axiome d'Archimède) que, sur
une droite, les distances euclidiennes de tous les points à

un point fixe constituent un système de coordonnées uni-
voq ues, il ne pourra plus en être de même du système
auquel donneront lieu les distances non euclidiennes X définies
par la formule

2 c -f-
2 c lo <x

Ö 42c — x

Car toute valeur de x extérieure à l'intervalle de— à

4-2 c donnera lieu à une valeur imaginaire de X, les limites
entre les valeurs réelles et les valeurs imaginaires de X
étant oc et — 00•

Lxmni <;kométkiquk. — Les symboles -|-co et —co jouissent,

dans l'Analyse algébrique, de propriétés telles qu'il
peut être avantageux, dans certains cas et en vue de la généralité

de certaines propositions, de traiter le symbole =h oo

comme s'il représentait une valeur de la série des nombres,
de telle sorte que celle-ci se fermerait alors sur elle-
même.

Mais il ne s'agit là évidemment que d'une convention
commode et, en énonçant l'axiome Ail, nous n'avons pas
entendu comprendre ±coparmi les nombres déterminés.

Il doit donc être entendu, d'après cet axiome, que, dans

un système de coordonnées univoques, aucun point ne doit
avoir pour coordonnées d= oo et que, réciproquement, à

tout système de valeurs déterminées finies) doit
correspondre un point déterminé.

De même nous entendons qu'une transformation
ponctuelle univoque fait, ainsi que son inverse, correspondre à

tout système de valeurs déterminées un autre système de

valeurs également déterminées.
Il résulte de là que la propriété, pour une courbe, d'avoir

des branches infinies, peut être définie analytiquement
dans tout système de coordonnées univoques et par suite,
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étant indépendante du système de coordonnées (pourvu qu'il
soit univoque), elle doit ressortir à VAnalysis où l'idée
de l'infini géométrique possède ainsi droit de cité, ce qui
se trouve d'ailleurs en concordance avec l'intuition suivant
laquelle l'idée de l'infini géométrique nous apparaît d'un
ordre plus général, par exemple, que l'idée consistant dans
la particularisation de certaines lignes, telles que les lignes
droites.

Cette propriété d'avoir des branches infinies ne se conçoit
d'ailleurs que pour une courbe dont les points sont déterminés
au moyen d'une loi constructive ou analytique et ne s'ap-
s'applique pas à l'idée sensorielle d'une courbe ou, comme
l'on dit, à un ensemble actuel de points.

Les surfaces à nappes infinies donnent lieu à des
observations analogues à celles que nous venons de présenter.

Asymptotisme. — Il nous reste, pour satisfaire à notre
programme, à introduire analytiquement la notion d'
totisme^que l'intuition classe parmi les idées ressortissant à

Y Analysis situs.
Considérons une branche infinie de courbe, telle que,

lorsque le point y, zqui la décrit s'éloigne indéfiniment,

les rapports ^ et - tendent vers des limites déterminées.

Considérons une autre branche de courbe ayant les mêmes
propriétés et donnant lieu aux mêmes valeurs pour les li-

y' z'mites des rapports p et pdescoordonnées :

y y' ^ -/
lim. — — lim — 7 lim — lim —xxx X

Nous dirons, dans ces conditions, que les deux branches
infinies sont asymptotiques.

Biais cette propriété ne peut avoir une portée que si elle
est indépendante, dans une certaine mesure, du choix du
système de coordonnées, c'est-à-dire, suivant une remarque
déjà faite, si elle est invariante par rapport à certaines trans-
formations ponctuelles.

La propriété envisagée est évidemment invariante par rap-
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port aux transformations linéaires; mais cette particularité
la classerait dans une zone frontière intermédiaire, comme
nous le verrons, entre la Géométrie projective et la
Géométrie métrique. Ce degré d'invariance ne nous suffît pas.

Soit

a ~ fi (x.y.z), s> ~ fi(x,y,z)f w m fs(x,y,z)

les équations représentant une transformation

ponctuelle, et admettons que les rapports — et - aient pourZL ZL

limites, lorsque .r, y,zaugmententindéfiniment dans les con-
* • l* ;

« J5ditions définies plus haut, des fonctions de lim. - et lim. -1 7 x x
C est ce qui se produira lorsque u, c, (v seront des fonctions
rationnelles du même degré (positif) de ou même des
fonctions se comportant à l'infini comme des fonctions rationnelles

du même degré.
La propriété asymptotique se conservera évidemment

dans la transformation ponctuelle envisagée, c'est-à-dire que
si Ton a

y r' .s z'lim — ~ limi lim — — lim —
X X X X

Ton aura également

i- i- 1 • i •

hm — := lim —i lim — — lim —•.
Ilu u

Il résulte de là que la propriété asymptotique est
invariante par rapport à des transformations beaucoup plus générales

que les transformations linéaires.
L'asymptotisme doit donc ressortira et c'est

la conclusion que nous voulions tirer de ces considérations.
Observons en terminant que, quoique les axiomes qui

régissent 1' Analysissitus expriment des propriétés de Yespace,
on ne doit pas, pour cela, attribuer à celui-ci une existence propre:

ses propriétés constituent simplement une manière
d'exprimer des propriétés de certaines lignes et de certaines
constructions, qui servent à établir les systèmes de coordonnées.
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Résumé. — A YAnalysis situs ressortissent les propriétés
relatives à un groupe de notions, qui se ramènent aux
suivantes : point, continuité, ligne, surface, transformation

ponctuelle, connexion.

III
GÉOMÉTRIE PROJECTIVE

Axtomes PROJECTiFs. — On appelle projectiles les
transformations dans lesquelles toute ligne droite est transformée
en une ligne droite.

Les propriétés projeclives des figures sont, par définition,
celles qui sont invariantes (conservées) dans toute transformation

ponctuelle projective de l'espace.
L'ensemble de ces propriétés constitue la Géométrie projective.

Il est clair, d'après cela, que les propriétés projeetives
sont celles qui, en plus des notions constituant l'objet
de YAnalysis situs,font intervenir la notion de ligne droite.

Quelle que soit l'origine de la notion de ligne droite, cette
notion doit être considérée, en Géométrie projective, comme
primordiale, c'est-à-dire qu'elle n'est pas susceptible d'une
définition la ramenant à des éléments appartenant à ce

domaine; autrement dit, elle doit être considérée comme
donnée, ou bien acquise par un processus étranger.

On pourrait, il est vrai, prendre pour notion primordiale
celle de transformation ponctuelle projective, mais elle ne s'impose

pas assez directement à notre conception sensorielle.
A défaut de définition, il est nécessaire d'énoncer les

propriétés fondamentales de la ligne droite qui, jointes aux
axiomes AI-et AIL doivent servir d'axiomes à la Géométrie
projective.

Les axiomes projeetifs sont au nombre de trois, savoir:
PI. — Les lignes droites forment une famille de lignes

continues j telles qu'une d'entreelles est déterminée par
condition de passer par deux points donnés.

P IL — Lorsque deux droites sont deux
autres droites respectivement concourantes avec chacune d'elles
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(sans que trois de ces droites soient concourantes ensemble)
sont concourantes entre elles.

P III. — Par un point on ne peut mener qu'une droite
asy mptotiqueà une autre droite.

Ce dernier axiome, qui représente le postulat des
lèles^ n'intervient pas dans les propriétés projektives,

lorsqu'on se borne à leur signification analytique, en faisant
abstraction des idées figurées qui leur correspondent. Nous
ne le comprendrons parmi les axiomes projeetifs que lorsque
nous l'indiquerons expressément.

La condition pour qu'une ligne passe par un point donné
s'exprime par deux équations.

L'axiome P I équivaut donc à ceci: que les droites forment
une famille de lignes à quatre paramètres et que le système
des quatre équations exprimant qu'une de ces lignes passe
par deux points donnés a une solution unique.

L'axiome P II est la condition d'existence du plan, en ce

qu'il permet de construire une famille à trois paramètres de

surfaces, telles qu'une ligne droite qui a deux de ses poinls
sur une de ces surfaces y est située tout entière.

u

Nous prenons ces axiomes au sens c'est-à-dire
que, pour nous, la « condition de rencontre » de deux
droites est la relation entre les paramètres de ces droites
qui résulte de l'élimination des coordonnées entre leurs
équations, étant admis que, lorsque la condition est remplie,
les valeurs qui en résultent pour les coordonnées peuvent
être impropres, par exemple imaginaires, si le système de
coordonnées est univoque.

Cette généralisation de l'idée du concours de deux droites
étend la portée des axiomes P I et PII-- seuls axiomes
projectifs proprement dits — à certaines familles de lignes qui
n'y satisferaient pas sans cela. 11 est facile de voir notamment

que le second axiome, si on se bornait à sa signification
figurée, ne pourrait être exact pour une famille de lignes ne
satisfaisant pas à l'axiome de l'asymptotique unique. En
outre, au sens analytique, plusieurs lignes asymptotiques en tie
elles sont concourantes.

Les axiomes P 1 et P II, même au sens analytique, repré-
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senlent forcément des propriétés construclives; mais, celles-

ci, lorsque le point de concours n'est pas réel, n'ont pas la

simplicité nécessaire pour être introduites dans des axiomes.
Au lieu de prendre la ligne droite pour notion fondamentale

de la Géométrie projective, on peut prendre le plan.
Les axiomes seraient alors :

P IY. — Les plans forment une famille cle telles

(pce Lune d'entre elles est déterminée par la condition de passer

par trois points donnés.
^P 11)'. — Troisplans ayant en commun plus cl'un point ont

en commun tous les points qui appartiennent à la fois à
deux d'entre eux.

Nous laissons au lecteur le soin de démontrer l'équivalence

des deux couples d'axiomes, après avoir d'abord établi
la genèse du plan par le mouvement d'une droite passant par
un point donné et s'appuyant sur une droite donnée, et
montré que, en vertu de P II, une droite ayant deux points
dans un plan y est située tout entière.

Lignes satisfaisant aux axiomes projecttfs. — Il est clair
que les axiomes posés jusqu'ici, qui particularisent les droites

et les plans (en tant que familles plutôt qu'en ce qui
concerne leur forme), ne les déterminent nullement et qu'il
existe des infinités de familles de lignes et de surfaces
jouissant de ces mêmes propriétés, de sorte que les propositions

de la Géométrie projective, lesquelles, comme nous le
démontrerons, résultent entièrement des axiomes projectifs,
sont applicables à des figures où les surfaces et les lignes
choisies pour répondre aux termes de « plans » et de « droites

» ne seraient nullement identiques aux surfaces et aux
lignes désignées habituellement par ces noms.

Les conclusions d'un raisonnement s'étendent en effet
partout où sont applicables les propriétés réellement mises
en œuvre, et c'est pour cela qu'il est toujours très scientifique

de dégager nettement ces propriétés. Ce qui fait la
ralité des raisonnements analytiques, c'est qu'ils s'appuient
uniquement sur des propriétés que possèdent, définition^
les éléments dont ils s'occupent.

Nous signalerons brièvement les particularités que peu-
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vent présenter les familles de lignes satisfaisant aux axiomes
P I et P II, sans toutefois nous écarter des cas les plus
simples, la généralité nécessitant des développements dans
lesquels nous ne pouvons entrer.

1° Les lignes considérées sont fermées.
La surface engendrée par une ligne fermée variable

passant par un point et s'appuyant sur une autre ligne fermée
ne peut être que fermée: les surfaces jouant le rôle des

plans seront donc fermées.
Si une telle surface est à simple connexion, deux lignes

fermées tracées sur elle se rencontrent en un nombre pair de

points ; l'axiome P I ne saurait donc être valable en toute
rigueur. On peut toutefois en maintenir la portée essentielle
en admettant que les points de l'espace soient associés deux
à deux, de manière que, lorsque l'une des lignes
considérées passe par un point, elle passe également par son
associé. Une telle combinaison est réalisée par la famille à

quatre paramètres constituée par les cercles avant leur centre
sur un plan donné. Les axiomes P 1 et P II seraient
rigoureusement applicables, si l'on ne considérait que les points
situés d'un même côté du plan donné ; si ce plan est rejeté
à l'infini, on retombe sur la Géométrie ordinaire.

Mais on peut aussi supposer que les lignes jouant le rôle
des droites, tout en étant fermées, ne puissent avoir, deux
à deux, plus d'un point commun. Il est alors nécessaire que
les surlaces jouant le rôie des plans soient et, par
suite, a fortiori,doublement connexes.

2° Les lignes considérées sont ouvertes et ne satisfont pas
à l'axiome de i'asymptotique unique. Les surlaces jouant le

rôle des plans peuvent être alors simplement connexes et
doublement infinies, comme les plans eux-mêmes.

Admettons que l'on ait déterminé sur une de ces surfaces,

que l'on peut, pour la facilité de la représentation visuelle,
supposer être un plan, un système de coordonnées univo-

ques, et soit

(1) ajXxy) + bf{.ry) + c =z o

l'équation générale des lignes considérées, f(xy) o et
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y(xy) o étant respectivement les équations de deux d'entre
elles, et b,c, des paramètres (homogènes).

Supposons en outre que le système d'équations en xy :

(2) f[xy)=zX, Y,

où X et Y sont des nombres réels donnés, n'ait jamais plus
d'une solution composée de valeurs réelles de et quelles
que soient les valeurs attribuées à X et Y.

Moyennant ces conditions, la famille de lignes (1) se prêtera
à une interprétation de la Géométrie projective plane, dans

laquelle cette famille sera substituée à celle des lignes
droites.

En faisant varier les fonctions et <p, on obtiendra, pour
ces lignes, des formes très différentes entre elles, ainsi que
des particularités diverses dans leurs relations.

Laissant de côté le cas où les valeurs des fonctions /'et ©

ne sont pas toujours réelles pour tout système de valeurs des
coordonnées x et y,casoù il existe des points par lesquels
il ne passe aucune des lignes (1), nous nous bornerons à

signaler plus spécialement un cas où, au contraire, les fonctions
/'et y ne prennent pas tous les systèmes de valeurs réelles
lorsque Ton donne successivement à et toutes les valeurs
réelles possibles, le cas limite étant celui où la transformation

ponctuelle que représentent les équations(2), lorsqu'on y
regarde X et Y comme constituant un second couple de
variables, est univoque.

Supposons, par exemple, que, quelles que soient et
les valeurs X et Y de / et <p satisfassent toujours à l'inégalité

(3) X2 + Y2 < R2.

de sorte que, pour tout système de valeurs de X et Y n'y
satisfaisant pas, le système d'équation (2) n'ait pas de solution

réelle en x et y.
Les coordonnées xet y du point commun à deux lignes,

déterminées respectivement par les paramètres a, &, c et
cl //, c! sont données par les formules

p, x bc'— cl/ca'—ac'fw w=bK>'
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Les valeurs correspondantes de et y ne seront réelles
que sous condition et en particulier elles ne le seront pas
lorsque le dénominateur commun sera suffisamment grand.

Il est facile de voir que, par tout point de la surface,
passent une infinité de lignes (1) ne rencontrant pas une autre
de ces lignes donnée.

Les deux séries de lignes seront délimitées par deux d'entre

elles qui seront asymptotiques à la ligne donnée.
C'est l'hypothèse de Lobatchewski sur les lignes droites.
Si, à la limite, on suppose que la transformation (2) soit

univoque, les valeurs des coordonnées et y ne seront
infinies que dans le cas où l'on aura

et les deux asymptotiques susceptibles d'être menées par un
point à une ligne donnée de la famille (1) se confondent
toujours en une seule : c'est l'hypothèse euclidienne.

Il est d'ailleurs facile de former des fonctions et cp dont
les valeurs satisfassent à l'inégalité (3).

Considérons, pour cela, un cercle de rayon R ayant pour
centre l'origine des coordonnées, et représentons le plan
entier sur la région intérieure à ce cercle de la manière
suivante :

A tout point M du plan faisons correspondre un point AL

situé sur le même rayon et tel que les distances respectives
/ et /*' des deux points au centre du cercle soient liées par
la relation

En désignant par xet y les coordonnées rectangulaires
du point M et par X et Y celles du point M', on aura

al/ — b— o,

r
p R + >•'

r U log — oilLv — r

(/A'2-t- r2
Y r + i/A'2 + r2

10 :n IV i / T/9 IR — Vx2jrJ"*

et

V •/* + J2

— I

+ 1
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on a

Cr2 +7" y 2

X2+ } 2 R2 |e
* ' ~ 1

I < R2
h*2 + J2

\e R + 1 I

Il suffit donc de prendre, pour f(xy) et les expressions

ci-dessus de X et Y, pour que l'équation (1) soit l'équation

de lignes jouissant des propriétés projectives des lignes
droites dans le plan et telles que par un point on puisse mener
à l'une d'elles deux asymptotiques.

3° Lignes ouvertes et satisfaisant à l'axiome de l'asympto-
tique unique.

Pour obtenir une famille de lignes satisfaisant, non seulement

aux axiomes PI et P I L mais encore à l'axiome Pill,
il suffit de considérer les transformées des lignes droites dans

une transformation ponctuelle univoque, par exemple celle
qui est définie de la manière suivante : x, y> z, étant les
coordonnées d'un point, celles du transformé ont pour
expressions

x' —± e(&) — 1, y — ± eAy) — 1. z' it eu) — P

oil (x),(y), (z) représentent les valeurs absolues de x, 5

et où les signes placés devant les exponentielles sont à

choisir de manière que x', yj soient respectivement de

même signe que x,y,z.
Portée du théorème de Desargues. — Un théorème pro-

jectif important cle Géométrie plane est le théorème de

Desargues, qui peut être énoncé cle la manière suivante :

Théorème de Desargues. — Lorsque deux triangles situés
dears un même plan sont tels que les trois droites joignant
leurs sommets deux (t deux sont les côtés
respectivement opposés aux dits sommets se coupent deux à
deux sur une même droite,et réciproquement.

Ce théorème résulte facilement de l'axiome PII, en regar-1 O
dant les deux triangles comme les projections, faites de deux
points de vue différents, d'un même triangle de l'espace.

Les axiomes P I et PHI sont tout autant planaires que
spatiaux.
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Ils constituent,avec le théorème cle un groupe
d*axiomes projectifsplanaires,de sorte que le théorème de

Desargues est le représentant, dans le plan, de l'axiome
PII.

Ce fait important, mis en évidence sous une autre forme
par M. Hilbert1, résulte des propositions que nous énoncerons

sans démonstration (pour ne pas trop allonger cet
article) au paragraphe suivant.

Calcul segmextaire de M. Hilbert. — Pour la facilité
du langage, nous appellerons « droites » des lignes constituant

une famille satisfaisant aux axiomes PI et PII, mais
il reste entendu qu'elles peuvent présenter les formes les
plus diverses.

Nous allons établir un système de coordonnées sur une de

ces lignes au moyen d'une construction exposée par M.
Hilbert, dans laquelle toutefois nous remplacerons, en vue de la
généralité et pour éviter l'hypothèse de l'asymptotique unique,
la droite de l'infini par une droite quelconque. La construction

ainsi généralisée ne perd d'ailleurs aucune de ses pro-
priélés essentielles, lesquelles tiennent uniquement à l'axiome
PI et au théorème de Desargues.

Nous supposerons seulement qu'on sache déterminer,
dans le plan, le point de concours de deux droites ainsi que
la droite joignant deux points, étant d'ailleurs observé que
lorsqu'un des points n'est pas réel ou est rejeté à l'infini, le
tracé est toujours possible par l'application du théorème de

Desargues.
Sur la droite considérée DD', prenons

deux points 0 et A, traçons deux lignes
droites passant l'une par O, l'autre par
A et se coupant en B, et choisissons sur la

ligne AB un point!.
Etant donnés deux points a et h de la

droite DD' situés entre O et A, effectuons
les constructions suivantes :

Déterminons et par l'intersection de \a

1 Hilbert, loc. cit.
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et OB, puis a" par l'intersection de Ad et Bö, enfin par
l'intersection de la" et DDL

Désignons par le signe -f- l'opération que nous venons de

définir par ces constructions, c'est-à-dire posons

Cl —j— I) — C.

Cette opération jouit de propriétés importantes que l'on

peut démontrer directement en s'appuyant soit sur 1 axiome

PII, soit sur le théorème de Desargues, qui le représente
dans le plan.

On peut aussi déduire logiquement ces propriétés d'un
certain nombre d'entr'elles, que nous exprimerons de la

manière suivante, ou nous représentons par l'élément initial

0, en raison de ses propriétés :

fa:-j- h — .r a toujours une et une seule solution eue
[ci -"f- h) —{— c — ci -f- [h —j— c)? ci -|— o — ci,

Cl —j— l) Cl m ci —J— h h.

lorsque l> > c. on a a + h > a + c.

Le signe a pour objet d'exprimer l'ordre des éléments

par rapport au sens de parcours de 0 vers A.
Appelons opération additive une opération -H possédant

les propriétés I et s'appliquant aux éléments d'un continu
simplement étendu (on à une dimension), ayant un élément
initial représenté par 0 et pouvant soit se prolonger indéfiniment

soit avoir un second élément extrême A.
Nous énoncerons, sans démonstration, quelques-unes des

conséquences des propriétés 1 :

1° a + b=b-\~a,c'est-à-dire que l'opération additive,
qui, par hypothèse, est associative, est en outre commutative

;

2° L'expression a -f- x représente une fonction croissante
et continue de x\

8° Lorsque b>a,ilexiste toujours un élément tel

que
'

Cl ~ l) *

4° L'expression nx, oil n'est un nombre entier, représente
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une fonction continue et croissante de x, étant définie par
la formule

nx— x -f- Xx;

n

5° Il existe toujours, entre oet un élément x, tel que
I on a, nétant un nombre entier donné,

a
nx — ci.i ou •*' — — '

n

(3° Il est dès lors possible de définir, au moyen de procédés

calqués sur ceux de la numération, l'élément représenté
par n a, n étant un nombre entier, frationnaire ou
incommensurable ;

7° L'expression na,où a est un élément constant, représente

une fonction continue et croissante du nombre ;

8° L'élément na, lorsque n augmente indéfiniment (peu
importe que ce soit par valeurs entières ou par variation
continuel, a pour limite l'élément extrême du continu, ce qui
exprime : d'abord que l'opération dont le résultat est est

toujours possible (lre ligne des formules II, ensuite qu'elle
permet de dépasser un élément quelconque.

Nous exprimerons la propriété 8° en disant que l'opération
fondamentale envisagée (opération -f-) est par
allusion au principe d'Arehimède, qui s'énonce ainsi:

Si a etb désignent deux nombres il est

jourspossible cdajouter a à lui-même un nombre de fois suffisant

pour cjne la somme qui en résulte ait la propriété :

a —|— a —(— —[— et b.

Axiomes du continu linéaire. — Observons que les
opérations qui jouissent des propriétés que nous venons de
mentionner se définissent analytiquement avec beaucoup de
facilité.

»

Faisons correspondre à tout élément du continu à une
dimension considéré un nombre positif, la valeur o étant attribuée

à l'élément initial et ce à l'élément extrême. L'élément
résultat de l'opération + effectuée sur les éléments x et ?/,
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devra être déterminé par une formule (algébrique cette

fois) de la forme

H) /'(=) f(x) + fir).

f(x)étant une fonction de xpositive, continue, croissante,
uniforme et ayant, ainsi que son inverse, une détermination
toujours réelle, cette dernière propriété ayant pour
conséquence que f(x)croitindéfiniment avec x.

M. Hilbert1 admet qu'il existe des opérations qui satisfont
à toutes les conditions I, et qui ne possèdent ni la propriété
commutative ni la propriété archimédienne, celle-ci entraînant

d'ailleurs celle-là.
Le savant géomètre construit, dans ces conditions, une

Géométrie plane arguésienneet dans
laquelle certains théorèmes projectifs ne sont plus vrais,
notamment le théorème de Pascal sur fhexagone inscrit dans
une conique (limité au cas où la conique est réduite à deux
droites).

Pour nous, au contraire, les théorèmes projectifs plans,
y compris le théorème de Pascal, résultent du théorème de

Desargues, à l'exception des propriétés qui tiennent à

l'axiome Pill, lesquelles pourraient être aussi bien classées
dans la Géométrie métrique, comme on le verra plus loin.

La d ivergence de ces résultats tient à ce que nous supposons

expressément, en plus des hypothèses I, que le continu
considéré est à une dimension, ce qui n'a pas lieu dans la
conception de la droite de M. Hilbert, conception qui n'en
présente pas moins d'ailleurs un caractère nettement
analytique.

Il conviendrait donc de faire précéder les formules J, qui
définissent les propriétés des opérations additives, d'axiomes
défini ssant celles du continu à une dimension.

On pourrait peut-être adopter à cet effet les définitions
suivantes :

Définition, — Un ensemble A d'éléments est dit continu,
lorsque, étant donné deux éléments quelconques de cet en-

1 H II. HICHT, loc. cit.
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semble, il est toujours possible de former un ensemble B

d'éléments jouissant des propriétés suivantes :

1° fis sont susceptibles d'être et cela cle manière

que les éléments donnés soient les extrêmes de la série,
Vordre étant une propriété représentée par un signe > soumis

à une seule règle, savoir :

Si l'on a a^> bet b>c, Ton a a c. (L'élément b sera dit
compris entre a et c,)2° Entre deux éléments quelconques de l'ensemble B il en
existe toujours un troisième.

3° Si un élément x varie toujours dans le même sens en
ne dépassant jamais un élément déterminé a, c'est-à-dire si

les déterminations successives xi, x% de satisfont à

la condition

il existe toujours un élément 6, tel que, quelque soit un
élément c arbitrairement choisi, x puisse toujours devenir et
rester ensuite compris entre b et

Il est à observer que la définition de la contenue
dans ce dernier membre de phrase, ne fait pas appel à l'idée
de différence et par suite est indépendante de toute opération
additive.

Définition. Lorsque entre deux éléments quelconques de

l'ensemble A, on ne peut former qu'un nombre déterminé
d'ensembles B, l'ensemble A est

On déduit facilement de ces définitions la possibilité de

représenter les éléments d un continu à une dimension par les
nombres et par suite de leur appliquer les considérations
analytiques qui conduisent à la formule r4).

L'opération représentée par la formule (4) n'est pas néces-
s a i re m en t a rehi médienne.

Supposons, par exemple, que l'on prenne soit
%

9 c — c)x
f[x)2clogx soit /"(•*•) - 2« tang ^

Dans le premier cas, f(x)représenteune distance lobat-
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chewskienne, au sens que nous indiquerons au paragraphe
suivant, et la répétition indéfinie de l'opération donne lieu à

un point limite x=2 c.
Dans le second cas, f(x)représenteune distance rieman-

nienne, et la répétition indéfinie de l'opération est impossible,

car l'on obtient le point x oo après un nombre fini
d'opérations.

L'opération ne satisfait d'ailleurs pas, dans ces cas, à la

première des propriétés I; dans le premier cas, cette opéra-
ration n'a pas de résultat, lorsque l'un des termes est représenté

par une valeur de la coordonnée supérieure à 2 c; dans
le second cas, elle donne lieu à une détermination multiple.

Coordonnées projectiyes. —Nous avons, dans ce qui
précède, raisonné sur les points de la droite DD', mais en fait,
ce que nous avons établi, c'est une correspondance, sans
lacune ni double emploi, entre l'ensemble des droites rayonnantes

autour du point I et le continu numérique, pourvu
toutefois que l'on ferme celui-ci sur lui-même en faisant coïncider

+ x e t — ce.Pour que cette correspondance se poursuive sur la ligne
droite, il faut et il suffit que deux points quelconques
déterminent toujours une ligne droite et que deux droites copla-
naires se rencontrent toujours en un point réel; ces conditions

sont d'ailleurs indépendantes de la forme qu'on attri-
I bue aux lignes droites.

Dans le cas déjà signalé où l'on peut mener par un point
deux droites asymptotiques à une autre droite, les nombres
qui correspondent aux lignes de construction comprises dans
l'angle formé par les deux asmyptotiques à la droite DD' ne
représentent aucun point réel de cette droite.

Dans le cas, au contraire, où il existe, sur cette droite, des
points par lesquels il ne passe pas de lignes droites contenant
le point I, ces points seraient dépourvus de coordonnées.

Dans le cas de l'unicité de l'asymptotique, pour avoir un
système de coordonnées rigoureusement univoques, il suffit

j de iàire coïncider la ligne de construction IA, cotée -j- x,
'] avec l'asymptotique unique menée par le point 1 à DDL

j Signalons qu'on réalise ainsi, par l'emploi de la règle
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seule, la mesure des segments sur une droite, à condition
toutefois d'admettre que Ton puisse apprécier, avec telle
approximation désirée (au moyen du rayon visuel, par exemple),

l'asymptotisme de deux droites.
11 résulte des propriétés 7° et 8° que, a étant un élément

(ou, si I on veut, un segment) quelconque, l'expression na,
oit nest un nombre positif quelconque, représente toujours
un des éléments du continu et est susceptible de représenter

Tun quelconque de ces éléments.
Pour établir une correspondance univoque (ou presque)

entre les nombres positifs et les points de la droite DD'
compris entre 0 et A, il suffit donc de choisir un élément e,

auquel Ton fait correspondre l'unité et de faire correspondre
à un élément quelconque le nombre tel que ne coïncide
avec cet élément : le point O correspondant d'ailleurs à o,
et A à x (cette dernière correspondance justifiant notre
restriction : « presque » univoque).

L'opération inverse de l'addition permet de compléter la

correspondance en dehors du segment OA, en déterminant
les points représentés par les nombres négatifs, lesquels
peuvent être en effet définis par la formule

— n — o—

Le système de coordonnées rectilinéaires que nous venons
d'exposer d'après M. Hilbert n'est autre que celui de von
Staudt1, obtenu au moyen de constructions plus simples.

Nous avons encore à mentionner quelques propriétés
indispensables pour le développement de notre sujet.

On démontre, toujours par l'application.du théorème de

Desargues, qui constitue bien l'axiome projectif planaire,
que le résultat de l'opération appliquée à deux points
d'une droite dépend uniquement des points limitant le
segment considéré, que nous avons désignés par O et A, et
nullement des autres éléments de la construction.

L'échelle numérique que cette construction nous a permis
d'appliquer sur la droite ne dépend donc que du choix des

1 Von Staudt, Geometrie der Lage,p. 43; Beiträge zur Geometrie der p. 266, Korn,-
Nürnberg.
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points correspondants aux nombres 0, 1, go ou, plus
généralement, à trois nombres donnés quelconques.

La valeur nde la coordonnée est le rapport anhavmonique

déterminé par les points 0, 1, oo et n et peut d'ailleurs

lui servir de définition ; le rapport — est le rapport anhar-

monique déterminé par les points o, ce

La valeur du rapport anharmonique, étant liée à des

constructions purement projectives, est un invariant pro-
jectif.

En particulier, il se conserve lorsque l'on projette,
d'un point du plan, les points de la droite sur une autre
droite.

On peut établir, entre les points de deux droites, une
correspondance dite homographique,caractérisée par le fait que
le rapport anharmonique déterminé par quatre points
quelconques de l'une des droites est égal au rapport anharmonique

déterminé par les quatre points correspondants de
l'autre droite.

Cette correspondance est déterminée par la connaissance
de trois couples de points correspondants, de sorte que lorsque,

sur deux droites qui se rencontrent, le point commun
se correspond à lui-même, les droites joignant deux à deux
les points correspondants sont concourantes. Cette propriété
permet de démontrer le théorème de Pascal dans le cas où
la conique est réduite à deux droites.

Parmi les relations que l'on démontre entre les rapports
enharmoniques, nous signalerons la suivante, qui va être
appliquée pour déterminer l'équation d'une droite.

a, h, c. d) —|— (a, Cm h, d) ~ 1
„

Nous sommes maintenant en mesure d'établir des svs-
V

lèmes de coordonnées projectii's pour le plan et l'espace.
Pour le plan, on choisira trois droites et un point à l'intérieur

du triangle qu'elles forment; l'on donnera pour
coordonnées à l'un des sommets : xet au point situé à

il intérieur du triangle: x y1 ; la droite opposée au pre-
jinier point comprendra les points de coordonnées infinies;
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enfin toute droite passant par Tun des deux autres sommets
du triangle aura pour équation, suivant le cas,

x — cte ou y cte-

On déterminera, au moyen des constructions exposées dans
le paragraphe précédent, une correspondance entre le continu

numérique et l'étoile de droites x Cte, les droites
correspondantes à x0, 1, oo étant d'ailleurs données par ce

qui précède, et l'on opérera de même pour les droites Cte.

Les coordonnées d'un point quelconque du plan seront
déterminées par les droites de ces deux familles passant par
ce point.

Enlin l'on établira l'équation d'une ligne droite rencontrant

l'axe des x en un point x a et l'axe des y en un

point y b,en démontrant, au moyen des propriétés
mentionnées du rapport anharmonique, que x et y étant les
coordonnées d'un point de la droite, l'on a

Les lignes droites sont donc représentées par les équations
linéaires.

Mentionnons également que I on démontrerait par des
procédés analogues que l'équation d'une conique, définie comme
lieu du point de rencontre des rayons correspondants de
deux faisceaux homographiques, est une équation du second

degré.
Dès lors la Géométrie projective plane est réduite à une

application de l'Analyse, et par cela même se trouve démontré

le fait déjà énoncé que l'effet de l'axiome PII sur la
géométrie plane est intégralement représenté par le théorème
de D esargues, auquel on peut aussi substituer le théorème
de Pascal limité au cas oil la conique est réduite à deux
droites.

Passons à la Géométrie dans l'espace.
Un système de coordonnées projectives sera déterminé au

moyen d'un tétraèdre et d'un point suivant un procédé
analogue à celui qui a été exposé pour le plan.
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On démontrera que, dans un tel système de coordonnées,

un plan quelconque est représenté par une équation linéaire.
On passe d'un de ces systèmes à un autre au moyen de

formules de la forme

f ax -f- by —|— c z —{— d
X a'"x + l>'"y + c'"s + d'" '

a'x-f- l/y-)- c'z -f- dr
^ a"'x -J- b"'y -}- c'"z -f- d!"

a"x b"+ c"z -j- d"
z — amx yÉy _|_ c*- _f- dm

'

Ces formules sont également les équations d une
transformation ponctuelle projective dans un des systèmes de

coordonnées ainsi définis.
Il en résulte que les propriétés projectives des figures sont

représentées, dans un de ces systèmes de coordonnées, par
des formules indépendantes du système choisi.

La Géométrie projective se trouve maintenant réduite à

une application de l'Analyse, et, par suite, est virtuellement
établie, et cela sur les axiomes PI et PII.

Les observations faites au sujet des cordonnées projectives

sur la droite dans l'hypothèse de l'unicité de l'asympto-
- tique (axiome Pill) s'étendent facilement au cas de l'espace
î et l'on obtiendra, dans cette hypothèse, un système de

coordonnées univoques en faisant éloigner indéfiniment le plan
des coordonnées infinies.

Le système de coordonnées est alors déterminé par trois
5 droites concourantes, appelées axes de coordonnées et par
1 nn point auquel on attribue les coordonnées
A

Signalons que, ainsi que nous l'avons fait observer à propos

des coordonnées recti linéaires, sur chacun des axes, les
j valeurs de la coordonnée réalisent une détermination mé-

| trique. Mais rien ne permet de passer d'un axe à l'autre : la
^ Géométrie projective ne permet donc pas la comparaison des

I segments appartenant à des droites différentes.
On voit toutefois que la frontière entre la Géométrie pro-



200 G. COMBEB!AC

jeetive et la Géométrie métrique n'est pas absolument nette,
et que, si l'axiome Pill paraît, au premier abord, de caractère

projectif, il a aussi des conséquences métriques.
Avant d'abandonner les conséquences de l'axiome PIII,

observons que l'idée du plan de que nous retrouverons

en Géométrie métrique, est introduite par le fait que,
dans un système de coordonnées projectives, les coordonnées

d'un point qui s'éloigne indéfiniment tendent vers des
valeurs satisfaisant à une équation de la forme.

ar -{- ßf -j- yz-f-=r

Enfin observons qu'il résulte des considérations
précédentes que l'axiome Pill est équivalent au suivant :

(PHI)' Il existe des systèmes de coordonnées qui
sont ilnivoques.

Cet axiome suppose l'existence de systèmes de coordonnées

univoques et par suite l'admission de l'axiome Ail.
Réciproquement, si l'axiome Ail est admis, il est toujours

possible de déterminer une famille (et par suite une infinité
de familles) de Homes continues et ouvertes satisfaisant auxO

axiomes PI, PII et Pill. Dans la conception ordinaire de

l'espace, une de ces familles est constituée par les droites.
L'on voit que les axiomes AI et Ali résultent en somme

des propriétés attribuées aux lignes droites, de sorte que les

propriétés de Yespace sont, en dernière analyse, l'expression
de propriétés de certaines lignes.

Pour pouvoir donner, ainsi que nous l'avons fait, aux
axiomes PI et PII une signification analytique, ce qui entraîne
l'introduction des imaginaires, il est nécessaire que les lignes
auxquelles s'appliquent ces axiomes soient analytiques, c'est-
à-dire soient représentées par des équations analytiques
dans un système de coordonnées univoques.

Ces lignes sont évidemment analytiques par rapport aux
systèmes de coordonnées qu'elles déterminent par les
procédés que nous avons exposés. Elles resteront analytiques
dans tout changement analytique de coordonnées, conduisant
à un système de coordonnées univoques.

R ésumÉ. — Les propriétés projectives proprement dites se
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déduisent des axiomes PI et PII, pris au sens analytique.
Ce second axiome est représenté dans le plan par le théorème

de Desargues.
Il existe une infinité de familles de lignes satisfaisant à

ces axiomes, qui fournissent chacune une interprétation des

propositions de la Géométrie projective.
On sait, au moyen de chacune de ces familles, établir des

a 1

systèmes de coordonnées, qui sont univoques lorsque les

lignes considérées satisfont à Faxiome PIII.o

IV

GÉOMÉTRIE MÉTRIQUE

Groupes métriques. — La Géométrie métrique met en

œuvre, en plus des notions que nous avons déjà exposées,
celle de déplacement sans déformation, base de l'idée de

l'égalité des figures, dont l'étude est l'objet essentiel de cette
Géométrie (la perpendicularité qui intervient dès les
premières propositions est définie au moyen d'une égalité
d'angles).

Sophus Lie a énoncé les propriétés fondamentales des
déplacements sans déformation.

Nous choisirons, parmi les deux systèmes équivalents
d'axiomes qu'il a donnés, celui dont l'interprétation géométrique

est la plus directe. Mais nous entendons toutefois,
suivant le principe constamment suivi dans cette étude, les
employer dans leur signification analytique, signification
toujours précise en vertu des axiomes AI et AIL

ML — Les déplacements sans déformation (Bewegungen)
sont des transformations ponctuelles constituent un
groupe réel etcontinu comprenant les inverses cle toutes ses

\ transformations.
MIL — Sil'on fixe un point tous les points

I susceptibles d'êtreatteints par un autre point quelconque sont
j situés sur une surface contenant second point et ne conte-
f] 7 •

\nanl pas le premier.
L'Enseignement mal hem., G° année ; 1904. 14



202 G. COM BE BT AC

MIH. — Autour dupoint ßxe il existe un domaine triplement

étendu et de dimensions dans lequel tout point
peut atteindre,par un déplacement tout autre peint
situé sur lasurface correspondantedéfinieci-dessus.

Sophus Lie démontre que ce système d'axiomes, dont la

signification analytique est bien déterminée, caractérise

groupes continusde transformations projectiles conservant
chacun une quaclrique,ordinaire ou et les groupes
qui leur sont semblables, c'est-à-dire qui peuvent être obtenus

au moyen des premiers par l'application d une transformation

ponctuelle.
Nous appellerons métriques ces divers groupes.
Parmi les propriétés qui leur sont communes, nous

signalerons, en premier lieu, la suivante:
Deux points étant fixes, un déplacement continu est encore

possible, dans lequel restent fixes les divers points ligne
passan t par les deux points.

Les lignes ainsi introduites, étant déterminées par la
connaissance de deux de leurs points, forment une famille à

quatre paramètres. Appelons-les axes du groupe métrique.
Dans le cas où le groupe métrique est c'est-

à-dire est composé de transformations projectives, il est
facile de voir que ses axes sont les lignes droites.

De la manière même dont les groupes métriques non pro-
jectifs sont obtenus, suivant le théorème de Sophus Lie, au

moyen des groupes métriques projectifs, il résulte que les

axes relatifs à chacun d'eux sont les lignes transformées des

lignes droites au moyen d'une transformation ponctuelle.
Gomme, d'autre part, les propriétés PI et PII des lignes

droites sont évidemment de celles qui se conservent dans une
transformation ponctuelle générale (toutes réserves étant
faites toutefois au sujet de particularités pouvant être
introduites par l'existence de singularités, de déterminations
multiples, etc.), on peut énoncer le théorème suivant:

Les propriétés PI et PIIdes lignes droites appartiennent
également aux axes de tout groupe métrique.

Etant donné une famille de lignes satisfaisant aux axiomes
PI et PII, l'on pourra toujours déterminer, par le procédé
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indiqué au paragraphe II, un système de coordonnées (uni-

voque ou non). Tout groupe métrique admettant ces lignes

pour axes est représenté, dans ce système de coordonnées,

par des équations qui, dans un système projectil de coordonnées,

représentent un groupe métrique projectil, de sorte

que: à tout groupe projectif métriquecorrespond un groupe
métrique admettant pour axes les lignes d'une famille donnée,

satisfaisant aux axiomes PI et PII.
Tout groupe métrique donne lieu à une interprétation de

la théorie de la mesure, en entendant par « égalité de deux

figures » leur superposabilité au moyen d'une transformation
du groupe.

Les diverses notions qui interviennent dans la Géométrie
ordinaire (sauf, pour le moment, les parallèles) trouvent
place dans cette interprétation, et, en premier lieu, la

tance,, qui se présente comme un invariant, par rapport au

groupe, d'un couple de points.
Parmi les propriétés communes aux groupes métriques,

nous citerons la suivante :

Par une transformation du groupe, un point quelconque
peut atteindre (transivité du groupe) tout point dont il n'est
pas séparé par la surface invariante du groupe (dans les

groupes projectifs : quadrique conservée ou plan de la conique

conservée). Pour cette raison nous appellerons cette surface

Y infini métrique.
La distance (définie par rapport au groupe considéré) d'un

point de l'espace à un point de l'infini métrique est infinie.
Ecartant les groupes dans lesquels les transformations

laissant un point fixe présentent des propriétés trop
différentes de celles des rotations ordinaires autour d'un point,
nous distinguerons trois catégories de groupes métriques:

Groupes euclidiens,transformés des groupes projectifs
qui conservent une conique imaginaire située dans un plan
réel ;

Groupes riemanniens,transformés des groupes projectifs
qui conservent une quadrique imaginaire à équation réelle;

Groupes lobatchewskiens, transformés des groupes projectifs
qui conservent une quadrique réelle entourant la région
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de l'espace à laquelle s'appliquent les propositions que nous
avons en vue.

Rien ne s'oppose a priori à ce que l'on fasse toutes
combinaisons entre les diverses hypothèses possibles sur la forme
des axes, la catégorie du groupe et la position dans l'espace
de l'infini métrique.

C'est ainsi que l'on peut établir des métriques non-euclidiennes

sur le plan, en conservant leur rôle aux lignes
droites et une métrique euclidienne sur la sphère, en faisant
jouer le rôle des droites par les grands cercles 1.

Groupes métriques projectifs. — Nous avons vu que les

groupes métriques projectifs sont ceux dont les axes sont
les droites.

Comme les propriétés géométriques résultent exclusivement
des axiomes,celles des groupes métriques projectifs s'étendent

forcément à tous les groupes métriques dont les axes
satisfont à l'axiome Pill, pourvu toutefois que, dans
l'interprétation figurée des propositions, l'on remplace les lignes
droites par les axes du groupe considéré.

ais l'attribution de la projectivité aux groupes à étudier
présente l'avantage de nous permettre l'emploi légitime
des termes: plan, conique, quadrique, etc., qui simplifient le
discours.

Nous allons signaler les principales divergences que
présentent les trois catégories de groupes métriques
projectifs.

1° Le groupe est lobatchewskien.
L'infini métrique est alors constitué par un ellipsoïde

enveloppant la région de l'espace à laquelle s'appliquent les

propositions.
Parmi les transformations du groupe se distinguent celles

dans lesquelles tous les points d'une droite restent fixes : nous
les appellerons rotations,par généralisation de la signification

de ce terme.
Dans une rotation une autre droite reste également fixe,

savoir la conjuguée de l'axe de rotation par rapport h la

1 Cf. Comiîisbtac. L'espace est-il euclidien? L'EnseignementmathémaAnnée1903.
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quadrique fondamentale, mais les points de cette dernière
droite ne restent pas fixes, ils se déplacent sur elle, de sorte

que celle-ci glisse sur elle-même.
On peut donc dire qu'atout axe de rotation correspond un

axe de glissement.
De deux droites conjuguées, rune rencontre réellement

l'infini métrique, l'autre non.
Toute transformation du groupe peut être obtenue par la

succession de deux rotations effectuées respectivement
autour de deux droites coujuguées, c'est-à-dire par la succession

d'une rotation et d'un glissement effectués autour et le

long d'une même droite.
O

Dans une rotation simple (qui est aussi un glissement
simple), les plans passant par l'axe de glissement restent
fixes, puisque chacun d'eux contient une droite fixe et un
point fixe, savoir le point où il rencontre l'axe de rotation.
En outre les points extérieurs à l'axe de glissement décrivent,

dans les plans fixes, des coniques bitangentes à la
quadrique fondamentale aux points où celle-ci est rencontrée
par cet axe.

Par la répétition indéfinie d'une de ces transformations —
rotation simple ou glissement simple, — les divers points de

l'espace tendent vers l'un des points L de l'infini métrique
communs à leurs trajectoires.

La translation lobatchewskienne d'un segment le longO Ç}

d'une droite ne permet pas la mesure de tous les segments
de cette droite, puisque les points situés à l'extérieur de la
quadrique fondamentale ne peuvent pas être atteints par le
segment pris pour unité.

M. Veronèse 1 en conclut à l'existence de segments
minés qui seraient infinis et à la nécessité d'introduire dans
l'analyse mathématique l'idée de Y infini actuel.

Cette interprétation du mot « infini » en modifie complètement,

à notre avis, la signification, laquelle est très précise

et réside tout entière clans l'idée de la répétition indéfinie

d'une opération déterminée.

1 Venonkse. Grundzügeder Geometrie von mehreren Dimensionen, traduit do l'italien parA. Schopp; Teubner, Leipzig, 1894.
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On se trouve d'ailleurs, dans le cas actuel, simplement en
présence du fait très vulgaire qu'est l'existence d une
limite.

Un élémentx(ici l'extrémité d'un segment sur une droite
ou sa coordonnée) est déterminé par un nombre N d'opérations

(ici la translation d'un segment pris pour unité).
Ce fait s'exprime en disant que x est fonction de N.

Quelle difficulté particulière trouve-t-on à concevoir que
.-Etende vers une limite (point ou nombre) déterminée, lorsque
le nombre entier N augmente indéfiniment? Toute existence
de limite est réductible à un fait de cette espèce.

Dans le cas qui nous occupe, si l'on désigne par y la

longueur lobatchewskienne du segment qui a pour coordonnée
univoque .r, l'on a

9 c —- %

y — 5c log —J B 5c + ,r'

fonction qui devient infinie pour les valeurs de la variable

x —-4- 5c.

2° Le groupe est riemannien.
L'infini métrique est une quadrique imaginaire à centre

réel.
Deux droites conjuguées par rapport à cette quadrique ne

se distinguent pas l'une de l'autre par leurs propriétés.
Les trajectoires dans une rotation (ou glissement) simple

sont bitangentes à la quadrique fondamentale, mais en des

points imaginaires.
Parmi les particularités qui distinguent ce groupe, nous

signalerons que la translation d'un segment sur une droite,
répétée un nombre fini de fois, fait atteindre l'infini,
fait qui indique simplement l'impossibilité d'une telle
répétition et qui, analytiquement, tient à ce que la fonction

2 c arctang ~ tend vers une valeur finie, lorsque croit
jU C

indéfiniment.
3° Le groupe est euclidien.
La quadrique fondamentale est dégénérée en une conique

imaginaire à plan réel.
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La conjuguée d'une droite quelconque de l'espace est une
droite de ce plan, de sorte que les rotations et les translations

constituent des opérations se distinguant nettement
les unes des autres.

Par une translation indéfiniment répétée, un point tend,
comme par une translation lobatchewskienne, vers un point
de l'infini métrique, mais si nous supposons rejeté à l'infini
le plan de l'infini métrique, c'est-à-dire si nous supposons
([ue l'équation de ce plan tende à être satisfaite par les
coordonnées d'un point qui s'éloigne indéfiniment, l'on tombe
sur la géométrie vulgaire.o o

Principe d'Archimède. — Sans toucher en rien à l'idée de

figure, qui constitue en somme l'unique concept en dehors
duquel le mot ((Géométrie» perd toute signification, nous
pouvons établir des « métriques » où interviennent toutes
les notions auxquelles conduit l'étude de la mesure géométrique,

mais où les opérations et les figures correspondantes
aux propositions ne sont plus celles de la Géométrie
vulgaire.

Il nous suffit, pour cela, de remplacer l'opération
fondamentale de la Géométrie vulgaire qui consiste dans le «

déplacement sans déformation » des figures par d'autres
opérations ayant des propriétés soit identiques, soit peu
différentes.

Dans chacune de ces métriques intervient une famille de
lignes jouissant des propriétés attribuées aux lignes droites
par les axiomes projectifs PI et PII, et chacune de ces
familles peut être considérée comme la famille des axes d'une
infinité de groupes métriques des trois catégories.

Nous avons vu, dans l'examen des groupes métriques
projectifs, c est-à-dire des groupes dont les axes sont les lignes
droites, que, parmi eux, il n'existe pas de groupes lobatchews-
kiens ou riemanniens donnant lieu à la propriété ordinaire
d'une translation en ce qui concerne sa répétition indéfinie.

Examinons donc, dans le cas général, les conséquences
de l admission d'un nouvel axiome, que nous énoncerons,
sous le titre d AxiomeclArchimecLc,de la manière suivante*

A1IV. L operation consistant à déplacer (sans déforma-
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tion) unsegment sur un axe du groupe peut être continuée
indéfiniment etpermet ciatteindretout point de cet axe.

Cet axiome pourrait aussi s'exprimer en disant que l'addition

métrique de deux segments sur un axe jouit de la

propriété archimédienne, propriété qui résulte en somme
du fait que cette addition donne toujours un résultat et
un seul.

[ ne conséquence de l'axiome M1V consiste en ce qu'un
point de l'espace peut atteindre tout autre point et par suite
ne peut être séparé de lui par la surface de l'infini métrique,
de sorte que cet infini métrique ne peut comprendre des

points déterminés de l'espace.
Les conséquences principales de l'axiome MIV pour les trois

catégories de groupes métriques, sont les suivantes :

1° Groupe euclidien : l'espace est une variété ouverte,
l'équation du plan de l'infini métrique (ou plutôt de la surface

qui joue ce rôle) est vérifiée à la limite par les coordonnées

d'un point qui s'éloigne indéfiniment, les axes du

groupe forment une famille de lignes ouvertes et présentant
la propriété de l'unicité de l'asymptotique.

2° Groupe lobatchewskien : l'espace est encore une variété
ouverte, la surface qui joue le rôle de la quadrique
fondamentale est composée — pour ainsi parler — des points
de l'infini, et les axes sont encore des lignes ouvertes, mais
ne présentant pas la propriété de l'unicité de l'asymptotique.

3° Groupe riemannien : l'espace est une variété fermée,
les axes sont des lignes fermées.

Nous voyons que l'axiome d'Archimède constitue le lien
entre la catégorie des groupes métriques et la forme de

leurs axes.
L'admission des quatre axiomes métriques et de l'axiome

Pill caractérise les groupes euclidiens dont l'infini métrique

est rejeté à l'infini. Si nous employons le pluriel, c'est

qu'il existe une infinité de ces groupes, chacun correspondant
à une famille d'axes possédant les propriétés attribuées

aux lignes droites par les axiomes projectifs, y compris
l'axiome PHI.
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Parmi eux se trouve le groupe qui admet pour axes les

droites idéales.
Les groupes lobatchewskiens satisfaisant à l'axiome d'Ar-

chimède ne sauraient avoir pour axes les droites idéales, et
c'est à la signification multiple, — parce qu'arbitraire —
qui a été donnée au mot « droite » que doivent êlre attribués

en grande partie les malentendus auxquels a donné
lieu l'introduction des géométrie s non-euclidiennes.

Quant aux groupes riemanniens, il ne peut en exister qui
satisfassent à l'axiome d'Archimède que si l'espace est une
variété fermée.

Coordonnées métriques. — Supposons que l'on établisse
un système de coordonnées, à la manière des systèmes
employés en géométrie analytique, au moyen de trois axes
rectangulaires et des distances des points de l'espace à ces

axes, les axes, la rectangularité, la distance constituant des
notions relatives au groupe métrique choisi.

Un tel système de coordonnées sera dit
Il est facile de voir que, pour les groupes euclidiens et

lobatchewskiens, l'axiome MIV équivaut au suivant :

(MIV)' Les systèmes de coordonnées métriques sont uni-
coques.

Cet axiome ne peut être applicable aux groupes riemanniens

que moyennant une extension de la signification du
mot : « univoque ».

Sur une surface fermée, simplement connexe, on peut,
en vue d'établir un svstème de coordonnées, tracer des
lignes appartenant à deux familles différentes, telles que par
tout point de la surface, il passe une ligne et une seule de

chaque famille. On aura déterminé ainsi un système de
coordonnées, qui ne saurait être univoque, puisque la surface est
fermée, mais qui jouit des propriétés essentielles des
systèmes univoques.

Ces considérations s'étendent aux variétés triples, de sorte
que l'axiome (MIV)' peut être considéré comme équivalent,
à l'axiome MIY ppurles groupes métriques de toutes les
catégories, à la condition d'étendre, comme nous venons de
l'indiquer, la signification du mot « univoque ».
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Nous sommes maintenant en mesure de préciser le motif
de certaines divergences que présente la question des géo-
métries non-euclidiennes suivant le point de vue où Ton se

place.
Bolyai et Lobatchewski, ainsi que ceux qui ont suivi leur

voie, prenant pour point de départ les propriétés les plus
intuitives —- qu'on nous permette ce terme dont nous avons
généralement évité l'emploi en raison de son imprécision—,
ont admis — inconsciemment, puisque leur raisonnement
est imaginatif, — des propriétés équivalentes aux axiomes
métriques, c'est-à-dire aux trois axiomes de Lie et à l'axiome
d'Archimède, et ont laissé de côté le postulat des parallèles
au sens où il se confond avec notre axiome Pill, propriété
qui a paru moins solidaire du bloc géométrique, parce que
l'intuition prend du vague lorsqu'on fait appel à l'idée de

l'éloignement indéfini, et d'ailleurs seule propriété
fondamentale qui fut alors explicitement énoncée.

Nous avons indiqué les conséquences de ces hypothèses
et montré qu'elles sont incompatibles avec les propriétés des

groupes métriques projectifs, si l'on ne modifie pas la
conception des lignes idéales appelées « droites ». C'est uniquement

au maintien de ce mot pour désigner des conceptions
différentes que sont dues les dissertations scholastiques sur
la « forme », la « nature », la « structure » cle l'espace, expressions

qui présentent sans doute une signification claire pour
les personnes qui les emploient.

Quant aux analystes, dont Riemann, Helmholtz, Cayley, So-

phus Lie, pour ne citer que les plus illustres, leur généralisation

porte sur la notion de déplacement ou celle de

distance, qui la représente. Dans ces conditions, surtout si un
point n'est rien autre qu'un ensemble de trois coordonnées,
ni l'axiome d'Archimède ni celui de l'unicité de l'asymptoti-
que ne s'imposent. Les systèmes de coordonnées projectifs
permettant de représenter très simplement les diverses métriques,

on était conduit à donner au postulat des parallèles une
signification purement métrique sans relation avec la forme
des axes du groupe considéré. Aussi les analystes se sont-ils
surtout attachés aux cas des groupes métriques projectifs.
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Définition de la ligne droite. — Une ligne droite est
déterminée (parmi leslignes droites) par la connaissance de

deux de ses points.
Cette propriété ne saurait constituer une définition des

lignes droites, et nous avons vu qu'il existe une infinité de

familles de lignes qui présentent toutes les propriétés de la

famille des droites intervenant dans les démonstrations
géométriques et qui sont susceptibles de donner lieu à des
doctrines ne différant de la Géométrie ordinaire que par les

figures correspondantes aux diverses propositions.
Pourtant la proposition ci-dessus, suppression faite des

mots entre parenthèses, a été prise parfois comme définition
de la ligne droite.

Cette façon de voir s'explique, si elle ne se justifie pas,
par la confusion en vertu de laquelle l'intuition privée de

critique a incorporé l'idée métrique (basée sur celle de figure
indéformable) dans l'idée de figure, alors que, dans la
conception analytique, plus consciente et mieux informée, cette
dernière est la seule idée essentielle de la Géométrie, la seule
en dehors de laquelle le mot « géométrique ne peut recevoir

qu'une signification arbitraire.
La ligne droite est la seule ligne qui soit covariante (pour

ainsi s'exprimer, en étendant la signification de ce terme
emprunté à la théorie des formes algébriques) d'un couple
de points dans tous les déplacements sans déformation, puisque

c'est la seule ligne qui reste fixe dans ceux de ces
déplacements qui laissent fixe le couple.

On peut donc dire que la ligne droite est la seule ligne
qui soit déterminée par deux points et par l'idée de déplacement

sans déformation. Mais nous avons vu que cette idée
est restée incorporée dans l'idée géométrique elle-même
avec une telle force de cohésion que personne n'a songé,
avant l'immortel rationaliste Helmholtz, à la dégager
explicitement des concepts synthétiques où elle était latente.

L'idée vulgaire, suivant laquelle la ligne droite est déterminée

par deux de ses points, est donc légitime suivant la
conception dans laquelle l'idée de déplacement fait partie
intégrante de l'idée géométrique, c'est-à-dire dans laquelle
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les propriétés métriques d'une figure sont des propriétés
« intrinsèques » de cette figure.

L'explication de ces associations d'idées est d'ailleurs
évidente, si l'on admet l'origine empirique des idées, théorie
féconde, magistralement établie par Helmholtz 1 et lumineusement

développée par Taine2: n'avons-nous pas en effet
acquis l'habitude de considérer 1' de la plupart des

objets comme non affectée par leur déplacement?
Conclusion. — Les notions définies mises en œuvre

dans les traités classiques de géométrie peuvent être réduites
à deux concepts : celui de figure (comprenant les concepts
de point, ligne, surface, continuité) et celui de déplacement
d'une figure invariable.

Les propriétés de ces concepts interviennent dans les
démonstrations classiques par le procédé que nous avons
appelé le raisonnement Imaginatifà l'exception de la propriété
des lignes droites exprimée par le postulat des parallèles,
qui constitue ainsi le seul axiome explicitement énoncé.

Les résultats de l'examen critique auquel nous avons
procédé peuvent être résumés de la manière suivante :

Les quatre axiomes métriques (les trois de Lie et celui
d'Archimède particularisent les déplacements d'une figure
invariable parmi les transformations ponctuelles, de sorte

que l'on peut, tout en réservant la possibilité de pousser
plus loin l'analyse, fonder la Géométrie sur les seuls
concepts de figure et de transformation

Toutes les propriétés géométriques découlent de l'axiome
AI, d es quatre axiomes métriques et de l'axiome Pill, par
lequel est représenté le postulat des parallèles, de sorte que
tous les groupes de transformations ponctuelles satisfaisant à

ces axiomes (l'énoncé de l'axiome Pill étant libellé de
manière à viser les axes des groupes métriques et non pas
seulement les lignes droites) donnent lieu à des propriétés
susceptibles d'être exprimées par les diverses propositions
de la Géométrie, pourvu que l'on modifie convenablement la

signification des mots : égalité, droite, perpendiculaire, etc.

1 Hklmhot.tz. Optique physiologique.
2 Ta ink. De l'Intelligenc
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L on obtient encore des métriques, mais pouvant différer
plus ou moins de la métrique ordinaire, en laissant de côté
les axiomes MIV et Pill, c'est-à-dire en prenant pour base
de Yégalité géométrique un groupe métrique quelconque,
savoir un groupe satisfaisant aux trois axiomes de Lie.

Dans une telle métrique, un rôle important est joué par
une famille de lignes (axes du groupe métrique) présentant
les propriétés attribuées aux droites par les axiomes PI et

PII, et réciproquement, à toute famille de lignes jouissant
de ces propriétés on peut faire correspondre une infinité de

métriques.
L'on peut choisir notamment pour axes les lignes droites

idéales, et alors les groupes métriques correspondants sont
projectifs.

Mais, dans le cas où l'on admet l'axiome d'Archimède, il
y a relation étroite entre la catégorie du groupe (euclidien,
lobatchewskien ou riemannien) et celle de la famille des axes
(lignes ouvertes présentant ou non la propriété de l'unicité
de l'asymptotique et lignes fermées). Dans le cas du groupe
riemannien, l'espace lui-même est une variété fermée.

Terminons en émettant le vœu qu'il en soit fini avec le
caractère déconcertant qu'a pris la question des Géométries
non-euclidiennes, caractère si opposé à l'esprit scientifique.
Il suffirait pour cela que les gens raisonnables (et l'on doit
comprendre parmi eux tous les mathématiciens) veuillent
bien éviter l'emploi des mots : Géométries non-euclidiennes,
espace, plans, droites non-euclidiens, alors qu'il s'agit
simplement de métriques non-euclidiennes et de familles de
surlaces ou de lignes ayant des propriétés communes avec les
plans et les droites.

Si cette étude pouvait contribuer à ce résultat, nous nous
féliciterions de l'avoir entreprise.

G. Combebiac (Limoges).
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