Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 6 (1904)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: LES PRINCIPES ANALYTIQUES DE LA GEOMETRIE
Autor: Combebiac, G.

DOl: https://doi.org/10.5169/seals-7558

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-7558
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

LES PRINCIPES ANALYTIQUES DE LA GEOMETRIE

INTRODUCGTION

LE RAISONNEMENT GEOMETRIQUE. — Précisons d’'abord ce que
I'on doit entendre par la question des Principes de la Géo-
métrie.

Si 'on examine avec quelque attention les démonstrations
géométriques —etles considérations que nous allons dévelop-
per s'étendent facilement aux autres sciences rationnelles —,
on reconnait rapidement que les arguments employés se divi-
sent en deux catégories.

Les arguments de la premiere catégorie consistent a met-
trent en évidence l'identité logigue (de Xéyog, langage) d’une
proposition avec une autre déja admise, combinée généra-
lement avec des définitions de mots n’ayant pas d’autre effet
que d’abréger le discours.

C'est a ce procédé de raisonnement que s’appliquent pres-
que exclusivement les conseils généralement donnés — par
Descartes, Pascal et bien d’autres — en vue d’enseigner &
raisonner correctement.

[l ne s’agit la que de combinaisons plus ou moins trans-
cendantes de mols ou de signes, et la possibilité d'intro-
duire des définitions nouvelles assure l'extension indéfinie
de la science.

On concoit la possibilité virtuelle de remplacer, pour
une telle opération, le cerveau humain par une machine
raisonner.

C'est la le raisonnement proprement logique.

L’Enseignement mathém., 6¢ annde ; 1904. 12
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Ce procédé de raisonnement n'est pas le seul employé en
Géomélrie.

Considérons, par exemple, la démonstration donnée par
Legendre de la proposition : « D'un point A pris hors d'une
droite GD on peutl abaisser une perpendiculaire sur celie
droite. »

« Prenons sur CGD un point B, et menons AB; faisons
« angle DBA" égal a I'angle DBA; prenons BA'=—=BA, et u-
crons la droite A\, Les deux triangles ABE, A’BE, ont le
ccoté BE commun; AB=BA’, et I'angle ABE est égal a
angle EBA; ils sont done égaux. On en conclut, ete. »

Le raisonnement ci-dessus n'a une signification que moyen-

—~

~

—~

nant une figure. Nous devons effectuer, ou tout au moins
nous repreésenler, les diverses opérations indiquées et en
constaler ainsi la possibilité, en confondant dans une méme
évocalion les éléments géométriques el leurs propriétés.

Ce n'est plus de la pure logique.

Si, a la rigueur, la deuxieme phrase du raisonnement cité
peut étre assez lacilement ramenée, par une inlerprétation
purement logique, a des propositions antérieurement énon-
cées, il ne saurait en ¢tre de méme de la premiere phrase et
celle-ci suppose que P'on suilles opérationsindiquées sur une
figure, en évoquant mentalement les propriétés que compor-
tent implicitement les notions de droite, d'angle ¢t d’égalité
oéométrique.

L’on eflectue ainsi un raisonnement par images senso-

rielles.
C'esl la le raisonnement imaginatif — cerlains disent in-
Ludtef.

Ce procedé, dans lequel on se contente de conslater de
oisu les propriétés admises pour les nolions mises en wuvre,
dispense de la tache diflicile d’exprimer explicitlement ces
propriétés.

Son danger cohsisle en ce que, enlrain¢ par I'image sen-
sorielle, forcément particuliére, qui sert de guide au raison-
nement, on risque d’atlribuer aux conclusions une généra-
lité illégitime; bref ce procédé distingue mal ce qui découle
logiquement des propositions antérieures de ce qui est d
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aux propriétés de la figure particuliere que I'on a devant les

yeux.

Les deux sortes de raisonnement que nous avons carac-
térisées par les qualificatifs de logique et imaginatif peuvent
'étre aussi par ceux de analytique et synthélique, ces termes
se justifiant par cette considération que la premieére caté-
oorie nécessite une deécomposition préalable des notions en
leurs différentes propriétés, afin de préciser nettement celles
qui interviennent, tandis que, dans la denxieme catégorie,
chaque notion se présente avec toutes ses propriétés, sans
que I'on distingue nettement celles qui sont réellement uti-
lisées dans la déduction.

Avertissons. a celte occasion, que, dans la suite de lapré-
~ sente étude, les mots analyse et analytique se rapporteront
- exclusivememt a I’Analyse mathématique, c’est-a-dire a la
~ Théorie des Nombres.

- LA QUESTION DES FONDEMENTS. — La question des Prin-
. cipes de la Géométrie a pour objet la détermination précise
~ de tout ce qui, en Géomeétrie, ne peut étre rattaché a la pure
' logique et la distinction de la part d'influence qui revient

~aux différents concepts qui seront ainsi mis en évidence.

- La solution de la question comporte 1'établissement d’un
- systeme de fondements permettant d’éliminer totalement (du
“moins théoriquement) le raisonnement imaginalif et com-
- prenant :

[ des notions fondamentales, au moyen desquelles toutes
- les autres puissent ¢lre construites par de simples défini-
 tions logiques (alias : définitions de mots);

2% des axcomes. c’esl-a-dire des propositions exprimant
~ certaines propriétés de ces notions fondamentales, telles que
les aulres proposilions de la Géométrie puissent en résulter
par déduction logique, avec combinaison des définitions
que 'on est successivement conduit a introduire.

. Observons lout de suite que, au point de vue auquel nous
hous placons, les axiomes ont pour unique caracléristique
d'étre admis sans démonstration. 11 n’est donc nullement
¢ question de décider s’ils sont vrais ou faux — question qui
Hne pourrait avoir quune signification physique —; évidents
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ou non — (uestion sans signification précise — ; d’origine
empirique ou «aprioristique — question d’ordre exclusive-

ment psychologique.

Dans la voie qui conduit aux éléments irréductibles de
la GGéométrie, on peut s’arréter plus ou moins loin, et I'on
néglige des points de vue fort intéressants, lorsque l'on
pousse d'une traite jusqu’aux régions dénudées ou la raison
s'exerce sur de pures abstractions.

Dans ces dernieéres années, les principes de la Géométrie
ont fait I'objet de beaux travaux, et I'on est parvenu a plu-
sieurs systemes de fondements, également acceptables, mais
totalement abstraits : les notions prises pour bases sont de
purs symboles (symboles non définis de M. Padoa ), n'ayant
pas d’autres propriétés que celles quon leur attribue au
moyen des axiomes, el a ces propri,étés n'est atlachée aucune
image sensorielle.

Toute image sensorielle est ainsi éliminée, non seulement
du raisonnement, mais encore des notions.

Clest ainst que, pour M. Hilbert? les « Poixts », les
« DrRO1TES », les « PLaxs » sont des étres ou éléments n'ayant
pas d’autres propriétés que celles d’étre susceptibles d’avoir
enlr’eux certaines relations mutuelles exprimées par les
mots « SONT SITUES », « ENTRE », « PARALLELE », « CON-
GRUENT ».

Les mots écrits en majuscules représentent les notions
fondamentales. Chacune d’elles n'a pas d’existence par elle-
méme et ne saurait avoir de propriétés intrinséques.

Les axiomes expriment les propriétés de relation permet-
tant de combiner ces notions telles, par exemple, que:

« Deux points distincts déterminent toujours une droite. »

Une telle théorie ne fait appel qu'aux éléments les plus
abstraits de notre conception, savoir ceux qui n'ont pas
d’autres propriétés que d’étre des concepts.

Méme lorsqu’il se présente des éléments qui, au fond, sont

1 PADOA. Un nouveaw systeme de définitions pour la Geométrie euclidienne. (Comple rendu
du Congres international de mathématiques). (rauthiers-Villars, Paris, 1902.

2 ieBerr. Grandlagen der Geometrie, Teubner, Leipzig, 1899: iraduil en francais par
M. Laugel, Gauthicr-Villars. Paris, 1900.
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des nombres, on est obligé d’établir leurs propriétés, comme
si I'Analyse algébrique n'existait pas. ce qui oblige a con-
sacrer une large place a des considérations qui interessent

plutot cette derniére science que la Géométrie.

Cet ostracisme de 'analyse est d’autant moins avantageux
que, ainsi que l'on s’en rend facilement compte, toutes les
combinaisons d’axiomes envisagées par les divers auteurs —
nolamment la Géométrie non-pascalienne de M. Hilbert —
sont au fond des conceptions analyliques, de sorte que I'em-
ploi de I'"Analyse apporterait la clarté, toul en laissant,
< semble-t-il, la porte ouverte aux hypothéses.

' Sont également des conceptions analytiques les méirigues
- édifices par MM. Minkowski!, Hilbert® et Hamel?, ou dispa-
rait l'idée de déplacement, l'idée de mesure étant basée uni-
~ quement sur la notion généralisée de la distance, qui n'est
plus qu'une fonction d'un couple de points soumise a certai-

~ mnes conditions tres générales.

Il est donc permis, avant d’essayer de créer des concep-
. lions géométriques non susceptibles d’étre représentées par
~des propriétés numériques — nous n’'en connaissons d’ail-
leurs pas —, de demander a ’Analyse tout ce qu'elle peut
 donner.

En oulre, sans méconnaitre le grand intérét que présente,
tant pour la philosophie des Mathématiques que pour l'étude
~de I'intelligence, la réduction de la Géométrie a des concep-
: tions purement logiques, 'on peut trouver utile de ne pas
- pousser aussi loin la dissociation des idées et de s'arréler a

un stade intermédiaire, ou les notions fondamentales et les
axiomes présentent encore une signification figurée (ou, pro-
prement, géomdétrique).

Nous nous sommes donc proposé, dans ce travail, d’établir
les fondements de la Géométrie en prenant pour notions
fondamentales les seuls concepts inhérents a l'idée de figure,
savolr: le point, la ligne et la surface.

Y MINKROWSKLL Geometrie der Zahlen, Leipzig, Teubner, 1896.

2 Hinserr, Mathematische Annalen, Bd. 34. .
- Y Hanw. Ceber die Geometrieen. in denen die Geraden die kiirsesten sind, Gottingen. Die-
‘i tervich, 1901,
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Quant aux axiomes, ils auront pour objet de réduire la
Géométrie a n'étre qu'une application de I'\nalyse algébrique.
Ce résultat atteint, on se trouve sur un terrain solide et bien
connu: la Géométrie est fondée.

Ce point de vue est loin d’étre nouveau: c’est celui de Rie-
mann, Helmholtz, Cayley, Sophus Lie, el nous ne pouvons
avoir la prétention de faire ccuvre bien originale. Nous
crovons toutelois u'il n’est pas sans intérét, dans 'état ot se
trouve actuellement la question des Principes de la Géomé-
trie, de coordonncer, en vue d'une idée d’ensemble, des ma-
lériaux qui, a notre connaissance, sont demeurés épars.

AjJoutons que nous v avons irouvé l'occasion de présenter
quelques observations, qui n’ont peut-étre pas encore été
faites.

DivisioNs pE 1A GeEovMETRIE. — [l est d’ailleurs remarqua-
ble que le point de vue analytique soit précisément celui
d’ott les principes de la Géométrie se présentent sous l'as-
pect le plus clair et qu’il conduise a un classement des
notions géométriques conforme a la division qui s’est natu-
rellement établie.

La géométrie vuigaire ou euclidienne — on s’en rend faci-
lement compte par I'examen de ses principales propositions
— est la science de la « mesure ».

Ses fondements doivent donc étre constitués par les pro-
priétés primordiales de I'égalité géométrique, qui est définie
elle-méme par la superposabilité, de sorte que, en derniere
analvse, comme l'a va pour la premiére fois Helmholtz, les
vrais axiomes de la géométrie vulgaire ne sont autre chose
que les propriétés des déplacements d'une figure inva-
riable.

(C’est pourquoi, les opérations employées dans les raison-
nements que nous avons qualitiés d'imaginatifs, consistent
toujours — directement ou indirectement — dans la super-
position d'une figure a une autre.

(e procédé joue, en Géométrie, le role tenu en arithmé-
tique par le raisonnement par récurrence, qui s'impose la en
raison de la genése méme des nombres entiers, laquelle
s'opere par récurrence.

D i e T el s
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Mais la Géométrie s'est enrichie, depuis Euclide, d'un
heau domaine, d’ou est exclue I'idée de mesure.

On a d’abord établi, au commencement du dernier siécle,
sous lenom de Géométrie de situation ou Géométrie projective,
un ensemble de propriétés basées sur la seule idée de ligne
droite.

Plus récemment s’est constituée, sous le nom d’Analysis
sitds, une doctrine qui s'attache a des propriétés encore plus
générales des figures.

Tels sont donc les trois domaines : Analysis sitis, Géome-
trie projective, Géométrie vulgaire ou métrique, que nous
allons voir apparaitre par I'introduction de notions de moins
en moins générales.

I
ANALYSIS SITUS

REDUCTION DE LA GEOMETRIE A L'ANALYSE. — Le premier
des axiomes qui permettent P'application de I’Analyse algeé-
brique a la Géométrie est le suivant:

A L. Lespace ponctuel peut élre représenté par une variété
(ou multiplicite, Mannigfaltigheit) numérique triple.

Cet axiome ramene a des idées analytiques les notions de
continuité, de ligne. de surface, d’intersection, de conlact.
Mais rien n'empéche d’associer les idées géomélriques aux
expressions analytiques correspondantes.

Nous conserverons donc, comme concepts essentiels de la
Géométrie, les concepts de point, de continuité, de ligne et
de surface, c'est-a-dire ceux qui sont inhérents a l'idée de
figure. |

Pour pouvoir donner une interprétation géométrique a
Paxiome AL, il faudrait concevoir des géométries ou cet
axiome ne fut pas réalisé.

M. [lilbert! a établi une Géométrie, ou les points ne cons-
tituent pas une variété numérique (Géométrie non-pasca-
lienne), mais la théorie ainsi édifiée a une existence pure-

Y Hitserr, Grundlagen der Geometrie.
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ment analytique, et les éléments auxquels elle se rapporte
ne sont susceptibles de correspondre a4 aucune idée com-
parable a celle de point, tout au moins dans I'exemple donn¢
par le savant géometre.

CoorvoNNEEs. — Les (rois nombres qui, en vertu de
'axiome A, représentent un point de 'espace sont appelés
ses coordonnées.

L’¢tablissement d’un systeme de coordonnées nécessile
¢videmment lintervention d’opérations géomélriques, ou
« constructions », déterminant la correspondance entre les
points de I'espace el les systemes de valeurs des trois coor-
données.

A vrai dire, I'on ne voit guere le moyen de définir un sys-
teme de coordonnées en utilisant uniquement les notions qui
se ratlachent a 'axiome A1, les constructions géométriques
élant toutes basées sur l'emploi des corps solides, dont les
propriétés doivenl étre classées parmi les propriétés me-
lriques.

Mais rien n'empéche d'en admettre la possibilité virtuelle.

Un systéeme de coordonnées x, y, z, une fois défini, on en
oblient une infinité d’autres en effectuant des transforma-
tions de la forme

(1 = (rovz, VY =Y ey =y (e

i

ou g, et ¥ sont des fonctions quelconques.

Les équations (1 représentent, a volonté, un changement de
coordonnées ou une transformation ponctuelle, c’est-a-dire
une opération transformant un point de I'espace en un autre
point (avec possibilité de détermination multiple, 1magi-
naire, singuliere ou présentant toute autre particularité), de
sorte que l'on peut dire indifféremment que telle propriéte
est indépendante d'un certain changement de coordonnées
ou qu'elle est invariante par rapport a la transformation ponc-
tuelle correspondante a ce changement.

Les propriétés qui découlent uniquement de l'axiome Al
sont évidemment indépendantes du choix des coordonnées.

On peut encore dire qu’elles sont invariantes dans toute
transformation ponctuelle de l'espace. Autrement dit, les
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formules analytiques qui les expriment se conservent, lors-
qu'on opére sur les coordonnées une transformation (L.

Clest la leur caractéristique, et 'on est tenté, pour cela, de
les qualifier de générales et de désigner leur ensemble sous
le nom de Géomélrie génerale.

Ne se rapportant qu’a un petit nombre de notions — celles
que nous avons énoncées plus haut—, elles ne peuvent qu'étre
en nombre restreint.

Elles sont d'ailleurs, le plus souvent, fort simples.

Elles sont d'un ordre plus général que celles qui consti-
tuent proprement 'dnalysis sitius, dont nous allons main-
tenant nous occuper.

Observons que la notion de transformation ponctuelle, que
nous venons d'introduire analyvtiquement, constitue un con-
cept géométrique dont l'importance s’aflirmera au cours de
cetle élude et qui a sa place, en GGéométrie géuérale, a cote
des concepls fondamentaux de point, de ligne et de sur-
face.

Dans une transformation ponctuelle d'une figure, les points,
les lignes, les surfaces, restent respectivement points, lignes.
surfaces.

DEGRE DE CONNEXION DE L'EspAcE. — Lies propriétés consti-
tuant U'Analysis sitis peuvent élre également ramenées a
des propriétés analyliques, movennant un complément :
['axiome A

e,

Nous le donnerons sous une forme telle que l'axiome com-
plémentaire comprendra le premier, cette dérogation au
principe de I'indépendance des axiomes ne présentant pas
grand inconvénient et nous permettant d'éviter des compli-
calions de langage.

ATL On peut établir une correspondance univogue entre
les points de Uespace el les sysiémes de caleurs réelles et dé-

lermanées de trois nombres.

Cet axiome peut encore s’énoncer :
(ALl) L'espace est une variété numérique triple et triple-

Cment infinie a simple connexion.

3
it

Cet axiome particularise 'espace parmi les variétés triples.
Nous signalerons brievement les propriétés que peuvent
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présenter, au point de vue ot nous nous trouvons, les varie-
tés numériques.

L'ensemble de tous les svstémes de valeurs de n nombres
constitue la variété n-uple tvpe. '

Mais on peut concevoir des variétés non susceptibles de
correspondre, d'une maniére univoque, a ces variétés types,
et en élablir une classification d'apres les particularités que
peut présenter la correspondance.

Fixons d’abord la terminologie pour tout le cours de cette
¢tude, en observant que, dans le qualificatil « continue »,
appliqué a une variété géomeétrique: ligne, surface ou volume,
nous comprenons toujours «non limitée», de sorte (qu'une va-
riété continue sera dite fermée ou ouverte, ce dernier qualifi-
catif indiquant qu’elle s’étend a 'infini.

Les lignes sont des variétés simples, et les seules lignes
susceptibles d'une correspondance univoque avec la série
conslituée par tous les nombres positifs et négatifs sont les
lignes continues, sans points multiples et ouvertes, a l'exclu-
sion notamment des lignes fermées.

De meéme, les seules surfaces (variétés doublement éten-
dues; qui satisfont a la condition analogue sont les surfaces
continues, simplement connexes, et doublement infinies,
ce dernier cualificatif avant pour butl’exclusion des surfaces
fermées et des surfaces tubulaires (ou cylindroides), celles-
ci pouvant aussi étre dites « simplement infinies ».

Sur ces surfaces seules (les plans par exemple)

\ ), il est pos-
sible d’établir des systemes de coordonnées rigoureusement
untvoques.

Sur une surface simplement connexe, non tubulaire, une
ligne fermée est rencontrée en un nombre pair de points par
une ligne continue, fermée ou ouverte.

Le degré de connexion d'une surface continue (fermée oun
ouverte, entraine des propriétés correspondantes pour les
deux domaines qu’el]e détermine généralementdans l'espace.
Mais ce degré peut étre déterminé comme propriété intrinse-
que de la surface, sans laire appel a la troisieme dimension,
en définissant cette surface comme variété numérique double.

o
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[l en estde méme en ce qui concerne les propriétés par rap-
port a U'infini, dontil vient d'étre question.

Il existe également un degré de connexion pour les varié-
tés triples sans qu’il soit besoin de faire appel, pour en avoir
la notion, a une quatrieme dimension.

Enfin on peut également distinguer, parmi les variétés
triples et en se bornant aux variétés simplement connexes,
les variétés fermées et les variétés simplement, doublement
ét triplement infinies.

Nous n'envisagerons pas l'hypothése suivant laquelle 1'es-
pace serait une variété numérique a connexion multiple.
Mais nous n'exclurons pas celle suivant laquelle 'espace se-
rait une variété fermée, malgré les difficultés de conception
qu’elle comporte, tenantnotamment a ce que cette hypothese
entraine la non-existence de lignes infinies.

Mais que peut-on entendre par existence ou non-existence
d'une conception idéale?

Comme on ne voit pas que l'aflirmation ou la négation de
celte hypothése soit susceptible de conséquences objectives,
il semble que I'on doive admettre que nous demeurons libres
de concevoir 'espace ponctuel comme une variété ouverte
ou comme une variété fermée.

COORDONNEES UNIVOQUES. — Les systemes de coordonnées
qui établissent une correspondance satisfaisanta la condition
ATl seront appelés univoques.

[l est évident qu'on obtiendra tous les systémes de coor-
données univoques en appliquant a I'un d’eux une transfor-
mation (1) telle qu’a tout systeme de valeurs réelles et déter-
minées de v, y, z corresponde, d'une maniére univoque, un
systeme de valeurs réclles et déterminées de x', y, 7', etil
est du reste entendu que nous ne comprenons pas le sym-
bole == o parmi les nombres déterminés.

Nous appellerons également univoques de telles transfor-
maltions.

Enfin nous dirons que deux systemes de coordonnées sus-
ceptibles d’étre transformés 'un dans Pautre par une trans-
formation univoque appartiennent au méme type. Clest
notamment ce qui a lieu pour tous les systémes univoques.
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Un pressent l'importance des conséquences d'une hy-
pothese aflirmant que tel systeme de coordonnées est uni-
voque.

Si l'on admet par exemple (axiome d’Archimede) que, sur
une droite, les dislances euclidiennes x de tous les points a
un point fixe constituent un systeme de coordonnées uni-
voques, il ne pourra plus en étre de méme du systeme au-
(quel donneront licu les distances non euclidiennes X définies
par la formule

2¢ + x

X = 2¢ log :
& 2¢ —x

Car toute valeur de x extérieure a l'intervalle de —2¢ a
+ 2 ¢ donnera lieu a une valeur imaginaire de X, les limites
entre les valeurs réelles et les valeurs imaginaires de X
étanl 4 oo et — oo,

INFINT GroMETRIQUE. — Les symboles 4 o et — oo jouis-
sent, dans I'Analyse algébrique, de propriétés telles qu'il
peut ¢tre avantageux, dans certains cas et en vue de la géneé-
ralité de certaines propositions, de traiter le symbole == oo
comme s'il représentait une valeur de la série des nombres,
de telle sorte que celle-ci se fermerait alors sur elle-
meaeme.

Mais il ne s’agitla évidemment que d’'une convention com-
mode et, en énoncant laxiome ATI, mnous n’avons pas
entendu comprendre == co parmi les nombres déterminés.

Il doit donc étre entendu, d’aprés cet axiome, que, dans
un systéme de coordonnées univoques, aucun point ne doit
avoir pour coordonnées —=oo, el que, réciproquement, a
tout systeme de valeurs déterminées (alias linies) doit corres-
pondre un point délerminé.

De méme nous entendons qu'une transformation ponc-
tuelle univoque fait, ainsi que son inverse, correspondre a
toul systcme de valeurs déterminées un autre systeme de
valeurs également déterminées.

Il résulte de la que la propriété, pour une courbe, d’avoir
des branches infinies, peut étre définie analytiquement
dans tout systéeme de coordonnées univoques et par suite,
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étant indépendante du systéme de coordonnées (pourvu qu'il
soit univoque), elle doit ressortir a U'dnalysis sitds, ot I'idée
de linfini géométrique posséde ainsi droit de cité, ce qui
se trouve d'ailleurs en concordance avec l'intuition suivant
laquelle l'idée de l'infini géométrique nous apparait d'un
ordre plus général, par exemple, que I'idée consistant dans
la particularisation de certaines lignes, telles que les lignes
droites. _

Cette propriété d’avoir des branches infinies ne se concoit
d’ailleurs que pour une courbe dontles points sont déterminés
au moyen d’une loi constructive ou analytique et ne s’ap-
s'applique pas a I'idée sensorielle d'une courbe ou, comme
'on dit, a un ensemble «ctuel de points.

Les surfaces a nappes infinies donnent lien a des obser-
vations analogues a celles que nous venons de présenter.

AsyuprorTisME. — [l nous reste, pour satisfaire a notre |
programme, a introduire analytiquement la notion d’asymp-
totisme, que l'intuition classe parmi les idées ressortissant a
'dnalysis sitis.

Considérons une branche infinie de courbe, telle que,
lorsque le point v, y, z qui la décrit s’éloigne indéfiniment,

T | . . .
les rapports = et — tendent vers des limites déterminées.

Considérons une autre branche de courbe ayant les mémes
propriétés et donnant liea aux meémes valeurs pour les li-

’ 4

. Yy ’ ,
miles des rapports o oet 5 des coordonnées :

ll.l

8

R4

i Y . ¥ . = .
lim, — = lim —, | Hm — = lim
X x x

3..«‘”
'~ ~

Nous dirons, dans ces conditions. que les deux branches
infinies sont asymplotiques.

Mais celte propriété ne peut avoir une porlée que si elle
est indépendante, dans une certaine mesure, du choix du
systeme de coordonnées, c’est-a-dire, suivant une remarque
déja faite, si elle estinvariante par rapport a certaines trans-
formations poncluelles.

La propriété envisagée est évidemment invariante par rap-
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port aux transformations linéaires; mais celte particularité
la classerait dans une zone frontiére intermédiaire, comme
nous le verrons, entre la Géomélrie projective et la Géo-
métrie métrique. Ce degré d'invariance ne nous suflit pas.
Soit
w = fi(x.y.z), v = folx,y.z), w = fslx,),3)

les  équations représentant une transformation ponc-
‘} “! &

tuelle, et admettons que les rapports — et - aient pour

limites, lorsque &, 7, zaugmentent indéfiniment dans les con-

- PP . . 3 .
ditions définies plus haut, des fonctions de lim. = et lim.

R0

C'est ce qui se produira lorsque u, ¢, @ seront des fonctions
rationnelles du méme degré (positif) de &, ¥, z, ou méme des
fonctions se comportanta l'infini comme des fonctions ration-
nelles du méme degré.

La propriété asymplotique se conservera évidemment
dans la transformation ponctuelle envisagée, c¢’esl-a-dire que
st I'on a

J ’

. Y L . - . s
lim = = lim'—,, lim — = lim —,
x x x r
l'on aura également
A . LW .o
lim — = lim —» lim — = lim —.
u u u u

Il résulte de la que la propriété asymptolique est inva-
riante par rapport a des transformations beaucoup plus géné-
rales que les transformations linéaires.

L’asymptotisme doit doncressortira l'Analysis sitis, et ¢’est
la conclusion que nous voulions tirer de ces considérations.

Observons en terminant que, quoique les axiomes qui ré-
gissent I'dnalysis sitiis expriment des propriétés de 'espace,
onne doit pas, pour cela, attribuer a celui-ci une existence pro-
pre: ses propriétés constituent simplement une maniere d’ex-
primer des propriétés de certaines lignes et de certaines cons-
lructions, qui servenl a établir les systémes de coordonnées.
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Risumt. — A UAnalysis sitis ressortissent les propriétés
relatives & un groupe de notions, qui se ramenent aux suil-
vantes : point, coulinuité, ligne, surface, transformation
pouctuelle, connexion.

111
GEOMETRIE PROJECTIVE

AxioMEs projectirs. — On appelle projectives les trans-
formations dans lesquelles toute ligne droite est transformée
en une ligne droite.

Les propriélés projeclives des figures sont, par définition,
celles qui sont invarianles (conservées) dans loute transfor-
mation ponctuelle projective de l'espace.

L'ensemble de ces propriétés constitue la Géométrie projec-
live. ’

[l est clair, d’apres cela, que les propriétés projectives
sont celles qui, en plus des notions constituant 'objel
de V'dnalysis sitis, font inlervenir la notion de ligne droite.

Quelle que soit l'origine de la notion de ligne droite, cetle
notion doit étre considérée, en Géomélrie projective, comme
primordiale, c’est-a-dire qu’elle n’est pas susceplible d’une
definiion la ramenant & des éléments appartenant a ce
domaine ; autrement dit, elle doit étre considérée comme
donnée, ou bien acquise par un processus élranger.

On pourrait, il est vrai, prendre pour notion primordiale
velle de transformation ponctuelle projective, mais elle ne s'im-
pose pas assez direclement a notre conception sensorielle.

A défaut de définition, il esl nécessaire d'énoncer les pro-
priétés fondamentales de la ligne droite qui, jointes aux
axiomes Al et AIl. doivent servir d’axiomes a la Géomélrie
projective.

Les axiomes projeclifs sont au nombre de trois, savoir:

P 1. — Les lignes dioites forment une famille de lignes
- continues, lelles qu'une d'entre elles est déterminée par la
~condition de passer par dewx points donnés.

P II. — Lorsque dewx droites sont concourantes, deux au-
lres droiles respectivement concourantes avec chacune d’elles
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(suns que trois de ces droites soient concourantes ensemble)
sont concouranltes entre elles.

P 1. — Par un point on ne peut mener qu’'une droile
asymptotique a une autre droite.

Ce dernier axiome, qui représente le postulatl des paral-
[éles, n'intervient pas dans les propriétés projectives, lors-
quon se borne a leur signification analytique, en faisant
abstraction des idées figurées qui leur correspondent. Nous
ne le comprendrons parmi les axiomes projectifs que lorsque
nous l'indiquerons expressément.

La condition pour qu’une ligne passe par un point donné
s'exprime par deux équations.

['axiome P’ | équivaut donc a ceci: que lesdroites forment
une famille de lignes a quatre parameétres et que le systéme
des quatre équations exprimant qu’une de ces lignes passe
par deux points donnés a une solution unique.

L'axiome P IT est la condition d’existence du plan, en ce
qu’il permet de construire une famille a trois parametres de
surlaces, telles qu'une ligne droite qui a deux de ses points
sur une de ces surfaces y est située tout entiére.

Nous prenons ces axiomes «u sens analytique, c’est-a-dire
que, pour mnous, la « condition de rencontre » de deux
droites est la relation entre les parametres de ces droites
qui résulte de l'élimination des coordonnées entre leurs
équatlions, élant admis que, lorsque la condition est remplie,
les valeurs qui en résultent pour les coordonnées peuvent
¢élre impropres, par exemple imaginaires, si le systeme de
coordonnées est univoque.

Cette généralisation de I'idée du concours de deux droites
étend la portée des axiomes P 1 et P Il — seuls axiomes pro-

jectifs proprement dits a certaines familles de lignes qui
n'y satisferaient pas sans cela. Il est facile de voir notam-
ment que le second axiome, si on se bornait a sa signification

gurée, ne pourrait élre exact pour une lamille de lignes ne
salisfaisant pas a 'axiome de 'asymptotique unique. En ou-
tre, au sens analytique, plusieurs lignes asymptotiques entre
elles sont concourantes.

Les axiomes P I et P I, méme au sens analytique, repré-

I 5

S

|
4
i
3
i
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senlent forcément des propriétés construclives; mais, celles-
ci, lorsque le point de concours n’est pas réel, n'ont pas la
simplicité nécessaire pour étre introduites dans des axiomes.

Au lieu de prendre la ligne droite pour notion fondamen-
tale de la Géométrie projective, on peut prendre le plan.,

Les axiomes seraient alors :

P 1V. — Les plans forment une famille de surfaces, lelles
que Uune d’entre elles est déterminée par la condition de pas-
ser par trois points donnés.

P L. — Trois plans ayant en commun plus d’un point ont
en commun tous les points qui appartiennent « la fois «
deux d’entre eux.

Nous laissons au lecteur le soin de démontrer 'équiva-
lence des deux couples d’axiomes, aprés avoir d’abord établi
la genese du plan par le mouvement d'une droite passant par
un point donné et s’appuyant sur unc droite donnée, et
montré que, en vertu de P II, une droite ayant deux points
dans un plan v est située tout entiere.

LIGNES SATISFAISANT AUX AXIOMES PROJECTIFS. — Il est clair
(que les axiomes posés jusqu’ici, qui particularisent les droi-
tes et les plans (en tant que familles plutot qu’en ce qui con-
cerne leur forme), ne les déterminent nullement et qu’il
existe des infinités de familles de lignes et de surfaces
jouissant de ces mémes propriétés, de sorte que les proposi-
tions de la Géométrie projective, lesquelles, comme nous le
démontrerons, résultent entierement des axiomes projectifs,
sont applicables a des figures ou les surfaces et les lignes
choisies pour répondre aux termes de « plans » et de « droi-
les » ne seraient nullement identiques aux surfaces et aux
lignes désignées habituellement par ces noms.

Les conclusions d'un raisonnement s’étendent en effel
partout ot sont applicables les propriétés réellement mises
en ocuvre, et c’est pour cela qu’il est toujours trés scientifi-
que de dégager nettement ces propriétés. Ce qui fail la géné-
ralité des raisonnements analytiques, c’est qu’ils s’appuient
uniquement sur des propriétés que possedent, par définition,
les éléments dont ils s'occupent.

Nous signalerons brievement les particularités que peu-
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vent liréscnler les familles de lignes satisfaisant aux axiomes
P T et P II, sans Loutefois nous écarter des cas les plus sim-
ples, la généralité nécessitant des développements dans les-
quels nous ne pouvons entrer.

1o Les lignes considérées sont fermées.

La surface engendrée par une ligne fermée variable pas-
sant par un point et s'appuyanl sur une aulre ligne fermée
ne peut étre que fermée: les surlaces jouant le role des
plans seront donc fermées.

Si une telle surface est a simple connexion, deux lignes
fermées tracées sur elle se rencontrent en un nombre pair de
points; I'axiome P I ne saurait donc étre valable en toute
rigueur. On peul toutefols en maintenir la portée essentielle
en admettant que les points de 'espace soient associés deux
a deux, de maniere que, lorsque l'une des lignes consi-
dérées passe par un poinl, elle passe ¢galement par son
associé. Une lelle combinaison est réalisée par la famille a
qualre paramelres constituée par les cercles avant leur centre
sur un plan donné. Les axiomes P L et P 11 seraient rigou-
reusement applicables, si 'on ne considérait que les points
situés d'un méme colé du plan donné; st ce plan est rejeté
a 'infini, on retombe sur la Géomdéirie ordinaire.

Mais on peul aussi supposer que les lignes jouant le role
des droites, tout en ¢étant fermées, ne puissent avoir, deux
a deux, plus d'un point commun. [l est alors nécessaire que
les surfaces jouant le roie des plans soient doubles, et, par
suite, « fortiort, doublement connexes.

2° Les lignes considérées sont ouverles et ne satisfont pas
a 'axiome de 'asymplotique unique. Les surfaces jouant le
role des plans peuvenl ¢élre alors simplement connexes el
doublement infinies, comme les plans eux-mémes.

Admettons que I'on ait déterminé sur une de ces surfaces,
que 'on peut, pour la facilité de la représentation visuelle,
supposer étre un plan, un systeme de coordonnées univo-
ques, el soit

(1) aflry) + bolxy) + ¢ =o

Péquation générale des lignes considérées, flxy) — o et
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o(ry) = o élant respectivement les équations de deux d’entre
elles, et «, b, ¢, des parameétres (homogénes).
Supposons en outre que le systétme d’équations en xy :

(2) flry) = X, o (xy) = Y,

ot X et Y sont des nombres réels donnés, n’ait jamais plus
d’une solution composée de valeurs réelles de & et y, quelles
que soient les valeurs attribuées a X et Y.

Moyennant ces conditions, lafamille delignes (1) se prétera
a une interprétation de la Géométrie projective plane, dans
laquelle cette famille sera substituée a celle des lignes
droites.

En faisant varier les fonctions f et ¢, on obtiendra, pour
ces lignes, des formes tres différentes entre elles, ainsi que
des particularités diverses dans leurs relations.

Laissant de coté le cas ou les valeurs des fonctions fet ¢
ne sont pas toujours réelles pour tout systeme de valeurs des
coordonnées x et y, cas ou il existe des points par lesquels
il ne passe aucune des lignes (1), nous nous bornerons a si-
gnaler plus spécialement un casou, au contraire, les fonctions
/ el 9 ne prennent pas tous les systémes de valeurs réelles
lorsquel'on donne successivement a x et y toutes les valeurs
réelles possibles, le cas limite étant celui ou la transforma-
tion ponctuelle que représentent les équations (2), lorsqu’on y
regarde X et Y comme constituant un second couple de
variables, est univoque.

Supposons, par exemple, que, quelles que soient . et v,
les valeurs X et Y de f el ¢ satisfassent toujours a l'inégalité

3) X2 £ Y? < R,

de sorte que, pour tout systéme de valeurs de X etY n’'y
satisfaisant pas, le systeme d’équation (2) n'ait pas de solu-
tion réelle en x el y.

Les coordonnées x et ¥ du point commun a deux lignes,
déterminées respectivement par les parameétres a, b, ¢ et
a', b, ¢ sont données par les formules

’ ’

be! — ¢b ca’ —-ac’

flxy) = ¢(xy) = — — ba’’

9
ab! — ba’ ab
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Les valeurs correspondantes de x et ¥ ne seront réelles
(que sous condition et en particulier elles ne le seront pas
lorsque le dénominateur commun sera suflisamment grand.

Il est facile de voir que, par tout point de la surface, pas-
sent une infinité de lignes (1) ne rencontrant pas une autre
de ces lignes donnée.

Les deux séries de lignes seront délimitées par deux d’en-
tre elles qui seront asymptotiques a la ligne donnée.

C’est 'hypothese de Lobatchewski sur les lignes droites.

Si, a la limite, on suppose que la transformation (2) soit
univoque, les valeurs des coordonnées x et y ne seront in-
fintes que dans le cas ou 'on aura

ab) — bad' = o,

et les deux asymptotiques susceptibles d’étre menées par un
point a une ligne donnée de la famille (1) se confondent tou-
jours en une seule: c’est '’hypothese euclidienne.

Il est d’ailleurs facile de former des fonctions f et ¢ dont
les valeurs satisfassent a l'inégalité (3).

Considérons, pour cela, un cercle de rayon R ayant pour
centre 'origine des coordonnées, et représentons le plan en-
tier sur la région intérieure a ce cercle de la maniére sui-
vante :

A tout point M du plan faisons correspondre un point M’
silué sur le méme rayon et tel que les distances respectives
retr’ des deux points au centre du cercle soient liées par
la relation
R + #

R —

r—= R 1()g ou r— R .
‘ eg+ 1

En désignanl par x et y les coordonnées rectangulaire
du point M el par X et Y celles du point M’, on aura

o

X R X224 re Y R YT Lye
= R ——=—=log. +‘/ + -, y = R _”___*]09;,\_}—‘/__,_‘_—*:)__
VYT Y? R—yvaz4re (ATEY?T T R — /Xyt
el .
Vot y? Vit 4y
r e k1 ¥ e TR |

"¢

e
' ‘/x? F 52 Va2 452
e ® 41 e K41

s s S e v

el g
sl T e
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on a
FEE
vyt pe [l — 1)
\/.%'2 + 9.2
e R + 1

Il suffit donc de prendre, pour f(xy) et ¢(xy), les expres-
sions ci-dessus de X et Y, pour que I'équation (1) soit I'équa-
tion de lignes jouissant des propriétés projectives des lignes
droites dans le plan et telles que par un point on puisse mener
a 'une d’elles deux asymptotiques.

3° Lignes ouvertes et satisfaisant 4 I'axiome de 'asympto-
tique unique.

Pour obtenir une famille de lignes satisfaisant, non seule-
ment aux axiomes PI et PII, mais encore a l'axiome PI11,
il suffit de considérer les transformées des lignes droites dans
une transformation ponctuelle univoque, par exemple celle
qui est définie de la maniére suivante : x, y, 3, étant les
coordonnées d'un point, celles du transformé ont pour
expressions

X = el — I, y =TI ey — 1. 7= e — 1,

ou (x), (y), (z) représentent les valeurs absolues de ., v, =
et ou les signes placés devant les exponentielles sont a

choisir de maniére que &/, y', z’ soient respectivement de
meéme signe que .x, y, 2.
PorTEE DU THEOREME DE DEsarGuks. — Un théoreme pro-

jectif important de Géométrie plane est le théoreme de De-
sargues, qui peut étre énoncé de la maniére suivante :

TugorkyME DE DESARGUES. — Lorsque deux triangles situées
dans un méme plan sont tels que les trois droites joignant
leurs sommets deux « deurx sont concourantes, les cotés res-
pectivement opposés aux dits sommels se coupent deux a
dewr sur une méme droite, el réeciproquement.

Ce théoreme résulte facilement de 1'axiome PII, en regar-
dant les deux triangles comme les projections, faites de deux
points de vue différents, d’'un méme triangle de 'espace.

Les axiomes Pl et PIII sonl toul autant planaires que
spatiaux.
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lls constituent, avec le théoréme de Desargues, wn groupe
d’axiomes projectifs planaires, de sorte que le théoréeme de
Desargues est le représentant, dans le plan, de I'axiome
PII.

Ce fait important, mis en évidence sous une autre forme
par M. [lilbert!, résulte des propositions que nous énonce-

‘rons sans démonstration (pour ne pas trop allonger cet ar-

ticle) au paragraphe suivant.

CarLcvr seGMENTAIRE DE M. HinBert. — Pour la facilité
du langage, nous appellerons « droites » des lignes consti-
tuant une famille satisfaisant aux axiomes Pl et PII, mais
il reste entendu qu’elles peuvent présenter les formes les
plus diverses.

Nous allons établir un systéme de coordonnées sur une de
ces lignes au moyen d’'une construction exposée par M. Hil-
bert, dans laquelle toutefois nous remplacerons, en vue de la
généralité etpour éviteri’hypothesede 'asymptolique unique,
la droite de l'infini par une droite quelconque. La construc-
tion ainsi généralisée ne perd d’ailleurs aucune de ses pro-
priéiés essentielles, lesquelles tiennent uniquementa 'axiome
P1 etau théoreme de Desargues.

Nous supposerons seulement qu'on sache déterminer,
dans le plan, le point de concours de deux droites ainsi que
la droite joignant deux points, étant d'ailleurs observé que
lorsqu’un des points n’est pas réel ou est rejeté a l'infini, le
tracé est toujours possible par I'application du théoreme de
Desargues.

Sur la droite considérée DD’, prenons
deux points O et A, tracons deux lignes
droites passant l'une par O, lautre par
A et se coupant en B, et choisissons sur la
ligne AB un pointl.

Etant donnés deux points « et b de la
droite DD’ situés entre O et A, effectuons
les constructions suivantes :

Déterminons «' par l'intersection de la

1 HiLsERT, loc. cit.
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el OB, puis «” par I'intersection de A«’ et Bo, enfin ¢ par
'intersection de l«” et DD'.

Désignons par le signe -+ l'opération que nous venons de
définir par ces constructions, ¢'est-a-dire posons

a -+ b =-c.

Cetle opéralion jouit de propriétés importantes que l'on
peut démontrer directemenl en s’appuyant soit sur l'axiome
PII, soit sur le théoréeme de Desargues, qui le représente
dans le plan.

On peut aussi déduire logiquement ces propriétés d'un
certain nombre d'entr'elles, que nous exprimerons de la
maniére suivante, otl nous représentons par o l'élément ini-
tial O, en raison de ses propriétés :

(« + b= atoujoursuneetune seulesolution enx;

I (@« +b) + ¢ = a4 (b + ¢, a« + 0= a,
a + b > a, a -+ b > b.
lorsque b > e, on a a—+b>a-+ c.

Le signe > a pour objet d’exprimer 'ordre des éléments
par rapport au sens de parcours de O vers A.

Appelons opération additive une opération - possédant
les propriétés I et s’appliquant aux éléments d'un continu
simplement étendu (ou a une dimension), ayant un élément
initial représenté par 0 et pouvant soit se prolonger indéfini-
ment soit avoir un second élément extréme A.

Nous énoncerons, sans démonstration, quelques-unes des
conséquences des propriétés |:

1>« + b=0+a, cest-a-dire que l'opération additive,
qui, par hvpothese, est associative, esl en oulre commuta-
tive ;

2° L’expression « -+ .r représente une fonction croissante
et continue de x;

3° Lorsque b > «, il existe toujours un élément v, tel
que

a + x= b ;

4" 1expression n.x, ot " est un nombre entier, représente
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une fonction continue et croissante de .«x, n.r élant définie par
la formule

ne = x 4+ x +...-Fx ;
TT—

ps—— N
n

5 Il existe toujours, entre o et @, un élément x, tel que
I'on a, 7 étant un nombre entier donné,

nx=da, , ou =2
1L

6° Il est des lors possible de définir, au moyen de procé-
dés calqués sur ceux de la numération, I'élément représenté
par n «, n élant un nombre entier, frationnaire ou incom-
mensurable;

7° L'expression na, ou a est un élément constant, repré-
sente une fonction conlinue et croissante du nombre n;

8 L'élément n «. lorsque n augmente indéfiniment (peu
importe que ce soit par valeurs entiéres ou par variation con-
tinue), a pour limite 'élément extréme du continu, ce qui
exprime : d'abord que 'opération dont le résultat est na est
toujours possible (1™ ligne des formules [, ensuite qu’elle
permet de dépasser un élément (uelconque.

Nous exprimerons la propriété 8 en disant que l'opération
fondamentale envisagée (opération +) est «rchimédienne, par
allusion au principe d’Archiméde, qui s’énonce ainsi:

St a et'b désignent deux nombres quelconques, il est tou-
jours possible d’ajouter a a lui-méme un nombre de fors suffi-
sant pour que la somme qui en résulle ait la propriété :

a—+ a-+...-a>0b.

AXIOMES DU cONTINU LiNEAIRE. — Observons que les opé-
rations qui jouissent des propriétés que nous venons de
mentionner se délinissent analytiquement avec beaucoup de
facilité. _

Faisons correspondre a tout élément du continu a une di-
mension considéré un nombre positif, la valeur o étant attri-
buée a 'élément initial et oo a I'élément extréme. 1élément
3, résultat de I'opération 4 elfectuée sur les éléments v et y,
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devra élre déterminé par une formule (algébrique cette
fois) de la forme

(%) [z = [lx) + [1»).

f(x) étant une fonction de x positive, continue, croissante,
uniforme et ayant, ainsi que son inverse, une détermination
toujours réelle, cette derniere propriété ayant pour consé-
(uence que f(x) croit indéfiniment avec .r.

M. Hilbert® admet qu'il existe des opérations qui satisfont
a toutes les conditions I, et qui ne possedentni la propriété
commutative ni la propriété archimédienne, celle-ci entrai-
nant d’ailleurs celle-la.

Le savant géometre construit, dans ces conditions, une
Géométrie plane arguésienne et non-pascalienne, dans la-
quelle certains théorémes projectifs ne sont plus vrais, no-
tamment le théoreme de Pascal sur I'hexagone inscrit dans
une conique (limité au cas ou la conique est réduite a deux
droites).

Pour nous, au contraire, les théorémes projectifs plans,
y compris le théoreme de Pascal, résultent du théoreme de
Desargues, a l'exception des propriétés qui tiennent a
'axiome PIII, lesquelles pourraient étre aussi bien classées
dans la Géométrie métrique, comme on le verra plus loin.

La divergence de ces résultats tient a ce que nous suppo-
sons expressément, en plus des hypothéses I, que le continu
considéré est a une dimension, ce qui n'a pas lieu dans la
conception de la droite de M. Hilbert, conception qui n'en
présente pas moins d'ailleurs un caractére nettement ana-
Ivtique.

[l conviendrait donc de faire précéder les formules I, qui
définissent les propriétés des opérations additives, d’axiomes
définissant celles du continu 4 une dimension.

On pourrait peut-étre adopter a cet effet les définitions sui-
vantes :

DEriNitioNn, — Un ensemble A d’éléments est dit continu.
lorsque, étant donné deux éléments quelconques de cet en-

' Hitsert, loc. eit.
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semble, 1l est toujours possible de former un ensemble B
d’éléments jouissant des propri¢tés suivantes :

L° Ils sont susceptibles d’étre ordonnés, et cela de maniere
que les éléments donnés soient les extrémes de la série,
l'ordre étant une propriété représentée par un signe > sou-
mis a une seule regle, savoir

St l'onaa>bet b>c, I'on aa>c. (I’élément b sera dit
compris enlre « et c.)

2° Entre deux éléments quelconques de 'ensemble B il en
existe toujours un troisieme.

3° S1 un élément x varie toujours dans le méme sens en
ne dépassant jamais un élément déterminé «, c’est-a-dire si
les déterminalions successives .ri, xe2, 23, ... de x salisfont a
la condition

2y < vy < oy < .o < a.

il existe toujours un élément b, tel que, quelque soit un élé-
ment ¢ arbitrairement choisi, » puisse toujours devenir et
rester ensuite compris enlre b ete.

[l est a observer que la définition de la [limite, contenue
dans ce dernier membre de phrase, ne fait pas appel a I'idée
de différence et par suite est indépendante de toute opération
additive.

DerinitioN. Lorsque entre deux éléments quelconques de
'ensemble A, on ne peut former ¢u'un nombre délerminé
d’ensembles B, I'ensemble \ est « une dimension.

On déduit facilement de ces définitions la possibilité de re-
présenter les éléments d'un continu & une dimension par les
nombres et par suile de leur appliquer les considérations
analytiques qul conduisent a la formule 4.

L’opération représentée par la formule (4) n'est pas néces-
sairement archimédienne.

Supposons, par exemple, que 'on prenne soit

2¢c — 2x

> —_ 7 ¢ . e 3
flx) = 2¢ log Fyal soit flx) = 2¢ ave tang 3

Dans le premier cas, f(.x) représenle une distance lobat-
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chewskienne, au sens que nous indiquerons au paragraphe
suivant, et la répétition indéfinie de Popération donne lieu a
un point limite x=2¢.

Dans le second cas, /() représente une distance rieman-
nienne, et la répétition indéfinie de 'opération est 1mpos-
sible, car 'on obtient le point x = o0 aprés un nombre fini
d'opérations.

[ opération ne satisfait d’ailleurs pas, dans ces cas, a la
premiére des propriétés [; dans le premier cas, celte opera-
ration n’a pas de résultat, lorsque 'un des termes est repré-
senté par une valeur de la coordonnée supérieure a 2 c; dans
le second cas, elle donne lieu & une détermination multiple.

CooRrRDONNEES PROJECTIVES. — Nous avons, dans ce qui pré-
céde, raisonné sur les points de la droite DD’, mais en lait,
ce que nous avons établi, ¢’est une correspondance, sans la-
cune ni double emploi, entre I’ensemble des droites rayon-
nantes autour du point I et le continu numérique, pourvu
toutefois que I'on ferme celui-ci sur lui-méme en faisant coin-
cider 4+« et — o« .

Pour que cette correspondance se poursuive sur la ligne
droite, il faut et il suffit que deux points quelconques déter-
minent toujours une ligne droite et que deux droites copla-
naires se rencontrent toujours en un point réel; ces condi-
tions sont d’ailleurs indépendantes de la forme qu’on attri-
bue aux lignes droites.

Dans le cas déja signalé ou I'on peut mener par un point
deux droites asymptotiques a une aulre droite, les nombres
qui correspondent auxlignes de construction comprises dans
'angle formé par les deux asmyptotiques a la droite DD’ ne
repreésentent aucun point réel de cette droite.

Dans le cas, au contraire, ou il existe, sur cette droite, des
points par lesquelsil ne passe pasdelignes droites contenant
le point I, ces points seraient dépourvus de coordonnées.

Dans le cas de 'unicité de I'asymptotique, pour avoir un
syvstéme de coordonnées rigoureusement univoques, il suflit
de faire coincider la ligne de construction IA, cotée + =,
avec 'asymptolique unique menée par le point 1 a DD’.

Signalons qu'on réalise ainsi, par l'emploi de la régle
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seule, la mesure des segmenls sur une droite, a condition
toutefois d’admetire que 'on puisse apprécier, avec telle
approximation désirée (au moyen du rayon visuel, par exem-
ple), 'asymptotisme de deux droites.

[l résulte des propriétés 7° et 8° que, « étant un élément
(ou, si I'on veut, un segment) quelconque, I'expression na,
ou n est un nombre positif quelconque, représente toujours
un des éléments du continu et est susceptible de représen-
ter 'un quelconque de ces éléments.

Pour établir une correspondance univoque (ou presque)
entre les nombres positifs et les points de la droite DD’
compris entre O et A, il suffit donc de choisir un élément e,
auquel 'on fait correspondre 'unité et de faire correspondre
a un élément quelconque le nombre n tel que ne coincide
avec cet ¢lément: le point O correspondant dailleurs a o,
et A a w (cette dernic¢re correspondance justifiant notre res-
triction : « presque » univoque).

Lopération inverse de l'addition permet de compléter la
correspondance en dehors du segment OA, en déterminant
les points représentés par les nombres négatifs, lesquels
peuvent étre en ellet définis par la formule

— N = 0 — n.

Le systeme de coordonnées rectilinéaires que nous venons
d’exposer d’apres M. Hilbert n'est autre que celui de von
Staudt!, obtenu au moyen de constructions plus simples.

Nous avons encore a mentionner quelques propriétés in-
dispensables pour le développement de notre sujet.

On démontre, toujours par l'application.du théoréme de
Desargues, qui conslitue bien l'axiome projectil planaire,
que le résultat de lopération 4 appliquée a deux points
d'une droite dépend uniquement des points limitant le seg-
ment considéré, que nous avons désignés par O et A, et nul-
lement des autres ¢léments de la construction.

L’échelle numérique que cette construction nous a permis
d’appliquer sur la droite ne dépend donc que du choix des

P VoN STAUDT, Geometric der Lage, p. 43; Beitrdge zur Geometrie der Lage, p. 266, Korn,
Nurnberg.
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points correspondants aux nombres 0, 1, «, ou, plus géné-
ralement, a trois nombres donnés quelconques.

La valeur n de la coordonnée est le rapport anharmoni-
que déterminé par les points 0, 1, o« et n et peut dailleurs

’
. . 2. Pat n _ _
lui servir de définition ; le rapport — est le rapport anhar-
monique déterminé par les points o, n, wo, n'.
La valeur du rapport anharmonique, étant liée a des
constructions purement projectives, est un invariant pro-

jectif.

En particulier, il se conserve lorsque l'on projette,
d'un point du plan, les points de la droite sur une autre
droite. K

On peut établir, entre les points de deux droites, une cor-
respondance dite homographique, caractérisée par le lait que
le rapport anharmonique déterminé par quatre points quel-
conques de I'une des droites est égal au rapport anharmo-
nique déterminé par les quatre points correspondants de

- J'autre droite.

Cette correspondance est déterminée par la connaissance
de trois couples de points correspondants, de sorte que lors-
que, sur deux droites qui se rencontrent, le point commun

" se correspond a lui-méme, les droites joignant deux a deux
- les points correspondants sont concourantes. Cette propriélé

permet de démontrer le théoréme de Pascal dans le cas ou

la conique est réduite a deux droites.

Parmi les relations que l'on démontre entre les rapports
anharmoniques, nous signalerons la suivante, qui va étre

appliquée pour déterminer l’équa‘tion d’une droite.

(a,b,c.d) + (a,c.b,d) = 1.

Nous sommes maintenant en mesure d'établir des SVs-
ltmes de coordonnées projectifs pour le plan et 'espace.
Pour le plan, on choisira trois droites et un point a l'inté-
vieur du triangle qu’elles forment; I'on donnera pour coor-

‘ <lonne% a l'un des sommels: .xr —= y == 0 el au pomt situé a

] mmtérieur du t1°11110]e x =1y = 1; la droite e opposée au pre-
nuer point Lomprendra les points de coordonnées infinies
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enfin toute droite passant par 'un des deux autres sommels
du triangle aura pour équation, suivant le cas,

x = (te ou y=— Cte,

On déterminera, au moyen des constructions exposées dans
le paragraphe précédent, une correspondance entre le con-
tinu numérique et I'étoile de droites .x — C*, les droites cor-
respondantes a .x = 0, 1, oo étant d’ailleurs données par ce
qui précede, et l'on opérera de méme pour les droites y — C*.

Les coordonnées d'un point quelconque du plan seront
déterminées par les droites de ces deux familles passant par
ce poinl.

Enfin 'on établira 1'équation d’une ligne droite rencon-
trant 'axe des & en un point x = « el l'axe des y en un
point y = 0, en démonltrant, au moven des propriétés men-
tionnées du rapport anharmonique, que .x et y étant les coor-
données d'un point de la droite, I'on a

a b

Les lignes droites sont done représentées par les équations
linéaires.

Mentionnons également que I'on démontrerait par des pro-
cédés analogues que I'équation d'une conique, définie comme
lieu du point de rencontre des ravons correspondaunts de
denx faisceaux homographiques, est une équation du second
degré.

Deés lors la Géométrie projective plane est réduite a une
application de "Analyse, et par cela méme se trouve démon-
tré le fait déja énoncé que l'effet de 'axiome PII sur la géo-
métrie plane est intégralement représenté par le théoréme
de Desargues, auquel on peut aussi substituer le théoréme
de Pascal limité au cas ou la conique est réduite a deux
droites.

Passons a la Géométrie dans l'espace.

Un systeme de coordonnées projectives sera déterminé au
moyen d'un tétraédre et d’'un point suivant un procédé ana-
logue & celui qui a éLé exposé pour le plan.
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On démontrera que, dans un tel systeme de coordonnées,
un plan quelconque est représenté par une équation linéaire.

On passe d'un de ces sysiemes a un aulre au moyen de
formules de la forme

y ax + by 4 ¢z 4+ d
= e 0 £ s A"
p a'x 4+ by + s + d
! ar 4+ bV"y + "z 4 d"
, a"x + 0"y + "z 4 d" -
‘ a’x 4+ 0V"y + "= + d"”

Ces formules sont également les équations d'une lrans-
formation ponctuelle projective dans un des systemes de
coordonnées ainsi définis. |

1 enrésulte queles propriétés projectives des figures sont
représentées, dans un de ces systémes de coordonnées, par
des formulesindépendantes du systéme choisi.

La Géométrie projective se trouve maintenant réduite a
une application de 'Analyse, et, par suite, est virtuellement
établie, et cela sur les axiomes PI et PII.

Les observations faites au sujet des cordonnées projec-
tives sur la droite dans 'hypothese de I'unicité de 'asympto-
tique (axiome PIII) s'étendent facilement au cas de V'espace
et 'on obtiendra, dans cette hypothése, un systeme de coor-
données univoques en faisant éloigner indéfiniment le plan
des coordonnées infinies.

Le systeme de coordonnées est alors déterminé par trois
droites concourantes, appelées axes de coordonnées et par
un point auquel on attribue les coordonnées

=y =z=1.

Signalons que, ainsi que nous l'avons fait observer a pro-
pos des coordonnées rectilinéaires, sur chacun des axes, les
valeurs de la coordonnée réalisent une détermination mé-
trique. Mais rien ne permet de passer d'un axe a l'autre : la
Géométrie projective ne permet donc pas la comparaison des
segments appartenant a des droites différentes.

On voit toutefois que la frontiere entre la Géométrie pro-
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jective et la Géométrie métrique n'est pas absolument nette,
et que, s1 'axiome PIII parait, au premier abord, de carac-
tere projectif, il a aussi des conséquences métriques.

Avant d’abandonner les conséquences de l'axiome PIII,
observons que l'idée du plan de Uinfini, que nous retrouve-
rons en Géométrie métrique, est introduite par le fait que,
dans un systéeme de coordonnées projectives, les coordon-
nées d'un point qui s’é¢loigne indéfiniment tendent vers des
valeurs satisfaisant a une équation de la forme.

ar + By + 9 + Jd=o.

Enfin observons qu’il résulte des considérations précé-
dentes que I'axiome PIII est équivalent au suivant:

(PIIL) 11 existe des systémes de coordonnées projectifs qui
sont univoques.

Cet axiome suppose l'exislence de systémes de coordon-
nées univoques et par suite l'admission de 'axiome All.

éciproquement, si 'axiome All est admis, il est toujours
possible de déterminer une famille (et par suite une infinité
de familles) de lignes continues et ouvertes satisfaisant aux
axiomes PI, PII et PIII. Dans la conception ordinaire de 1'es-
pace, une de ces [amilles est constituée par les droites.

L'on voit que les axiomes Al et All résultent en somme
des propriétés attribuées aux lignes droites, de sorte que les
propri¢tés de 'espace sont, en derniere analyse, 'expression
de propriélés de certaines lignes.

Pour pouvoir donner, ainsi que nous lavons [ait, aux
axiomes Pl et PITune signification analytique, ce qui entraine
I'introduction des imaginaires, il est nécessaire que les lignes
auxquelles sappliquent ces axiomes soient analytiques, ¢'est-
a-dire soilent représentées par des ¢quations analytiques
dans un systeme de coordonnées univoques.

Ces lignes sont évidemment analytiques par rapport aux
systemes de coordonnées qu'elles déterminent par les pro-
cédés que nous avons exposés. lLilles resteront analyliques
dans tout changement analytique de coordonnées, conduisant
a un systeme de coordonnées univoques.

Risvmi. — Les propriétés projectives proprement dites se

N

. e mE e A SR gy B
Ceihalle T8 e Wi D18 S

2 S

s




e R AT Al b

ST

LES PRINCIPES ANALYTIQUES DE LA G EFOMETRIE 201

déduisent des axiomes PI et PII, pris au sens analytique.
Ce second axiome esl représenté dans le plan par le théo-
reme de Desargues.

Il exisle une infinité de familles de lignes satisfaisant a
ces axiomes, qui fournissent chacune une interprétation des
propositions de la Géométrie projective.

On sait, au moyen de chacune de ces familles, établir des
systemes de coordonnées, qui sont univoques lorsque les
lignes considérées satisfont a I'axiome PIII.

Y
GEOMETRIE METRIQUE

GROUPES METRIQUEs. — La Géométrie métrique met en
cuvre, en plus des notions que nous avons déja exposées,
celle de déplacement sans déformation, base de l'idée de
'égalité des figures, dont'étude est I'objet essentiel de cette
Géomélrie (la perpendicularité qui intervient dés les pre-
mieres propositions est définie au moyen d'une égalité
d’angles).

Sophus Lie a énoncé les propriétés fondamentales des
déplacements sans déformation.

Nous choisirons, parmi les deux systemes équivalents
d’axiomes qu’il a donnés, celui dont I'interprétation géomé-
trique est la plus directe. Mais nous entendons toutefois,

* suivant le principe constamment suivi dans cette étude, les
~cmployer dans leur signification analytique, signification
' loujours précise en vertu des axiomes Al et AII.

MI. — Les déplacements sans déformation (Bewegungen)

- sont des transformations ponctuelles qui constiluent un
- groupe réel et continu comprenant les inverses de toutes ses
Aransformations.

ML — 8¢ lon fixe un point quelconque, tous les poinis

susceplibles d’élre atleints par wn autre point quelcongue sonl
Ysilués sur une surface contenant le second point et ne conte-
s nant pas le premier.

L’Enseignement mathém., 6¢ année ; 1904. 14
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MU — Autour du point fixe il existe un domaine triple-
ment étendu et de dimensions finies, dans lequel tout point
peut atteindre, par un déplacement continu, tout autre point
stlué sur la surface correspondante, définie ci-dessus.

Sophus Lie démontre que ce systeme d’axiomes, dont la

signification analytique esl bien déterminée, caracltérise les
groupes conlinus de transformations projectives conservail
chacun wune quadrigue, ordinaire ou dégénérée, et les groupes
qui leur sont semblables, ¢’est-a-dire qui peuvent élre obte-
nus au moyen des premiers par l'application d'une transfor-
mation ponctuelle.

Nous appellerons métrigues ces divers groupes.

Parmi les propriétés qui leur sont communes, nous signa-
lerons, en premier lieu, la suivante:

Dewx points étant fixes, un déplacement continu est encore
possible, dans lequel restent fives les divers points d’une ligne
passant par les deuwx points.

Les lignes ainsi introduites, étant déterminées par la con-
naissance de deux de leurs points, forment une famille a
quatre pzu'al‘nétres. Appelons—les axes du groupe mé‘trique.

Dans le cas ou le groupe métrique est projectif, c'est-
a-dire est composé de transformations projectives, il esl
facile de voir que ses axes sont les lignes droites.

De la manicre méme dont les groupes mélriques non pro-
jectifs sont obtenus, suivant le théoreme de Sophus Lie, au
moyen des groupes mélriques projeclils, il résulte que les
axes relatifs a chacun d'ecux sont les lignes transformées des
lignes droites au moven d’une transformation ponctuelle.

Comme, d'autre part, les propriétés Pl et PII des lignes
droites sont évidemment de celles qui se conservent dans une
transformalion ponctuelle générale (loutes réserves étant
failes loutefois au sujet de particularités pouvant élre intro-
duites par 'existence de singularités, de déterminations mul-
tiples, elc.), on peut énoncer le théoreme suivant:

Les propriétés Pl et Pl des lignes droiles appartiennent éga-
lement aux axes de lout groupe métrigue.

Etant donné une famille de lignes satisfaisant aux axiomes
P1 et PII, 'on pourra toujours déterminer, par le procédé
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indiqué au paragraphe 1I, un systéme de coordonnées (uni-
voque ou non). Toul groupe métrique admettant ces lignes
pour axes est représenté, dans ce systeme de coordonnées,
par des équations qui, dans un systéme projectif de coordon-
nées, représentent un groupe métrique projectif, de sorte
que: a lout groupe projectif mélrique correspond un groupe
métrique admettant pour axes les lignes d’une famille don-
née, satisfaisant aux axiomes Pl et PII.

Tout groupe métrique donne lieu a une interprétation de
la théorie de la mesure, en entendant par « égalité de deux
figures » leur superposabilité au moyen d’une transformation
du groupe.

Les diverses notions qui interviennent dans la Géométrie
ordinaire (sauf, pour le moment, les paralleles) trouvent
place dans cetle interprétation, et, en premier lieu, la dis-
lance, qui se présente comme un invariant, par rapport au
groupe, d'un couple de points.

’armi les propriétés communes aux groupes métriques,
nous citerons la suivante:

Par une transformation du groupe, un point quelconque
peut atteindre (transivité du groupe) tout point dont il n’est
pas séparé par la surface invariante du groupe (dans les
groupes projectifs : quadrique conservée ou plan de la coni-
que conservée). Pour cetle raison nous appellerons celte sur-
lace U'infini métrique.

La distance (définie par rapport au groupe considéré) d’un
point de I'espace a un point de l'infini métrique est infinie.

Ecartant les groupes dans lesquels les transformations
laissant un point fixe présentent des propriétés trop diffé-
rentes de celles des rotations ordinaires autour d’'un point,
nous distinguerons trois catégories de groupes métriques:

Groupes euclidiens, transformés des groupes projectifs
qui conservenl une conique imaginaire située dans un plan
réel ;

( (Jroupes riemanneens, transformés des groupes projectifs
qui conservent une quadrique imaginaire & équation réelle;

- Groupes lobatchewskiens, Lransformeq des groupes projec-
; Lils qui conservent une quadrique réelle entourant la région
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de I'espace a laquelle s’appliquent les propositions que nous
avons en vue.

Rien ne s’oppose a priori a ce que I'on fasse toutes combi-
naisons entre les diverses hypothéses possibles sur la forme

des axes, la catégorie du groupe et la position dans I'espace

de T'infini métrique.

Cest ainsi que 'on peut établir des métriques non-eucli-
diennes sur le plan, en conservant leur role aux lignes
droites et une métrique euclidienne sur la sphére, en faisant
jouer le role des droites par les grands cercles '

GROUPES METRIQUES PROJECTIFS. — Nous avons vu que les
groupes métriques projectifs sont ceux dont les axes sont
les droites.

Comme les propriétés geométriques résultent exclusivement
des axiomes, celles des groupes métriques projectifs s’éten-
dent forcément a tous les groupes métriques dont les axes
satisfont a I'axiome PIII, pourvu toutefois que, dans l'inter-
prétation figurée des propositions, I'on remplace les lignes
droites par les axes du groupe considéré.

Mais I'attribution de la projectivité aux groupes a étudier
présente 'avantage de nous permettre I'emploi légitime
des termes: plan, conique, quadrique, etc., qui simplifient le
discours.

Nous allons signaler les principales divergences que
présentent les trois catégories de groupes métriques pro-
jectifs.

1> Le groupe est lobatchewskien.

L’infini métrique est alors constitué par un ellipsoide en-
veloppant la région de I'espace a laquelle s’appliquent les
propositions. |

Parmi les transformations du groupe se distinguent celles
dans lesquelles tous les points d'une droite restent fixes: nous
les appellerons rotations, par généralisation de la significa-
tion de ce terme.

Dans une rotation une autre droite reste également fixe,
savoir la conjuguée de l'axe de rotation par rapport & la

t Cf. ComBuBIAc, L'espace est-il euclidien? 1 Enseignement mathématique, Anndée 1903.

F
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quadrique fondamentale, mais les points de cette derniére
droite ne restent pas fixes, ils se déplacent sur elle, de sorte
que celle-ci glisse sur elle-méme.

On peut donc dire qu’a tout axe de rotation correspond un
axe de glissement.

De deux droites conjuguées, l'une rencontre réellement
I'infini métrique, I'autre non.

Toute transformation du groupe peut étre obtenue par la
succession de deux rotations effectuées respectivement au-
tour de deux droites coujuguées, c'est-a-dire par la succes-
sion d'une rotation et d'un glissement effectués autour et le
long d’'une méme droite.

Dans une rotation simple (qui est aussi un glissement
simple), les plans passant par l'axe de glissement restent
fixes, puisque chacun d’eux contient une droite fixe et un
point fixe, savoir le point ou il rencontre I'axe de rotation.
En outre les points extérieurs a l'axe de glissement décri-
vent, dans les plans fixes, des coniques bitangentes a la qua-
drique fondamentale aux points ou celle-ci est rencontrée
par cet axe.

Par la répétition indéfinie d'une de ces transformations —
rotation simple ou glissement simple, — les divers points de
I'espace tendent vers I'un des points L de l'infini métrique
communs a leurs trajectoires.

La translation lobatchewskienne d'un segment le long
d'une droite ne permet pas la mesure de tous les segments
& de cette droite, puisque les points situés a Pextérieur de la
quadrique fondamentale ne peuvent pas étre atteints par le
& segment pris pour unité.

2 M. Veronese ' en conclut a I'existence de segments déier-
gt minés qui seraient infinis et a la nécessité d’introduire dans
¢ l'analyse mathématique l'idée de Dinfini actuel.

¢ Cette interprétation du mot «infini » en modifie comple-
tement, a notre avis, la signification, laquelle est tres pré-
 cise el réside tout entiére dans I'idée de la répétition indé-
& linie d'une opération déterminée.

VERONESE. Grundziige der Geometrie von mehreren Dimensionen, traduit de Iitalien par
A Schepp; Teubner, Leipzig, 1894.
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On se trouve d’ailleurs, dans le cas acluel, simplement en
présence du fait tres vulgaire qu’est l'existence dune li-
mite. _

Un élément x (ici 'extrémité d’'un segment sur une droite
ou sa coordonnée) est déterminé par un nombre N d'opéra-
tions (ici la translation d'un segment pris pour unité).

Ce fait s’exprime en disant que x est fonction de N.

Quelle difficulté particuliere trouve-t-on a concevoir que
xtende vers une limite (point ou nombre) déterminée, lorsque
le nombre entier N augmente indéfiniment? Toute existence
de limite est réductible a un fait de cette espéce.

Dans le cas qui nous occupe, st l'on désigne par y la lon-
gueur lobatchewskienne du segment qui a pour coordounée
univoque .r, I'on a

20— x
y = 2c¢ log e T o
fonction qui devient infinie pour les valeurs de la variable

X = j_—_ 2c.

2° Le groupe est riemanunien.

L'infini métrique est une quadrique imaginaire a centre
réel.

Deux droites conjuguées par rapport a cette quadrique ne
se distinguent pas 'une de 'autre par leurs propriétés.

Les trajectoires dans une rotation (ou glissement) simple
sont bitangentes a la quadrique fondamentale, mais en des
points imaginaires.

Parmi les particularités qui distinguent ce groupe, nous
signalerons que la translation d’un segment sur une droite,
répétée un nombre fini de fois, fait atteindre ['infini,
fait qui indique simplement I'impossibilité d’une telle répé-
tition et qui, analytiquement, tient a ce que la fonction

X ) . \
2¢ arclang 5~ tend vers une valeur finie, lorsque x croit

indéfiniment.

3° Le groupe est euclidien.

La quadrique fondamenlale est dégénérée en une conique
imaginaire a plan réel.
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La conjuguée d'une droite quelconque de I'espace est une
droite de ce plan, de sorte que les rotations et les transla-
tions constituenl des opérations se distinguant nettement
les unes des autres.

Par une translation indéfiniment répétée, un point tend,
comme par une translation lobatchewskienne, vers un point
de l'infini métrique, mais si nous supposons rejeté a L'infini
le plan de l'infini métrique, c’est-a-dire si nous supposons
que I'équation de ce plan tende a étre satisfaite par les coor-
données d'un point qui s’éloigne indéfiniment, 'on tombe
sur la géométrie vulgaire.

Prixcipe v’ArcHiMEDE. — Sans toucher en rien a l'idée de
figure, qui constitue en somme 'unique concept en dehors
duquel le mot « Géométrie » perd toute signification, nous
pouvons établir des « métriques » ou interviennent toutes
les notions auxquelles conduit I'étude de la mesure géomé-
trique, mais ot les opérations et les figures correspondantes
aux propositions ne sont plus celles de la Géométrie vul-
gaire.

Il nous suflit, pour cela, de remplacer 'opération fonda-
mentale de la Géométrie vulgaire qui consiste dans le « dé-
placement sans déformation » des figures par d’autres opé-
rations ayant des propriétés soit identiques, soit peu dif-
férentes.

Dans chacune de ces métriques intervient une famille de
lignes jouissant des propriétés atiribuées aux lignes droites
par les axiomes projectifs PI et PII, et chacune de ces
familles peut étre considérée comme la famille des axes d’une
~infinit¢ de groupes métriques des trois catégories.

. Nous avons vu, dans I'examen des groupes métriques pro-
- Jectifs, c’est-a-dire des groupes dont les axes sont les lignes
~droites, que, parmi eux, il n’existe pas de groupes lobatchews-
kiens ou riemanniens donnant lieu a la propriété ordinaire
~ d’une translation en ce qui concerne sa répétition indéfinie.
~ Examinons donc, dans le cas général, les conséquences
de I'admission d’un nouvel axiome, (ue nous énoncerons,
g sous le titre d’Axiome d’Archiméde, de la maniére suivante
?1 MIV. — L'opération consistant a déplacer (sans déforma-
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tion) un segment sur un axe du groupe peut étre continuée
indéfiniment et permet d’alteindre tout point de cet axe.

Cet axiome pourrait aussi s’exprimer en disant que 'addi-
tion métrique de deux segments sur un axe jouit de la
propriété archimédienne, propriété qui résulte en somme
du fait que cette addition donne toujours un résultat et
un seul.

U'ne conséquence de l'axiome M1V consiste en ce qu’un
point de I'espace peut atteindre tout autre point et par suite
ne peut eétre séparé de lui par la surface de 'infini métrique,
de sorte que cel infini méirique ne peut comprendre des
points déterminés de 'espace.

Les conséquences principales de I'axiome MIV pourlestrois
catégories de groupes métriques, sont les suivantes :

I° Groupe euclidien: l'espace est une variété ouverte,
I'équation du plan de I'infini métrique (ou plutot de la sur-
face qui joue ce role) est vérifiée a la limite par les coordon-
nées dun point qui s'éloigne indéfiniment, les axes du
groupe forment une famille de lignes ouvertes et présentant
la propriété de 'unicité de 'asymptotique.

2° Groupe lobalchewskien : 'espace est encore une variété
ouverte, la surface qui joue le role de la quadrique fonda-
mentale est composée — pour ainsi parler — des points
de l'infini, et les axes sont encore des lignes ouvertes, mais
ne preésentant pas la propriété de l'unicité de l'asympto-
tique. *

3° Groupe riemannien : l'espace est une variété fermée,
les axes sont des lignes fermées.

Nous voyons que l'axiome d’Archimeéde constitue le lien
entre la catégorie des groupes métriques et la forme de
leurs axes.

L’admission des quatre axiomes métriques et de l'axiome
PIIT caractérise les groupes euclidiens dont l'infini métri-
que est rejeté a l'infini. Si nous employons le pluriel, c’est
qu'il existe une infinité de ces groupes, chacun correspon-
dant & une famille d’axes possédant les propriétés atiribuées
aux lignes droites par les axiomes projectifs, y compris
'axiome PIII.
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Parmi eux se trouve le groupe qui admet pour axes les
droites idéales.

Les groupes lobatchewskiens satisfaisant a I'axiome d’Ar-
chimede ne sauraient avoir pour axes les droites idéales, et
c'est a la signification multiple, — parce (qu’arbitraire —
qui a été donnée au mot « droite » que doivent élre attri-
bués en grande partie les malentendus auxquels a donné
lieu 'introduction des géométries non-euclidiennes.

Quant aux groupes riemanniens, il ne peut en exister qui
satisfassent a 'axiome d’Archiméde que sil’espace est une
variété fermée.

COORDONNEES METRIQUES. — Supposons que l'on établisse’

un systeme de coordonnées, a la maniere des systemes em-
ployés en géoméltrie analytique, au moyen de trois axes rec-
tangulaires et des distances des points de l'espace a ces
axes, les axes, la rectangularité, la distance constituant des
notions relatives au groupe métrique choisi.

Un tel systéme de coordonnées sera dit métrique.

[l est facile de voir que, pour les groupes euclidiens et
lobatchewskiens, 'axiome MIV équivaut au suivant:

(MIV) Les systémes de coordonnées métriques sont uni-
poques.

Cet axiome ne peut étre applicable aux groupes rieman-
niens que moyennant une extension de la signification du
mol: « univoque ».

Sur une surface fermée, simplement connexe, on peut,
en vue d'établir un systeme de coordonnées, tracer des
lignes appartenant a deux familles différentes, telles que par
tout point de la surface, il passe une ligne et une seule de
chaque famille. On aura déterminé ainsi un systéme de coor-
données, qui ne saurait étre univoque, puisque la surface est
fermée, mais qui jouit des propriétés essentielles des sys-
lemes univoques. |

Ces considérations s’étendent aux variétés triples, de sorte
que l'axiome (MIV)" peut étre considéré comme équivalent,
a I'axiome MIV pourles groupes métriques de toutes les caté-
gories, a4 la condition d’étendre, comme nous venons de 'in-
diquer, la signification du mot « univoque ».
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Nous sommes maintenant en mesure de préciser le motif

de certaines divergences que présente la question des géo-
métries non-euclidiennes suivant le point de vue ou l'on se
place.

Bolyai et Lobatchewski, ainsi que ceux qui ont suivi leur
vole, prenant pour point de départ les propriétés les plus
(ntuitives — (qu’on nous permette ce terme dont nous avons
généralement évité 'emploi en raison de son imprécision —,
ont admis — inconsciemment, puisque leur raisonnement
est imaginatif, — des propriétés équivalentes aux axiomes
métriques, c’est-a-dire aux trois axiomes de Lie et a 'axiome
d’Archimede, et ont laissé de coté le postulat des paralleles
au sens ou il se confond avec notre axiome PILI, propriété
qui a paru moins solidaire du bloc géométrique, parce que
I'intuition prend du vague lorsqu’on fait appel a l'idée de
I’éloignement indéfini, et d’ailleurs seule propriété fonda-
mentale qui fut alors explicitement énoncée.

Nous avons indiqué les conséquences de ces hypotheéses
et montré qu’elles sont incompatibles avec les propriétés des
groupes métriques projectifs, si 'on ne modifie pas la con-
ception des lignes idéales appelées « droites ». Cest unique-
ment au maintien de ce mot pour désigner des conceptions
différentes que sont dues les dissertations scholastiques sur
la « forme », la « nature », la « structure » de ’espace, expres-
sions qui présentent sans doute une signification claire pour
les personnes qui les emploient.

Quant aux analysles, dont Riemann, Helmholtz, Cayley, So-
phus Lie, pour ne citer que les plus illustres, leur générali-
sation porte sur la notion de déplacement ou celle de dis-
tance, qui la représente. Dans ces conditions, surtout si un
point n'est rien autre qu'un ensemble de trois coordonnées,
ni 'axiome d’Archimede ni celui de 'unicité de 'asymptoti-
quenes'imposent. Les systémes de coordonnées projectifs per-
mettant de représenter tres simplement les diverses métri-
ques, on était conduita donner au postulat des paralleles une
signification purement métrique sans relation avec la forme
des axes du groupe considéré. Aussi les anélystes se sont-1ls
surtout attachés aux cas des groupes métriques projectifs.
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DEFINITION DE LA LIGNE DroITE. — Une ligne droite est
déterminée (parmi les lignes droites) par la connaissance de
deux de ses points.

Cette propriété me saurait constituer une définition des
lignes droites, et nous avons vu qu’il existe une infinité de
familles de lignes qui présentent toutes les propriétés de la
famille des droites intervenant dans les démonstrations géo-
métriques et qui sont susceptibles de donner lieu a des doc-
trines ne différant de la Géométrie ordinaire que par les
figures correspondantes aux diverses propositions.

Pourtant la proposition ci-dessus, suppression faile des
mots entre parentheéses, a é1é prise parfois comme définition
de la ligne droite.

Cette facon de voir s’explique, si elle ne se justifie pas,
par la confusion en vertu de laquelle l'intuition privée de
critique a incorporé 'idée métrique (basée sur celle de figure
indéformable) dans I'idée de figure, alors que, dans la con-
ception analytique, plus consciente et mieux informée, cette
derniére est laseule 1dée essentielle de la Géométrie, la seule
en dehors de laquelle le mot « géométrique » ne peut rece-
voir qu'une signification arbitraire.

La ligne droite est la seule ligne qui soit covariante (pour
ainsi s'exprimer, en étendant la signification de ce terme
emprunté A la théorie des formes algébriques) d’'un couple
de points dans tous les déplacements sans déformation, puis-
que c’est la seule ligne qui reste fixe dans ceux de ces dépla-
cements qui laissent fixe le couple.

On peut donc dire que la ligne droite est la seule ligne
qui soit déterminée par deux points et par l'idée de déplace-
ment sans déformation. Mais nous avons vu que cette idée
est restée incorporée dans l'idée géométrique elle-méme
avec une telle force de cohésion que personne n’a songé,
avant I'immortel rationaliste Helmholtz, a la dégager expli-
citement des concepts synthétiques ou elle était latente.

L'idée vulgaire, suivant laquelle la ligne droite est déter-
minée par dewx de ses points, est donc légitime suivant la
conception dans laquelle I'idée de déplacement fait partie
intégrante de l'idée géométrique, c'est-a-dire dans laquelle
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les propriétés métriques d'une figure sont des propriétés
« intrinséques » de cette ﬁgure.

L'explication de ces associations d’idées est d'ailleurs évi-
dente, si 'on admet l'origine empirique des idées, théorie
féconde, magistralement établie par Helmholtz! et lumineu-
sement développée par Taine?: n'avons-nous pas en eflet
acquis I'habitude de considérer Videntité de la plupart des
objets comme non affectée par leur déplacement?

CoxcrustoN. — Les notions non définies mises en ccuvre
dans les traités classiques de géométrie peuvent étre réduites
a deux concepts: celul de figure ‘comprenant les concepts
de point, ligne, surface, continuité) et celui de déplacement
d'une figure invariable.

Les propriétés de ces concepts interviennent dans les dé-
monstrations classiques par le procédé que nous avons ap-
pelé le raisonnement imaginatif, a 'exception de la propriété
des lignes droites exprimée par le postulat des paralleles,
qui constitue ainsi le seul axiome explicitement énoncé.

Les résultats de I'examen critique auquel nous avons pro-
cédé peuvent étre résumés de la maniere suivante :

Les quatre axiomes métriques (les trois de Lie et celui
d"Archimede particularisent les déplacements d'une figure
invariable parmi les transformations ponctuelles, de sorte
que l'on peut, tout en réservant la possibilité de pousser
plus loin l'analyse, fonder la Géométrie sur les seuls con-
cepts de figure et de (ransformation ponctuelle.

Toutes les propriétés géométriques découlent de 'axiome
Al des quatre axiomes mélriques et de 'axiome PIII, par
lequel est représenté le postulat des paralleles, de sorte que
tous les groupes de transformations ponctuelles satisfaisant a
ces axiomes (I'énoncé de l'axiome PIII étant libellé de ma-
niere a viser les axes des groupes métriques et non pas
seulement les lignes droites) donnent lieu a des propriétés
susceptibles d’étre exprimées par les diverses propositions
de la Géométrie, pourvu que 'on modifie convenablement la
signification des mots: égalité, droite, perpendiculaire, ete.

1 HenMiontz. Optique physiologique.
2 TAINE. De UIntelligence.
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L'on obtient encore des métriques, mais pouvant différer
plus ou moins de la métrique ordinaire, en laissant de coté
les axiomes MIV et PIII, c’est-a-dire en prenant pour base
de V'égalité géoméirigue un groupe métrique quelconque,
savoir un groupe satisfaisant aux trois axiomes de Lie.

Dans une telle métrique, un role important est joué par
une famille de lignes (axes du groupe métrique) présentant
les propriétés attribuées aux droites par les axiomes PI et
PII, et réciproquement, a toute famille de lignes jouissant
de ces propriétés on peut faire correspondre une infinité de
métriques.

L’on peut choisir notamment pour axes les lignes droites
idéales, et alors les groupes métriques correspondants sont
projectifs.

Mais, dans le cas ot 'on admet 'axiome d’Archimeéde, il
y a relation étroite entre la catégorie du groupe (euclidien,
lobatchewskien ou riemannien) et celle de la famille des axes
(lignes ouvertes présentant ou non la propriété de 'unicité
de 'asymptotique et lignes fermées). Dans le cas du groupe
riemannien, 'espace lui-méme est une variété fermée.

Terminons en émettant le veeu qu’il en soit fini avec le ca-
ractere déconcertant qu'a pris la question des Géomélries
non-euclidiennes, caractére si opposé a 'esprit scientifique.
Il suffirait pour cela que les gens raisonnables (et I'on doit
comprendre parmi eux tous les mathématiciens) veuillent
bien éviter 'emploi des mots: Géométries non-euclidiennes,
espace, plans, droites non-euclidiens, alors qu’il s’agit sim-
plement de métrigues non-euclidiennes et de familles de sur-
laces ou de lignes ayant des propriétés communes avec les
plans et les droites.

Si cette étude pouvait contribuer a ce résultat, nous nous
[¢liciterions de I'avoir entreprise.

G. ComseB1asc (Limoges).
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