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UN THEOREME SUR LE TRIANGLE

Voici un théoreme que je crois nouveau ; il comprend
comine cas ]):u'li('ulier des théorémes déja connus.

TeoreME. — Inscerivons un cercle O dans un triangle
donné ABC: nommons respectivement X, Y, 7 les points
de contact avece les trois cotés BC . CAL AB. Sion prend sur

C

les droites OX,0OY, 07 des points D, E, I également dis-
tants du point O, les trois droites \D, BE. CIF concourent
cn un méme point que je me permettrai d’appeler le « Point
(le Kariya. ) .

DevoxstraTioN. — Ni la géomélrie analylique, ni la géo-
métrie ¢lémentaire ne me donnent d’une facon intéressante
la démonstration de ce théoreme. Jétablis celle-ci de la ma-
nicre suivante :

S

I disacted . PRSI,

B O = e T




SX

X5

BN s i3

UN THEOREME SUR LE TRIANGILE

Sidansuntriangle
donné ABC, on a

BD.CE.AF =DC.EA.I'B

les trois droites AD,
BE, CI concourent
en un meéme point. B

~

D
Posons
BC = « « + b+ ¢c=2s
CA = OX = 0Y — OZ = »r
AC = ¢ OD = OE = OF = #
(£ étant une longuecur donnée).
On a évidemment :
BN = BZ — s — 0,
CX =CY = s — ¢,
AY = AZ — s — «.

Si je prolonge les droites AD,BE, CF jusqu’aux points
G, IH,K ou elles rencontrent les cotes BC,CA, AB, et si
jabaisse de chaque sommet la perpendiculaire sur le coté

opposé, j'obtiens alors, en vertu des triangles semblables
AGP et DGX

AP GP AP — DX  GP — GX

,  ou
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DX  GX DX GX ’
GP — GX
GN = = 2 DX
AP — DX DX
Mais
AP = 20ABC 1 « DN —=»r — £
GP — GXN=s —¢— bcosC =0 + ccosB — s
i p— {
G\ — 73 ! — (b + ccosB — s) .
i (r—Fk)
«
On a de méme
. — .
Hy = ! ($ — ¢ — «cos )
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[Finalement on a

. . . r—k
BG — BN — GN == (s — ) — 54 (b + ccosB — s
-k
a
2A acir—hkicosB
=5 —b) o —— —
20 — a (r — k) 20 — a lr — L)

) . . 2008 — b)) — aclr— L)y cos B
BG — BX - GX — S8 Ul acir—Ajcos B
28 — a{r— L)
201 — ¢) — bair — k) cox C

CH = CY - HY = 27— 9720 m 1
ZA — b(r — k) ’
AK — A7 7K — 2t —ar—belr —hcos A
2A — clr — k)
20 (s — ¢y — baiyr — I eos C
GO —CN - OGN — - 2 7 :
! + G 20 — «(r — k) /
_ QA (5 — 1) — belr — Feos A
A= AY Q1Y = “°5 5T e Aees e 12)
28 — b(r — )
b7 — BK . Ky — 28is— bl —acir—kcosB \

QA — ¢(r— k)
On a &videmment
BG.CH.AK = CG.AH . BK -

¢’est-a-dire que les trois droites AD, BE, CK concourent en
un méme point.

Cororraiie |, — Prenons /- = =« . Dans ce cas, les droites
sont perpendiculaires aux cotés opposés el on ale théoreme :

Les trois perpendiculaires abaissées de chague sommet d’un
lriangle sur les colés opposés concourent en un méme point.

CoronrLaire 2. —Prenons h=r. Lestroisdroites AN, BY, CZ
concourent en un meéme point.

COROLLAIRE 3. — Prenons /= — . On mesure la longueur
Cnosens opposeé.

Les deux derniers cas particuliers fournissent des théo-
remes que 'on trouve ordinairement dans la géomélrie mo-
derne. . J. Kariva (Tokio).
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