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UN TIIUOBUVIU SI II LU THIAXCLE

Voici un théorème (jiic je crois nouveau ; il comprend
comme cas particulier des théorèmes déjà connus.

Thkohkme. — Inscrivons un cercle O dans un triangle
donné ABC: nommons respectivement X,Y,Z les points
de contact avec les trois cotés BU, CA, AB. Si Ton prend sur

les droites ()X,OY,OZ des points I), E, F également
distants du point O, les trois droites AD, BE, CE concourent
en un même point que je me permettrai d'appeler le « Point

%

de Kariya. »

Démonstration. — Ni la géométrie analytique, ni la
géométrie élémentaire ne me donnent d'une façon intéressante
la démonstration de ce théorème. J'établis celle-ci de la
manière suivante :
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Si dans un triangle
donné ABC, on a

BD.CE.AF DC.EA.FB

les trois droites AD,
BE, CF concourent
en un même point.

Posons
BC
CA
AC — c

On a évidemment :

C

D

a -j- b -f- c —
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OD OE OF
(kélant une longueur donnée;

BX BZ — 6- — b,

CX — CY — 6- — C,

A Y — AZ s —

Si je prolonge les droites AD,BE,CF jusqu'aux points
G Il, K oil elles rencontrent les côtes BC,CA,AB, et si

j'abaisse de chaque sommet la perpendiculaire sur le côté
opposé, l'obtiens alors, en vertu des triangles semblables
AGP et DGX
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Kin a le m eut oil a

J. KAR] Y A

BG B.\ — GX |.s' — A|— — (A + s B — «:
2A

(/• - /)
<7

|.S- — b)

BG !IX — GX

AK - AZ — ZK

2A ac 1/' -— / cos B

A — — k) 2 A - a [ r — /.•

__
2 A '.v — //) — ac r —- / )cos B

2 A G
2a - a v—

h a f r —

/)
- / )cos C

2A (.s

2 A —
— a—

b[r —
()C /' —

k)

- h \ cos A
2 A — c /' — k)

__
2 A G C— ha e —- / 1 c< >S C

2A (s- 1
J

^
£

1

—-

^

Ii
1 a r —

bef -
k)

- /'i cos A

2A U

2 a -
— b\ —

- b [r -

ac 1 —- I\) cos B

2 A~— c I r — T)

GC GX -f GX

Ail Ay - ily cxix v <2)

BZ BK — KZ

Oji a évidemment

BG. CH. AK zzz CG. AH. BK

c'est-à-dire que les trois droites AD, BE, CK. concourent en
un meine point.

Corollaire I. — Prenons /»* ce Dans ce cas, les droites
sont perpendiculaires aux cotés opposés et on a le théorème :

Les trois perpendiculaires abaissées cle chaque
triangle sur les côtésopposés concourent en un même point.

Corollaire 2.— Prenons k=r.LestroisdroitesAX, BY, CZ
concourent en un même point.

Corollaire d. —Prenons h —r. On mesu re la longueuro
on sens opposé.

Les deux derniers cas 'particuliers fournissent des
théorèmes que Ton trouve ordinairement dans la géométrie
moderne. J. Iva riy a (Tokio).
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