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SUR LES POINTS DE DIVERGENGE D'UNE SÉRIE

Il arrive souvent qu'une fonction soit continue en un point
autour duquel son développement en série est divergent.

P. ex. : Les fonctions L (1 + et
1 ^ peuvent être

représentées par les séries :

X X2Xs

I 2
I

^
G t 1 X | x

dans un cercle de rayon égal à l'unité. La première série est

convergente même sur le cercle mais non la seconde.
Eh bien î Dans ce cas en considérant nos fonctions comme

des intégrales d'une équation différentielle, on peut les

développer en séries de polynômes valables dans tout le plan,
sauf les rayons suivant lesquels ces intégrales sont
discontinues. Mittag-Lefïler.)

P. ex. La fonction : y— T~^~xes*^H^grale de l'équation

différentielle + y2 —0 qui pour x 0 se réduit à 1.

Alors la l'onction y 7—^— est développable en série de po-1 OC

lynomes dans tout le plan sauf le rayon — 1 — go et
l'on obtient cette série en calculant par des approximations

successives l'intégrale de ^ -f y2 — 0 qui se réduit pour

x —: à y1
La question est bien claire pour le développement en

série de polynômes ; quant au développement en série
entière il se présente une anomalie telle que celle-ci :

Dans l'égalité

—- 1 — x-f- x2— -f- (— -f-
1 + x
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1

le premier membre prend la valeur et le deuxième i ou 0,

pour x1.
Alors on dit simplement que la série n'est pas uniformément

convergente. Cela ne suffit pas.
Je vais expliquer que cette anomalie n'est qu'une

apparence, et que toujours les deux membres sont égaux, tant
que \x\ne surpasse 1

Je vais montrer en outre que l'ambiguité pour la série :

1 — x + x2 — + (—
n — oo

de prendre pour x1 soit la valeur 1 soit la valeur 0 n'est
pas si simple et que celte série peut vraiment prendre telle

valeur que l'on voudra, même ^

En effet. Nous avons l'identité

1 1 X71
1

_i i,» + i JL_ i + *2 + (_ i)«*«.
1 + x y '1 + X

1

Prenons x —1— ^ La fonction u peut être une fonction

très générale de nassujettie seulement à l'a condition :

lim - 0
n

n oo

Nous avons :

_J_ |4 _ (_ J)« + 1
+

1J 1 _x + a- + + (_!)%.» ;

n

* u
X 1

n

u f iAw 1

Or si - tend vers zéro, (1 tend vers e w.
n \ n J

Donc

S — lim £ 1 — x + .x2 + + (— l)n#wj i £l + (_ 1)%—.
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Si nest pair on a : Si — j^l -j-

Si nest impair ona: S2 ^1 — e •

Si Ii m a ce on a Si S2 4 ce qui arrive p. ex. si

a y nou 11L n.
Remarque géométrique. — Si l'on considère :

y 1
~ ; j 1 — ^ 4- /J-)n^

comme deux fonctions distinctes, elles représentent deux
courbes quiont un arc commun compris entre 1 -j- s et
x — 1 -p e, s étant une quantité si petite que l'on veut,
mais finie.

C. Popovici (Paris).

LIMITE ASSIGNÉE ET LIMITE ASSIGNABLE

Il semble que, pour certains mathématiciens, dire d'un
nombre qu'il peut être supérieur ou inférieur à toute limite
assignée, c'est dire équivale m ment que ce nombre peut être
supérieur ou inférieur à toute limite assignable.

Il y a là une équivoque que I on peut aisément dissiper
en observant tout d'abord que le nombre des nombres
gnés,, variable tant qu'on voudra mais toujours ne peut
jamais épuiser le nombre des nombres assignables qui est
infini. D'où cette double conséquence:

1° Il existe toujours un nombre supérieur à tout nombre

assigné,tandis qu'il n'existe pas de nombre supérieur

à tout nombre assignable,ou, ce qui revient au même,
il n'y a que l'infini qui soit supérieur à nombre assignable.

2° Il existe toujours un nombre nul inférieur à tout
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