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SUR LA DÉCOMPOSITION EN CARRÉS

DES FORMES QUADRATIQUES

On fait connaître dans les ouvrages classiques, deux et
quelquefois trois méthodes pour la décomposition des
formes quadratiques en carrés. L une que l'on appelle quelquefois

méthode de Gauss, on ne sait pas pourquoi, consiste à

former des carrés contenant Tun une, le second deux...
variables, cette méthode a l'avantage de ne pas introduire
d'irrationnelles, mais elle est d'une application aussi rebutante
que la recherche d'un plus grand commun diviseur ou que
l'ancienne intégration par parties.

Une autre méthode est connue sous le nom de méthode de

l'équation en s,elle n'a qu'un intérêt théorique, quant à la
troisième qui réduit simultanément deux formes, on peut lui
adresser les mêmes critiques.

Enfin il y a bien encore une méthode très générale qui
consiste à identifier les deux membres de la formule

2 «y xixj— 2Kl xi + at2'r2 +•••+

Celle-là, personne, je crois, n'a songé à l'appliquer.
Hé bien, il existe une mélhode très simple qui a l'avantage

de fournir une infinité de décompositions sans introduire
d'irrationnelles. Pour exposer cette méthode nous représenterons

la forme 2«^. x{x. par- le tableau de ses coefficients
ainsi :

«11 «12 ' «in

«21 «22 • «2u

«ni «n2 * ' «/m j



FORMES QUADRATIQUES

Une forme qui se réduit à
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ali 0 0 0

0 0 0

a 0 • * •

1

1

ftnn

est une somme de carrés awx\ -f~ cimx\ -P Pour ramener

une forme à une somme de carrés, il suffira donc de

donner au tableau qui la représente la forme qui précède.
Voyons la modification qu'une substitution linéaire telle

que
xi X-+ \x-

introduit dans le tableau (1) ; devient

laijxixj+ rAxj(atjxi + •' + ;

or le tableau représentatif de cette nouvelle forme s'obtient
simplement en ajoutant aux éléments de la lre ligne et de la

iGcolonne, ceux de la ye ligne et de la je colonne multipliées
par 1.Si à cette remarque on ajoute encore la suivante, qu'en
échangeant les lignes de rangt et on ne fait que remplacer
dans la l'orme Xipar Xjetvice-versà, on voit que l'on peut
effectuer sur le tableau (1) les opérations qui n'altèrent pas
un déterminant à la condition que ces opérations faites sur
les lignes et les colonnes soient répétées sur les colonnes et
les lignes, et, en faisant cela, on ne fait qu'effectuer une
substitution linéaire.

Je vais faire quelques applications des principes précédents.
1° Je suppose que l'on demande la nature de la surface

représentée par l'équation

x2 _j_ 2y* _|_ 3-2 4yz _j_ %XZ ~ 1.

Le premier membre s'écrit symboliquement

1—2 1

— 2 2 — 2 ;

1 — 2 3
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on remplace*ce tableau, successivement par

1 0 1 1 0 0

0 — 6 0 0 — 6 0

1 0 3 0 0 1

et on voit que par une substitution linéaire et homogène on
ramène la surface à la formex2— 6j2 -f- 1 ;

elle est donc un hyperboloïde à une nappe.
2° Résoudre l'équation

x2 -j- 2 px-f-0

On décompose le premier membre en carrés, il s'écrit
symboliquement

1 1 P i 0

ou
1 P 0 q — p2

X2 _|- q — oil1

et x X — p,la résolution en découle.

N.B.— Il est bon d'observer que les transformations que
nous faisons subir à une forme n'altèrent pas son
discriminant.

H. Laurent (Paris).
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