Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 6 (1904)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: hyperbolographe à liquide.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

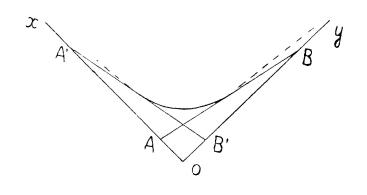
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Il est facile de voir qu'une période de 10,000 années donnerait ainsi 3 652 422 jours, c'est-à-dire que l'année moyenne civile, sur 100 siècles, serait de 365ⁱ,2422, ce qui donne une coïncidence à peu près parfaite.

L'auteur préconise la réunion d'un Congrès international pour


l'examen de son projet.

Un hyperbolographe à liquide.

1.— Dans la plupart des curvigraphes la courbe tracée est définie non pas comme enveloppe de ses tangentes, mais comme trajectoire d'un point. M. Estanave vient de décrire un hyperbolographe dans lequel on obtient précisément la courbe par l'enve-

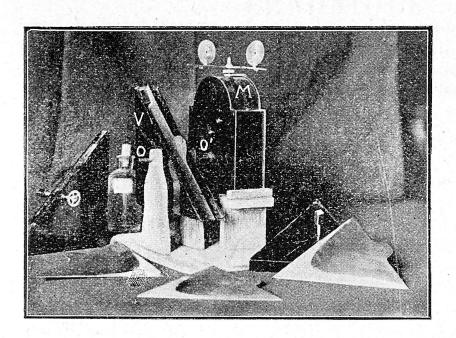
loppe de ses tangentes.

Considérons une branche d'hyperbole et soit AB la portion de la tangente comprise entre les asymptotes Ox, Oy. On sait que l'aire du triangle AOB est constante quelle que soit la tangente AB. La branche d'hyperbole peut donc être considérée comme

l'enveloppe du troisième côté AB d'un triangle AOB d'aire constante.

Si donc on prend une cuve prismatique, contenant un volume
ø de liquide et dont la section normale déterminée par un plan
vertical est x O y, et si l'on fait pivoter la cuve autour de l'arête
horizontale passant par O, la surface libre du liquide enveloppera un cylindre hyperbolique dont les génératrices sont parallèles à cette arête. Toute section normale sera une branche d'hyperbole, si l'on fait varier ø on obtient des hyperboles homothétiques.

Voici le dispositif représenté par la figure ci-dessous, adopté

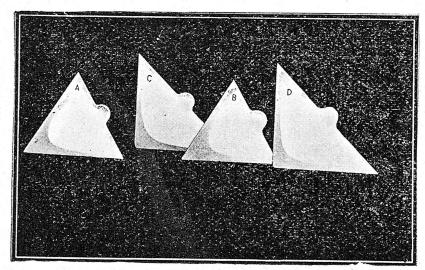

par M. Estanave:

L'appareil se compose essentiellement d'une cuve prismatique triangulaire V dont le dièdre 00' a pour mesure un angle égal à celui que forment les asymptotes de l'hyperbole à tracer. On introduira dans la cuve, normalement à l'arète horizontale, les plaques triangulaires ayant la forme d'une section normale. Le mouvement de rotation de la cuve autour de l'arète horizontale passant

¹ Voir Bull. de la Soc. math. de France, XXXII, p. 58-63; 1904.

par O doit être lent et continu; il est obtenu à l'aide d'un appareil d'horlogerie approprié.

M. Estanave a pris des plaques de cuivre et comme liquide une dissolution d'un sel de mercure (bichlorure ou azotate de



mercure); il a également fait des expériences en employant des plaques de fer avec une dissolution de sulfate de cuivre. On peut aussi prendre des plaques photographiques et utiliser une solution d'un révélateur; on obtiendra, après fixation, le cliché d'une hyperbole.

Nous reproduisons ci-dessous quelques photographies de plaques obtenues par ce procédé.

2.— En raison de la netteté et de la rapidité avec la quelle s'effectue le dépôt de mercure sur le cuivre bien décapé, M. Estanave a uti-

lisé ce principe de fixation pour obtenir sur des surfaces le tracé de courbes provenant planes des sections de la considérée surface par la surface libre d'un liquide. Il suffit pour cela d'immerger la surface, supposée métallique, dans le liquide. Il a pu ainsi obtenir sur un même cône du second degré à deux

A. B plaques de cuivre sur lesquelles le liquide a tracé des branches d'hyperboles dont l'angle des asymptotes est de 60°; C, D branches d'hyperboles équilatères.

nappes, en cuivre, le tracé de sections, elliptiques, hyperboliques, paraboliques, suivant l'inclinaison de l'axe du cône sur le plan de la surface libre du liquide.

3.—L'application de ces considérations au cylindre de révolution conduit au tracé de la sinusoïde.

Si l'on considère en effet un cylindre de révolution, une section

oblique, il est facile de voir que le développement de cette section oblique sur un plan tangent au cylindre est une sinusoïde qui a pour période $2\pi a$ et pour amplitude a tang α (a étant le rayon du cylindre α l'angle de l'axe du cylindre et de la normale au plan de section).

On obtiendra avec un même cylindre des sinusoïdes de même période, mais d'amplitudes différentes en faisant des sections plus ou moins obliques sur l'axe du cylindre.

Le dispositif expérimental adopté par M. Estanave consiste à habiller un cylindre d'une feuille mince de cuivre rouge, mou, bien décapé, maintenue par des bagues, et à plonger obliquement le cylindre dans une cuve contenant une dissolution d'un sel de mercure, de façon que la génératrice, suivant laquelle se raccordent les deux bords de la feuille de cuivre, soit avec l'axe du cylindre dans un plan faisant un angle α avec la surface libre du liquide. Lorsque le cylindre a été convenablement immergé, on retire la feuille de cuivre et on développe sur un plan, l'on obtient ainsi le tracé de la sinusoïde de période $2\pi a$ et d'amplitude a tang α . Si la génératrice du cylindre suivant laquelle se rejoignent les deux bords de la feuille de cuivre n'était pas située dans un plan passant par l'axe faisant un angle α avec la surface libre, l'on aurait le tracé d'une sinusoïde décalée de phase, dont l'équation serait, par rapport aux axes que nous avons indiqués

$$y = a \ tang \ \alpha. \ sin \left(\frac{x}{a} + \varphi\right).$$

Si l'on voulait avoir, non plus sur une surface métallique, mais sur du papier le tracé de la sinusoïde, l'on pourrait prendre une pellicule photographique, au lieu d'une feuille de cuivre, et après l'avoir enroulée sur le cylindre, l'immerger dans les conditions indiquées dans un bain de révélateur. Après fixation, on pourra tirer sur papier des épreuves de la sinusoïde tracée par le révélateur.

Nous ne saurions assez insister sur la valeur pédagogique de vérifications expérimentales dans le genre de celles que donne M. Estanave. Nullement destinées à se substituer aux démonstrations, elles leur fournissent une illustration vivante et elles en rendent l'assimilation plus facile.

H. F.