Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 6 (1904)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: nouveau projet de calendrier.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CORRESPONDANCE

A propos d'un théorème sur le triangle.

Le théorème de M. Karija, publié en mars 1904, nous a déjà valu les intéressantes remarques de MM. Barbarin, Cantoni, Demoulin, Harold Hilton et X., que nous avons insérées dans notre dernier numéro. Il nous procure encore des lettres de M. Cantoni (Viadana), à propos de la lettre de M. Barbarin, et de MM. Pierre Faure (Paris), Franke (Berlin) et Houssais (Roanne). L'abondance des matières nous empêche d'en donner un aperçu dans ce numéro; nous les utiliserons pour la correspondance du n° de septembre.

LA RÉDACTION.

MÉLANGES

Un nouveau projet de calendrier.

Un professeur de mathématiques, M Achille Faure, propose un nouveau calendrier dont nous résumons les principes ci-après.

L'année débuterait à l'équinoxe du printemps. Elle se composerait de 13 mois de 28 jours, soit 364 jours, plus un ou plusieurs jours complémentaires. Le complémentaire obligatoire serait le 1^{er} jour de l'an.

Les noms proposés pour les mois seraient :

Primière, Secondière, Tersière — Katerne, Kinterne, Sexterne — Equinoxial — Octembre, Novembre, Décembre — Onzime, Douzime, Ultime.

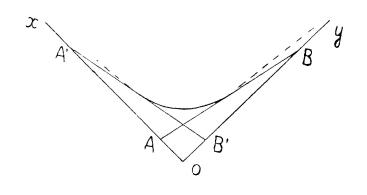
Chacun d'eux comprendrait quatre semaines.

L'ère à adopter aurait pour point de départ la mise en application du calendrier nouveau.

Les jours complémentaires (en dehors du 1^{er} jour de l'an) seraient introduits de la façon suivante ; aux années dont le millésime se terminerait :

Il est facile de voir qu'une période de 10,000 années donnerait ainsi 3 652 422 jours, c'est-à-dire que l'année moyenne civile, sur 100 siècles, serait de 365ⁱ,2422, ce qui donne une coïncidence à peu près parfaite.

L'auteur préconise la réunion d'un Congrès international pour


l'examen de son projet.

Un hyperbolographe à liquide.

1.— Dans la plupart des curvigraphes la courbe tracée est définie non pas comme enveloppe de ses tangentes, mais comme trajectoire d'un point. M. Estanave vient de décrire un hyperbolographe dans lequel on obtient précisément la courbe par l'enve-

loppe de ses tangentes.

Considérons une branche d'hyperbole et soit AB la portion de la tangente comprise entre les asymptotes Ox, Oy. On sait que l'aire du triangle AOB est constante quelle que soit la tangente AB. La branche d'hyperbole peut donc être considérée comme

l'enveloppe du troisième côté AB d'un triangle AOB d'aire constante.

Si donc on prend une cuve prismatique, contenant un volume
ø de liquide et dont la section normale déterminée par un plan
vertical est x O y, et si l'on fait pivoter la cuve autour de l'arête
horizontale passant par O, la surface libre du liquide enveloppera un cylindre hyperbolique dont les génératrices sont parallèles à cette arête. Toute section normale sera une branche d'hyperbole, si l'on fait varier ø on obtient des hyperboles homothétiques.

Voici le dispositif représenté par la figure ci-dessous, adopté

par M. Estanave:

L'appareil se compose essentiellement d'une cuve prismatique triangulaire V dont le dièdre 00' a pour mesure un angle égal à celui que forment les asymptotes de l'hyperbole à tracer. On introduira dans la cuve, normalement à l'arète horizontale, les plaques triangulaires ayant la forme d'une section normale. Le mouvement de rotation de la cuve autour de l'arète horizontale passant

¹ Voir Bull. de la Soc. math. de France, XXXII, p. 58-63; 1904.