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SUR LES RACINES DES ÉQUATIONS ALGÉBRIQUES

1. Théorème. — Si dansun polynôme entier avec tous ses
termes positifs,ordon né par rapport aux puissances décroissantes

cle x, lerapport d'un coefficient au précèdent va

pas en croissant,V équationqu'on a en égalant le
à zéro a nécessairement des racines imaginaires.O

Soit l'équation :

En posant
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l'équation proposée devient :

rm+ \ ~*+ + + \\ 0

Si cette équation avait toutes ses racines négatives, nous
pourrions poser l'équation donnée sous la forme :

[x-}- a){x-j-b)...(,r -f- w) rzr 0 où 0 0 0

Mais

(x -f- ci) {x -J- h) zz x2-j- [ci-f- h-j- ci b : ,r2 -j- plx u1

où, évidemment, nous avons ux > «2 et par suite

[x+ a)(x-j- b) (x+ c) — x3-j- 4- 2 -f «ilp2 A Ar A
** A V2 + + ngfio'fis

en posant
f*Uf*a A <0 c

"fll A C»-/32 T" ' ^3 f*2^ + c
< 2

ps -f r

Mais, puisque > y2 nous aurons yj1 > r,2 > vj3
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D ime manière générale, si 1 on multiplie un polynome de
la forme

x>n 1
~+~ Pi'x'm

2 + PiP2J'm + ••• + ••• Pm—i '

où p1> p2>p3 > Pp—is>0par x + h où h > 0 dans

le produit, que nous pouvons écrire sous la forme

xm + + + \\ \m

nous aurons

En effet, le produit sera

*'m + IPi+ k).rm
1 + pj p2+ k) j:m 2

-|- -j- ùmk

(1 où nous déduisons

b Pi + k'

— a P-^K— P.ri
Pi

\-l
l. —

Pu—2

Pn — l

Pn — i + k

Pn-2 + k

»P» + *

Pu— l + k

Comparons les rapports ln_{ ln- Remarquons que

__
Pw-2 '^w—1 +/ ^ Pn—1+

__
.qh-1(Pw+A')(Ph-2 + ^)

'*~1 fpn_2+^)^n—i + ^) et I'M) ^n—2 + *)

En rappelant que jO 2 > pn__\ pn nous trouvons
l'inégalité

Pn— 2
7 + Ptt-â^n-l > + i '

d'où

Pn—^Pn —1 + + 7i) > Pn-i^Pn — t + —i +

et par conséquent
—i > • c- 7cL
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2. — Soit l'équation :

2 i A
fix) =z aim — aim_, X + «2ni — 2 •*' — ••• + aox — u

où n0 ax, a2m sont positifs.
Posons

— i __ s

a2m

a2 m- 2

L'équation donnée s'écrit encore ainsi :

1 -j- ^x -j- )i1À2«r2 -}- -J- -j- ••• \m J-2m

Soit AS)n le plus petit en valeur absolue des /2, /4

le plus grand en valeur absolue des /3, À5,... —i*

peut dire que toutes les racines positives de sont plus

petites que — ~ et plus grandes que
i

*2n — i

En effet, quand x > — y- nous avons, d'après nos hypo-
Ä2 n

thèseslit,X ~^> ^ ,X^ 4.. ,X ^ OU t 1^4'^ t 1 t
2 4 .2 m

et, par suite, le troisième terme du polynôme f\x) est plus
grand que le second pris en valeur absolue, le cinquième est
plus grand que le quatrième, etc., parce que le rapport d'un
terme au précédent est plus grand que l'unité.

iEt quand 0 < x < -y q nous avons

1 1 1

< i q » JL ^ pi i > • ® « *X> <\\\ ' ^ l>sl l>^_d

et par suite les termes négatifs deviennent plus petits que les
termes positifs qui les précèdent, et par conséquent f(x) > 0

Corollaire. — Si clans le précédent polynôme nous avions
\p—i ^ ^ 11 y aura't aucune racine positive.

P. Zervos (Paris).
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