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SUR LES RACINES DES EQUATIONS ALGEBRIQUES

L. TugoreME. — St dans un polynome entier avec tous ses
termes positifs, ordonné par rapport aurx puissances décrois-
santes de x, le rapport d'un coefficient aw précédent ne va
pas en croissant, U'équation qu’on « en égalant le polynome
a z€ro a nécessairement des racines imaginaires.

Soit I'équation :

ap™ a4 b =0
Al B -
En posant
(I1 (12 (Im
—_ ) —_— = A -_— A
1 200 m’
a, a, T

I'équation proposée devient :

AT T, =0,

]
Si cette équation avait toutes ses racines négatives, nous
pourrions poser I'équation donnée sous la forme :
(r +allr +0b)...(r +u)y=0 ot «a>0.0>0.,....u>0.
Mais
(r +a)lr + by =24 (¢« + by + ab = a® 4+ poxr + pyu, .
ou, évidemment, nous avons u; > py et par suite
(r 4 a)fr 4 bl 4 ) = 2% 4 (g, + ¢)a® + w (g, + c)x + Uy o
= 2% 4 m 2% + anyx - ay0,n,

en posant

ey (g + ¢
.01:{‘1_*—6’7}2:—1?1_6—_ - ¢
1

Mais, puisque u; > p,, nous aurons Ny > N > Ny -
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D'une maniere générale, si 'on multiplie un polynome de
la forme

m—1 m—2 n—3

X + oo x T PiPy o T PPy P
OU py > pg > pg oo > pf*—‘1> 0, par x 4+ k&, ou k> 0, dans
le produit, que nous pouvons écrire sous la forme

M )‘lxm-—l + }1)21-””_2 + ...+ 1112 )‘m ,

Inots aurons
)«l > )2 > )‘3 v > )‘7”/ .

En effet, le produit sera
"+ (p, + k™t p,lpy + /.').1:'"_2 S IRTTEE Y Y I

d’ott nous déduisons

o= p, + A,

A= py ———P2 +
bk
by | = Py—2 p—'—:l—i/—l
Pn—2 =+ k
P
Pr—1 + k

Comparons les rapports 2, 2 . Remarquons que

1
3 . Pn~2(pn—1+A‘)(Pn—i+’lf) 3 — Pn—l(’Pn—F/")'Pn—“Z_i_/“)
T et B, HH T e R,
En rappelant que p o> p, |, > p, nous trouvons l'iné-
galité
pn—%" + Pn—2Py—1 > pn-—il[ =+ Ppn—2Ppn—1
d'ou

Pn—“Z‘Pn——l + l")(Pn—-i =+ /i) > Pn—l(Pn——-ﬂ + /")(pn——i + /")

et par (,'onséquent
My > A, C.q. [ d

RS A I

o e

Kt i aien
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2. — Soit 'équation :
2 2m __
fla) = Ao, — 4 —1 ¥ + Aoy g X7 T T AT = 0
ou g, dy , y sont positifs.
Posons
—_y,
2m—1 — )‘1 ’
Aom,
Toam—2
=,
— 9y

L'équation donnée s’écrit encore ainsi :
3 < Y y y 2m —
Do a4 x4 kg Ay P = 0.

Soit 4,, le plus petit en valeur absolue des 2, .3, .- Ay, 5 Ay 4
le plus grand en valeur absolue des ;.75 25,...75, ;. On

peut dire que toutes les racines positives de f(a) sont plus
l

. 1
petites que — — et plus grandes que — _
Aoy ' bap—1

3 ) 1 K )]
En effet, quand & > — 5~ , nous avons, d’apres nos hypo-
2n

theses

1 1 1
x> — i x> — IR xr > — 5 ou Do) > 1. x> 1, . Ry, 2] > 1

2 4 -2m
et, par suite, le troisieéme terme du polynome flr) est plus
grand que le second pris en valeur absolue, le cinquiéme est
plus grand que le quatriéeme, elc., parce que le rapport d'un
terme au précédent est plus grand que 'unité.

Et quand 0 < v <

5.5+ housavons
26—

1 1 |
.1< I)\ll y .1.< ]7\3 ?.“’(1<J)‘—]

2m—1

et par suite les lermes négatifs deviennent plus pelits que les
termes positifs qui les précedent, et par conséqueunt flx) > 0.

Corollaire. — Si dans le précédent polynome nous avions
dyo_y > by, L'y aurait aucune racine positive.

P. Zervos (Paris).
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