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SUR LA DERIVATION DES SERIES UNIFORMEMENT
CONVERGENTES

Une série convergente de fonctions dérivables dans un
intervalle donné est elle-méme dérivable dans cet intervalle,
si la série formée par les dérivées des termes y est unilor-
mément convergente ; la somme de cette dernicre série est
alors la dérivée de la somme de la premiére série. Cette
importante proposition, dont I'usage est si varié, est démon-
trée au moyen du Calcul intégral dans la plupart des Traités
d’Analyse publiés en France, méme les plusrécents?.

Bien qu’absolument rigoureuse, une telle maniere de faire
ne me semble pas donner pleine satisfaction a 'esprit. Iit,
en effet, n’est-il pas quelque peu contraire a la logique de
passer par le détour des intégrales définies pour arriver a un
résultat relatif a des dérivées. De plus, la notion d'intégrale
étant étudiée, en général, bien apres celle de dérivée, le
théoreme en question se trouve rejeté hors de sa place natu-
relle, ce quiretarde son application d’'une maniere regrettable.

Il est cependant possible de remédier a cet inconvénient
au moyen d’'un procédé simple et rigoureux indiqué par
M. Storz dans son bel Ouvrage: Grundziige der Differential-
und Integralrechnung (p. 64-72)%. La présente Note a pour but

1 Nous citerons entre autres ceux de M. Goursar, Cours d’'Analyse mathématique, t. 1,
p. 409-411 et de M. G. HUMBERT, Cours d’Analyse professé a U'Ecole polytechnique. t. 1, p. 323~
324. M. Humbert parait croire que « la question de la dérivation des séries est liée » a celle
de lintégration. Par contre, dans la T'héorie nouvelle des fonctions de RoBin, publi¢e dernié-
rement par M. Raffy, p. 136-139, une facon de voir toute différente est adoptée. Mais les
dées de Robin sont encore loin d’avoir pénétré dans I’Enseignement.

2 Le procédé de Stolz est fondé, comme on va le constater, sur 'emploi de la formule des
accroissements finis. C’est également a ce point de vue que se sont placés Rosin dans sa
Théorie nouvelle des fonctions, p. 138-139, M. Cesaro dans ses Elementi di Calcolo infinite-
simale, p. 60-61, et M. POrRTER, dans les Annals of Mathematics, 2¢ série; t. IIT, 1901-1902,
p. 19-20. Ce dernier n’a considéré que le cas particulier, d’ailleurs usuel, ou la convergence
uniforme de la série des dérivées résulte de sa comparaison a une série positive convergente
(critcre de Welerstrass) ; la démonstration sa présente alors sous une forme tout a fait ¢lé-
mentaire.
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de faire connaitre la méthode suivie par cet auteur, sauf
quelques modifications introduites dans la forme des raison-
nements.
Soit
fla) = Su(x) + Ru(x)

une série dont les termes sont dérivables dans un intervalle
(@,0); si, dans ce méme intervalle, la série formée par les dé-
rivées de ses termes

f’(.’l") — S’n(.’l‘) + R’n (‘II')

est uniformément convergente, il existe un entier m tel qu’a
partir de n = m, on ait pour toute valeur de x appartenant &
I'intervalle (a, b)

]

] R/ " (2) I < —E .

Solent maintenant
Tp (x) = R (x) — Rm-}—p (x) ,
Tp(x) = R'm () — Ripgp(x) ;

pour deux valeurs.x et ;, de la variable, intérieures & Uinter-
valle (a,0), la différence

LU=

Xo— .I'O

peul se mettre sous la forine

'l‘p (J} — T p(.‘l’o) + Sm(.l')— Sm (.’1‘0)

A — .I'O X — 'TO

)+ Rm+p () — Rt p (]

3’
— S'm (2,
X — .10

-— R'm (3”0) 5
mais

'j‘p(,l') —_ r],‘p(:l'o)
X — .1'0

-—"' Ly " Py
=1 p(10+0] — J,)}

4 O<0<1’

et, de la condition
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il résulte, pour toute valeur finie de p,

2¢ _ Tylxy— Tplr,) 20
__ T < p : ‘P 0 T )
) xro—x, 6

D’autre part, il existc un nombre positif o tel que, pour
toute valeur de v autre que .ry, véritiant la double inégalité

—pla—x,<p,
on ait

Sm () — Sm W‘O)

Y : G ., a
Smre) — = < < Sulrg) + &

X — Xy

mais, a chaque valeur de x différente de ., appartenant a
I'intervalle (a,b), il correspond une valeur finie de p suffisam-
ment grande pour que les inégalités

G
| Rg-p () | < 3 | x —x, |,

! P\m+p(ﬂ70” < 5 | — x, |

soient vérifiées, de sorte qu'en définitive la double inégalité

—p <r— x, < p
entraine la suivante
, ) - ) ,
flix,) —a <[Z(x%__4&, < fMlxo) 4+ 6.
A ——— 0

La dérivée de f(x) pour une valeur x, de .rintérieure a
I'intervalle (a,0) est done f'(r,); de plus, on reconnait facile-
ment que, pour x = «, la fonction f(x) admet une dérivée a
droite égale a f'(a) et que, pour x=125, elle admet une dérivée
a gauche égale af’(b); la fonction f{x) est, parsuite, dérivable
dans l'intervalle (a,0), sa dérivéey étant égale a /7 (x).

Maurice Goperroy (Marseille).
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