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ÉQUIVALENCE DU MOUVEMENT

D'UN SYSTÈME INVARIABLE A TROIS DIMENSIONS Y

QUI PASSE D'UNE MANIÈRE QUELCONQUE

D'UNE POSITION DONNÉE 2X A UNE AUTRE POSITION DONNÉE Y

Ü t.— Soient ABCU, A^CjUi et AäB.,C0U;) des pyramides
homologues appartenant respectivement aux systèmes 2, 2^ et 2., ; ce

sont, en raison de l'invariabilité du système S, des pyramides
conorruentes.O

Prenons un point fixe 0
de l'espace pour origine
des rayons vecteurs des

points des systèmes 2, 2,
et 22. Soient donnés dans
les systèmes 2, 21 et 2., les

points respectivement
homologues A, B, C ; Ai7 Bp
Cj^et A,, B2, C2, avec (ABC
7^0. Soit U un point
arbitraire, variable, de 2, de
manière que U1 et U0soient
respectivement les points
correspondants de 2^2,,
avec la condition

(ABCU)r/=o.

Si nous posons (fig. î

AiB1 a1? A1C1 A4 0 -f- pi5 B± » 0 + p27 CA 0 + p..

Uj O —| p, l'équation du système ponctuel 2X ou U1 sera

P Pi + "'«i + "h +p I («ißd •
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ou encore

P Pi + m{pi Pi) + »(P3 ?l) P I H Pi ?l) (P3 Pl)j'

où /«, n et psont cles variables numériques, indépendantes l'une

de l'autre.
Si le système S passe de la position SL a la position S2, les

points A, B, C et (J subissent les déplacements totaux

— oi5 BiB2 o2, GiC2 — o3, UiU2 " o,

de manière qu'il existe pour le système ponctuel S2, si l'on pose

U, eO-fi. la relation

'p 0 —f- 0 OjL + 0± —|— 7?i(p2 + 02 pi Oj) + U (p. + 4 Pi. °i)
À-P I f" (?2 H" — 0L — Oij (p3+ 03 — p[ — Oj 1,

OU

P =r Pi) -f «(?3— Pi) + P I [(?2 p 1 (Ps— ?i)J

+ Oi + 7/7 (o2 — 0A) + 77(o3 — 0A) + p I [(p2 — pd (o3 — Oi)

- (pS - Pi) (o2 - oL) + (0% - Oi) (83 - oj],

ou, moyennant (o2—3J:=oa, (o3— oL) ù^,

p zz: p -f- 8 ~ pi + mal +«^-1- p | (aqßi)
—|— ôj_ —|— morj. 4- iiÈi p I [otiOî — -j- 0 A/i

et, si nous posons

[(p2 H- s2) — (pi + ôj] A2B2=: «2j [(p3 + o3) — (pi + Oi)] A»CS ß2.

l'équation polaire du système ponctuel S2 est encore

P — p ^1 + 777 aa-f- /iß2 p I (a2ß2)

On en déduit pour le déplacement total du point variable U

du système S

0 — (P p) =Z + 77i8«-f- /ïSsj -j- p I [otjOß (5i0c. A- OrjOQ.

«. Les déplacements totaux de quatre points et plus du système >]

ne sont pas indépendants. Les déplacements totaux de tous les

points U du système S sont déterminés, lorsque ceux de trois
points du système non situé en ligne droite sont connus^ le
système $ est passé de la position à la position lorsque
trois points de S non situés en ligne droite, qui coïncidant
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auparavant avec les points correspondants de S15 coïncident avec
les points homologues de -2 ».

En prenant o comme radius vector? la dernière équation est
celle de l'hodographe des déplacements totaux des points du
système ï.

La multiplication de cette équation par (o.o?) dorme

(o — oj (3.0,,) p | [a103 — ^0« -f 0«Q,â] (oK03)

Présentement nous avons

+ j (3.3;) (*&) I (3.3,3) - ((3,3.) | (3.0,3) +(3.0,ä)!
1 K11 2« \ -N

— ßi 1 3 a 1 0. +kl S? h 1

•*i 1 h 3.1 3,3

— («i|occ)34— (a, [3,,) (0.13,) — (p113.) (3.13,,) -f (3.13^)5

(ai[3«)3?:+ (|h[3;)3aü + 3.2 o^ j — (ôa|3?) j ^l3?+ £,[3. + 3.|%|
=n— (3a 133) j ajL 103 + (|i2 — 3,) 1 3. + o.)3,3 j

— (3«j3^) \ ai| 3,-fß21 3. —3.1 3o-f-o.)3,3 j

(°« l °/) I ai 1 + (L I î

— u>

par suite
1r

'S r ^ I "S 'S "1 / 'S "N N

ai°? ri°« + 0«°äJ (°o,0;iJ — o.

Nous obtenons ainsi

r(3 — 3j) (3.3,)j — O.

« L'hodographe des déplacements totaux des points du système
S est un plan parallèle aux différences des déplacements totaux
des extrémités des segments a et j3 ».

Déduisant de la première équation de cet hodographe les

déplacements totaux de trois autres points coplanaires du
système et développant avec ces déplacements l'équation de

l'hodographe, nous obtenons de nouveau le même hodographe.
c L'hodographe des déplacements totaux des points d'un

système indéformable S, lorsque celui-ci passe, de toutes les manières

possibles, d'une position à une autre position St, est constamment

un plan ».
Nous pouvons encore écrire

•> "S A i "N ^ 1 \ *\ 'N "N

°l02°3 + °3°i + — °i02°3-
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En prenant 81, S.? et o3 comme vecteurs de l'hodographe, le

plan de cet hodographe passe par les extrémités de ces

vecteurs.

Si nous transportons les déplacements 3n oâ, 33 des points
A, B, C en l'espace de manière que
leurs origines coïncident avec le

même point Ox de l'espace, le plan
déterminé par leurs extrémités D1?

D2, D3 (fig. i) est le plan de l'hodographe

du système des déplacements,

0± étant le pôle de

l'hodographe, car on a (D2 — DJ oa,

(D3— DJ Oo? et l'équation de ce

plan est
(o — oj (oKo(i o.

Le vecteur

g 1 [OW — ßiOa A Ô«Ô?]

est, parce que (p.SaoJ o, parallèle au plan de l'hodographe
et est une somme de multiples de oK et 3a, de sorte que nous pouvons

poser

F #0« +j3;d — | [aAop — J6iûa + oKopJ.

Si s désigne le vecteur déterminant la position du plan de

l'hodographe, on a

£ [| (OaOji)] :

et la multiplication de l'équation précédente par s donne

*(e3«) +j(s3?) zzz £ | [«a3? - ^ô'J-

De cette équation résultent, par les valeurs des coefficients x
Ct y7

x(o|i£oa) (ope) 1 f^oji — Pi0aj,

j(3aso?) (a«e)|(al0ViVA

de sorte que moyennant ces valeurs de x et ?/, on a

(o?£) IfajOß — £3«]
F — n > o«-1 o».
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Mais nous avons

(M I i a,'

a.<

- ?i8«3 (o?î) I («S?) — ftM
Oi | a, s ] a, I — 0, Iß, £ I

O'i | Oo S i O'i |
O'i | Oa S I 0*

(- 1 K) kl h)- (£l«l)^
- ^oaj (toa) (a,05) — (eoa) I (p^)

c, i ^ ^ ^
3 0> Oa L

Iß,

=- {s I «i) I 0$ | ?i)Oa;,

car oa et o, sont rectangulaires avec s, de sorte que nous obtenons
encore

:> — )U'ä I /t! (S.1 h) — (* I *i)h-l+[(* | %) (5« i5?) — (s! W»«ÎJ5,v

Avec cette valeur de u, l'équation de l'hodographe du système
des déplacements peut maintenant s'écrire

5 ?i + + "AAK*1 'il) (î"18?)— (* i*») 5?fî | ^

+ 11 H~ "l(* I ai) (0«|3?)—'{i0? :

formule au moyen de laquelle le déplacement o d'un point
quelconque du système S est représenté comme somme de multiples
de trois déplacements donnés.

Moyennant la valeur de s, l'équation de l'hodographe, en

forme d'un produit, nous conduit à l'importante relation

(0 —ô±) |s o

ou
(3 Je) (ot |e).

(c Les projections des déplacements totaux des points du

système S sur la direction du vecteur de position du plan de

l'hodographe sont égales entre elles ».

$ i'. — Si les déplacements des points du système S sont
infiniment petits, si oi=sesö?oi, alors les équations de l'hodographe
du système des déplacements sont

dp — dpL 4- mda. -f- nd 8 -f- p | — f/dz\,

car ('deed(î) peut ici être négligé vis-à-vis des autres quantités
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comme infiniment petit d'ordre supérieur et si les déplacements
sont infiniment petits en posant oq — a, pL — y, oq =a c/a,

3,— y -|- c/jj ; de plus

dp — dpi -)- | m -\—cJ7jo [£ I (^a i ^ß) — (e 1 0:) J \

+ rt + ~{.h7r?
[(£ 1 a) (rfa 1 ~(ï 1 ;

[dp — dpj) [dad$) ~o\
{dp — | s — o, dp j s =z dp± | s, S — [ | \dadfpy] : \J (dadp)-,.

Nous obtenons ainsi, pour vitesses des points du système -,

'«=«! + **(vt — vj+ H (»» —Vt) +j> I [g(«3 — •»!) — — '"l)]s

(v—vj |e 0, S= |[(%—*1) (»» —fj)] : \/C(fo —

et la formule donnant la vitesse v, déduite cle l'équation encore
inutilisée des déplacements totaux infiniment petits, peut aussi

être écrite directement.
Les dernières équations, en y prenant v comme radius vector,

sont celles de l'hoclograplie des vitesses des points du système 1,
c'est un plan parallèle au plan de l'hoclographe des déplacements.

§2. — Parmi les déplacements totaux des points du système ï
il en existe un qui est le plus petit il est égal à la perpendiculaire

abaissée du pôle de l'iiodograplie, égal à la projection du

déplacement total d'un point quelconque du système S sur là
direction du vecteur s.

Pour ce déplacement, que nous désignons par o0, existe la
condition

°0 ~ °i ~L + P j KO% ßi0a -j- Or/Op

jr-1 (o«o3) =ys=(oA[s)s.

Nous obtenons ainsi

opK — x (o rjpj N'i
s,

de sorte que
- _ V« •» v

(3a8?)î
K°e0'8) — y/(S;o8p)î

£-

En multipliant l'équation de condition par s, on obtient

(eoj) +»»(s3«)+«(s3<.) +pMt«A —£iVt o,
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si nous multiplions cette équation d'abord par o3? ensuite par oaf

il vient
(ooEod +/ii(£0Blo?) -f-p(ôpe) I — ßjQ«] o,
(Oc.îOj) + a (6a£0<j) +p(Ô«s) 1 [«lO? — ßiOa] — O

d'où
(eo?) I [«iV-ß^J+ p£0a0â £0a03

£OjO., (eoj 1 [a^i— ßAoa]
// ^ ^ P -N

en rw, •*• cr, r,

Si nous substituons ces valeurs de /h et de /« dans l'équation
qui donne S en fonction des déplacements donnés, nous obtenons

:*i+-
£0«0^ £0«Ô«j

"4
^ k f "S % V "S | f •N "S \ > /

00= "7yr~ / (£02°3)0i+ (£03°l)°2 + (£0i°2)°3 v>

équation par laquelle le déplacement minimum est déterminé en .]

fonction des trois déplacements donnés.

| 27. — Si les déplacements totaux des points du système S

sont infiniment petits, le déplacement minimum est évidemment

d Qidq.yd
da9=—^^4=.es

\J [dzdfy'i
ou encore

dp0~1dh^( (£dPïdP:t)d?l+ litdp3d?l)d?î+'y

de sorte que la plus petite vitesse est

- ^ ^3

vé t («2 'ü J («if UJl) ]-
OU

7——=77- =TA^—v,J(V3—VJ '

§ 3. — Il s'agit maintenant de déterminer à quels points du

système correspond le déplacement ô0.

L'équation des radii vectores des points auxquels appartient |
le moindre déplacement s'obtiendra en substituant dans l'équa-
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tion des radii vectores des points du système ponctuel S les

valeurs de m et n trouvées dans le § 2, ce qui donne, en

désignant par ps le radius vector cle ce lieu,

ps pA 4- /(£0301)ai + (£Oj_o2) ß
L I

+ 7Èr~ \ KsS?) 1K8?~~ßt8«)]«! + CM I M?—Pi5«)3Pi 4 (eS«8?) I («A) •

£0«03 {

Ce lieu est donc une ligne droite, qui est parallèle au vecteur

v [(so,) I (afy — ß^«)]*, H- [(oas) I (ccfo — ß1oÄ)]ßI + (£0«0?) I (a1ß1).

Si a désigne Tangle que cette droite fait avec la direction du
vecteur deposition £ du plan de Thodographe, 011 a

tag a \J^>)i ; (£|e).

Quand nous usons d'abréviations, nous pouvons écrire

v — axL ~b ^ßi + cl Qißi),

d'où nous obtenons

(£C — a(eoci) + ^(£?i) + 4£ I (aißi)l -

On a donc aussi
I (sv) ^a[(0a0?)Jai]d-ft[(0«0p) | ßj + c[(oaop) ML)]}
I H «[(0« I ai) 0? — (Oß I «i)Ô«] + ft[(Ô« I ßjo? — (Ô;3 I 3JÔJ

+ c[(o«alßi)Oß— |o?ccdC)oJ,
I — [a£°al ai) + Q°n| ßj) 4-c(Oaaißi)]o^

— [a(o310Cj) +/>(öß I ßi) +c(opa1ß1)]oa,
du en abrégé

I (sv) ro'i
(Mais nous avons

a—{s I aj o:c— (s I ßj (0« | op), h — (s [ ßj oK;2 — (s [ a,) (oa | o?),

ctöa^ßj^fsoaop) (o^ßi)
£ I Q a 0 a I 0 « 0 f, J 0 fJ

— oÄ I ocL 0^ I ax

,«IPi 8«IPi S,|^t
c(°«xir'i) °?) (£ I ^1) + (s| ctj) (o«| oj)(oK I j3x)

— (£ Ißi) (ai I 0«) (0« I o?) — (s I ax) 103) 0^ ;

c(hxißi)
I i I 4 0« I 0;j Os I C_3

J s|ax o« I ax 3fj[ ax

MP, 8«IPi S?I Pi

c(°.sair'i) (s I Pi)(ai I 2(i) KI o?) -f- (e|a,) s I oa)op;

— (£ I Pi) (ai 1 3»)ce!— (s I ofj)(|3X I o?1 (3. I o?) ;
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et c'est pourquoi
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* — — (s|öi)(3*l^) J (ax|oK) + — (s|ax) (ÎÂ|3>) ' (ßj *«)

+ M?]) '71 i + (s I aA) I 0«) ($« I O;) — (s I ß,j (xx I Ga) (oa | %}

^1*0^1*0^
' (â!V>iI3«:p*i — (*taiî&IH?'«i \ + (si Wr-4!^ir^—*i\h)

— 2($l^i)(ai|o«)(oalo?),

'' — M Eh)°«i Pi 1 °« + 7J 3#l Eh; (7i 1 (°* 1 °d •

y' — (£ i rj'y-i ï h I °* + I ^4 w I I •— '2 A I Ci) (7j I °«) l°* f °?) J

'* — {* ?i) i y [(% — 7i) 1— 2(£ 1 Eh) (ai irV £*« I % -

1 — — \£ i EhE) 721 ^ry- ~f~ 7i K *

de plus nous obtenons

- - - ; ,a,i^+ î (siW)^-->K (^)l (hf#
+ l£l Eh! 71 I v 1 ^i) + (î I ^1; {Eh I — (î| Ci' («1 1 ^-Kc

[8 1 al)î?i I h) <

le second membre de cette équation peut être traité exactement
de la même manière que le second membre de l'équation en i\
ce qui donne

•S — o.
Xous obtenons ainsi

] (se) — o « (sg £±: y 8

c'est-à-dire que le lieu des points dont le déplacement est o0 est

une ligne droite parallèle à ce déplacement ainsi qu'au vecteur
déterminant la position du plan de l'hodographe.

Pour /; «so, le radius vector de cette droite est égal à

de sorte que l'équation du radius vector du lieu en question
s'écrit dans la forme la plus simple

?* pi + 73V ; ^IK+K^I ; +yy£-

Dans le changement de position du système 1\ cette ligne,
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envisagée comme appartenant à ce système, se déplace sur elle-
même, chacun de ses points subissant le déplacement o0. Deux
droites homologues de 2 et S0 coïncident avec cette droite considérée

comme ligne de l'espace absolu, elles constituent ainsi

une ligne double de et S0 sans points doubles, et lorsque o0~o
une ligne de points doubles.

<( Lorsque le système S passe de la position SJL à la position
I2, et S2 ont toujours une ligne double, qui n'a généralement
pas de points doubles, les points de S situés sur cette droite
subissent le plus petit déplacement qui est possible dans le

changement de. position de S ».

$ 3b — Si les déplacements des points de - sont infiniment
petits, l'équation du lieu des points de déplacement minimum
est évidemment

Ps — Pi + ~dy.dN
\ + 111

ou encore

ps — Pi 4 7— — v'~ Â'% ri)y- ~r ?-VP +
Z\r2 Vl)

§ 4- *—' Vraisemblablement, les déplacements des points des

droites du système S qui sont parallèles à la ligne double de

et ï2, présentent des propriétés particulières.
L'équation d'une telle droite, parallèle à s, s'écrit

— Pi + i«L+'^l + llZ!

mais on a£=(or/oji), o% et Oo sont des quantités invariables, donc
os o, de sorte que

o ~ Oi -f mL oy. + :

comme le second membre de cette équation est une quantité
constante, les déplacements des points de cette droite sont égaux
entre eux.

« Les déplacements des points d'une droite du svstème ï,
parallèle au vecteur déterminant la position du plan de l'hodo-
graphe, de son système des déplacements (parallèle a la ligne
double de et £,) sont égaux entre eux et en général également
inclinés sur cette droite ».
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Cherchons, s il existe des droites du système 2 qui soient parallèles

au vecteur déterminant la position du plan de l'hodographe
et dont les points soient déplacés parallèlement à ce vecteur.

L'équation d'une telle droite est

p p, -f- mxL -f- n$v -f- uz,

le déplacement de ses points doit être donné par l'équation

o zz; o1 -f- moa -f- no° 2* ;x%

d'où résulte

£0;±0i + in{Z0'ßrj) —O, eOaOjj -f- 7?(£0a0ß) zu o.

Ces équations donnent pour/« et n des valeurs réelles, qui n'ont
qu'une seule signification, en les portant dans les équations
donnant 0 et 0, nous obtenons

P Pi + £3agfj
[ (£d3oA)oc1 -j- |-f- uz,

S + A \ ("A)«« + (îOjSjJoj I o0.
oO r/O'i { ;

Il n'y a donc qu'une telle droite, les déplacements de ses

points sont égaux au déplacement minimum possible, et cette
droite coïncide avec la ligne double de S1 et 22.

Nous sommes ainsi parvenus indirectement à l'équation de la

ligne double de 2A et 2., sans nous être engagés dans un calcul
plus long que pour la détermination de sa direction.

Les points d'une droite pi de S parallèle à la ligne double p.°

de 21 et 22 subissent le même déplacement, la projection de ce

déplacement sur la direction de la droite est égale au déplacement
30, lorsque 2 passe de la position 2X à la position 22. Si nous
déterminons dans le système 2 des sections planes, normales à

»jl0 c'est-à-dire à s, ces sections planes constituent des systèmes
partiels congruentsde 2, les points correspondants de ces sections
c'est-à-dire les points situés sur la même droite p., ont le même

déplacement; il en résulte que les déplacements de ses sections

planes, lorsque 2 passe de la position 2X à la position 22, sont

égaux entre eux ».
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§ 4'. — Lorsque les déplacements des points de I sont infiniment

petits, le déplacement des points d'une droite u est

do — —f~ Hijda —}— 111 dp,
leur vitesse

V V, +wL [v, — + {v3— vt),

et l'équation de la droite du système I ayant le déplacement dz0

est la même qu'au § 34

§ 5. — Nous allons maintenant nous appliquer à la recherche
des mouvements simples, par lesquels le système invariable ï
peut parvenir d'une position donnée I1 à une autre position et
à la détermination la plus simple de ces mouvements. Pour cela

partons des cas spéciaux, que nous résoudrons directement. Le

cas où l'on a oi o0 o3 o. ne donne lieu à aucune considération,

puisque l'on a alors 0 o, le système I n'a alors aucun
déplacement.

Soit premièrement o1 g, o, de sorte que les points A et B
de I ne soient pas déplacés.

Alors â1=*=A2 et Bj =B2 sont des points doubles de et S., la
droite À1B1=A.,B2 est une ligne double de et n'avant que
les points doubles.

L'équation de l'hodographe des déplacements des points de -
est maintenant

5 fio3+^|(a1o3).

Pour d'autres points qui n'auraient pas de déplacements on a

la condition
0 — no3 -\-p j [afiÈ —o,

d'où il résulte, o3 et | Aio;î) étant des vecteurs 11011 parallèles,

n — 0. p — o,

valeurs qui, substituées dans l'équation du système ponctuel ï,
donnent

p — pi + m 7^.

qui est l'équation de la ligne double de li et laquelle aurait pu
être écrite directement en raison de Ax A2 et BL B9. Il n'existe
pas d'autres points sans déplacement.

Enseignement math.
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Comme Ton a, dans le cas général

(m a maintenant

ai 103 o,

d'où on déduit, en multipliant par oq l'équation de Lliodographe,

ai 1 o o.

de sorte que les déplacements des points de 1" sont rectangulaires
avec la ligne double.

Pour le déplacement minimum on a

o„= (0i|i)s=0, S (ai :

mais, si l'on a 0 0,011 &7i p o et il en résulte que le lieu
des points sans déplacement est la droite AB A1B1 du
système

L'équation d'une droite du système, dans parallèle à cq

s'écrit
p pL + ciai + c2ßj + noqa

les déplacements des points de cette ligne sont

ô (Cl + Ci)S3;

ils sont égaux entre eux.
S'il existe deux points du système S sans déplacement, la

droite qui réunit ces points est sans déplacement. Les déplace-
monts de tous les points du système sont normaux a cette ligne
et directement proportionnels aux distances des points à la droite
sans déplacement. Les déplacements des points qui appartiennent
à une droite parallèle au lieu des points sans déplacement sont
é^aux entre eux ».o

Comme AiB1 A2B2 est une ligne double de 2q et n'ayant

({lie des points doubles, les points homologues de et I, sont

également éloignés de chaque élément de cette ligne. Il en

résulte, en tenant compte de la proposition précédente, que le

système passe de la position à la position de la manière la

plus simple par une rotation autour de la double ligne, l'ampli-
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Lucie de la rotation étant égale à Fangle de deux plans homologues

de -i et S., se coupant sur la double ligne, ou encore égale a

l'angle des perpendiculaires abaissées des points Ci et C2 sur la

double ligne, où elles se rencontrent d'ailleurs.
Pour le déplacement du point C, nous obtenons ainsi

[b (s | ßi)s —|— cos «>(eßi)ls + sin «'|(eßi).<

Og— |32 — ß1= (i — cos Is)3 — PJ + sill ^I (eßi).

Si nous posons

ß^be + zi. ß3 bt + xi, elxl=*lx£ o, y» y£ A?,

il vient
X.2 cos O'xi + sin I (£XP '

03 (cos w — 1) '/[ + sin o' [ (syjj,

•2 sin ~ w (\Zosi : hp.

Nous obtenons maintenant pour un point quelconque U du

système 2, si y i et y2 désignent les distances normales des points
L et U2 a l'axe de rotation,

/.-> cos wyA + sin w\ (eyA),

0 7, — yL (cos w — i)yA + sin «v | (£yj

aleurs, par lesquelles le mouvement du système S est pleine-
icnt déterminé. Chaque point de S décrit, dans le passage de la

osition S1 à la position S., par rotation autour de la ligne double
.0: 2 et S2, un arc de cercle dans un plan perpendiculaire à l'aXe

c rotation, dont le centre est situé sur cet axe.
u Lorsqu'un système invariable 2 possède deux points sans

"placement, il a également une droite sans déplacement, savoir
' elle qui réunit les deux points ; le système 2 parvient de la posi-

m à la position S2 de la manière la plus simple par une
ùadon autour de cette ligne comme axe, en prenant l'amplitude

ie la rotation égale à l'angle de deux plans homologues
quelconques de S1 et S., ».

§ à'. — Si les déplacements des points de I sont infiniment
a-lits, l'équation de l'hodographe des déplacements des points
ni système S est, en conséquence du § 5, si dpi= o, do.,— o,

dp — ndpn -|- p I (ac?p3b
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et, par suite, les vitesses de ses points sont

v nv3 + p|(ae3) :

le lieu des points sans déplacement, c'est-à-dire sans vitesse, est
dfo.nné par

p pi -f- wix.

Lrangle de la rotation autour de la ligne double de hi et S2 est

dw ~ tydpâ- ÄÖ — (dSs '' hd >

et la vitesse angulaire du système S est alors

W= (v3 h[)

Pour un point quelconque U du système S nous avons

7.2 7.1+ <M (£7.i) >

do dw | (z/A) > v — w | (r/J.

S 6. -—• Nous considérons maintenant le cas où l'on a o4 o,
o,j o

Alors le point A de S est sans déplacement, Ax A0 est un
point double de et S2, et les déplacements des points B et C

sont égaux entre eux.
L'équation de l'hodographe des déplacements des points de 1"

s'écrit
o zz (m Jrnß2 + p\[(ai— ßjoj.

Pour le lieu des autres points pour lesquels on pouvait avoir

o, on doit avoir
m -j- u o, p — o,

d'où il résulte, en vertu de l'équation du système ponctuel S S15

p r_ 0} -|- m[al — A).

Donc le lieu 'des points sans déplacement est une droite

passant par le point At A2 A et parallèle à la droite joignant
les points et C4 ; c'est une ligne double de et !l2 composée
uniquement de points doubles.

Les déplacements des points B et C étant égaux, les déplace- A
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ments des points de la droite AB sont à cause de cela égaux

entre eux. Donc la double-ligne de et S2 est parallèle à la droite

B^j et le déplacement du point A étant égal à zéro, elle passe

par le point ki k2 et est entièrement composée de points

doubles, comme cela résulte directement de son équation.
D'une manière générale, on a

(aJScJoj^— ((^1^)8*;=: o,

d'où il résulte, pour notre cas spécial,

(«1 —ßi)|o2 —o,

qui donne, avec l'équation de l'hodographe,

(ai — ßi)|8 °,

: c'est-à-dire que les déplacements de points de S sont normaux k

a ligne double de S4 et S2.

L'équation d'une ligne droite de Si parallèle au vecteur (oq— jâj
j oeut être écrite
j &

j P Pi + miaL + *lßi + Pi i (aißi) + tt(al — Pi) 3

j ioù nous obtenons, pour les déplacements des points de cette

ligne,
j 0 K + [(a1 —

'jde sorte que les déplacements des points d'une telle droite sont

légaux entre eux.
•j « Lorsque le système S possède un point sans déplacement et

jque les déplacements de deux autres points du système sont
q'gaux, il présente une droite sans déplacement, qui passe par le

premier point et est parallèle au vecteur déterminé par les deux
lautres points. Les déplacements des points d'une droite du

système parallèle à la ligne sans déplacement sont égaux entre eux.
Les déplacements de tous les points de S sont normaux à la droite
jiixe du système et sont, en grandeur, directement proportionnels

aux distances des points à la droite fixe. »

J Si nous remplaçons la ligne double du cas déjà traité par la

|iigne double actuelle des systèmes et S2, nous reconnaissons
Jque le système S peut être transporté de la manière la plus simple
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de la position ïâ à la position par une rotation autour de cette

ligne, mouvement pour lequel sont valables, avec

y{ — 3t) : \/ (X| —

les formules correspondantes du $ 5, l'amplitude de la rotation
doit être déterminée par l'équation

2 Sll'l SP *• -

$ 67. — Si les déplacements des points de - sont infiniment
petits, et si dpi — o, dp., dp.i9 l'équation de l'hodographe du

système des déplacements est

dm — [m -f- //) dp., -f-p [(a — ß) clp., j.

et, par suite, l'équation de l'hodographe du système des vitesses
de I est

v ni -|- //) | vî + p j l'p — 3H,j

le lieu des points sans déplacement, c'est-à-dire sans vitesse, est

donné par

on a encore
[y — j) J dp — o, (y — rp) i v '-z o.

dw — '\Jdpd.' h h cls., : hijï w — (v.2 : é y •

§ n. — Supposons que le déplacement du système invariable 2.

soit tel, que l'on ait seulement o1 o.
Alors les systèmes 2^ et S, possèdent un point double AL A0,

qui est donné.

L'équation de l'hodographe des déplacements des points de 1

s'écrit maintenant

o — nd, + /d.,+p | [>Â — |iof + o,o;!]

ou

__ / m+p ^
o, + (n +p ^

o3

Pour le plus petit déplacement nous obtenons

o0 o,
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les points clu sytème ayant ce déplacement sont situés sur la

droite
?S Pi + "£,• £ [|(Ô2Ô3)] : sj(o2o;î)^

équation que Ton obtient en faisant oi o dans l'équation de la

ligne double, qui a été développée dans le § 3, cette ligne passe

par le point double Ax A2 de et -2 ; c'est aussi 1 équation
de la ligne double qui est composée uniquement de points
doubles.

On a maintenant
0|s:zi01jS O.

L'équation d'une droite quelconque de ï S1 parallèle au vecteur

s qui détermine la position du plan de l'hodographe du

svstème des déplacements peut être écrite

p + »Uai + >UrPi + uz,

il en résulte, pour les déplacements de ses points,

o mLo2 + /qoo ;

ils son égaux entre eux.
« Lorsqu'un point du système invariable S reste en repos dans

le passage de ce système de la position à la position S2, celui-ci
possède toujours une droite en repos, elle passe par le point fixe

donné, est perpendiculaire au plan de l'hodographe du système
des déplacements des points de S, plan qui passe par le pôle de

l'hodographe, avec chaque point de cette ligne coïncide une paire
de points homologues de S1 et 1\,, elle coïncide avec la ligne
double de et -, composée uniquement de points doubles. Les

déplacements des points de S sont normaux a cette ligne, aucun
point de - ne se déplace dans sa direction, les déplacements des

points sont, quand à leurs grandeurs, directement proportionnels

aux distances de points à cette ligne. Les points homologues
de et sont à égale distance de la ligne double. »

Le système - peut donc être transporté de la position S1 à la
position S2 par une rotation autour de la ligne double de et S2.

Les distances en grandeur de deux points quelconques homologues

de et ï, à un point quelconque de la ligne double sont
égales entr'elles puisque l'on a S2. Les projections de
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Si et 22 sur un plan perpendiculaire à leur ligne double forment
deux systèmes plans congruents ayant un point double à l'intersection

du plan et de la ligne double. Chaque plan perpendiculaire
à la ligne double de 24 et 22 coupe ces systèmes en des

systèmes plans 2', et 2's congruents, dont le point double coïncide
avec le point d'intersection de ce plan et de la ligne double ; les

systèmes S/1 et aussi les systèmes 2;2 dans des plans perpendiculaires

à la ligne double sont congruents entr'eux. Le déplacement

d'un point du système 2 Xl est égal au déplacement de

sa projection sur un plan perpendiculaire à la ligne double.
Lorsque 2 passe de la position 2i à la position 20, 2; va de la position

2^ à la position 2/2, ce qui a lieu de la manière la plus
simple par rotation autour du point double de 2^ et 2

2
situé sur

la ligne double. Si ce passage s'exécute en une section plane, il
s'exécute aussi dans toutes sections planes et, par suite, le
système 2 passe de la manière la plus simple de la position 2i a la

position 2., par sa rotation autour de la ligne double de 2, et 2.,.

La grandeur de l'angle de la rotation résulte directement, en
maintenant les relations déjà posées et en considérant les
déplacements des points B et C, de la formule

i
>

\Jo.£ \J

« Le mouvement d'un système invariable 2 qui possède un
point fixe en passant, d'une manière quelconque d'une position 2t
à une autre position 22, est équivalent à une rotation autour de

l'axe passant par ce point et perpendiculaire au plan de l'hodo-
graphe de son système des déplacements, et c'est la manière la

plus simple de réaliser son déplacement. »

S 7 - — Si les déplacements des points du système 2 sont inlini-
ments petits et que l'on ait d^i o, le point À étant ainsi en

repos, l'équation de l'hodographe du système des déplacements
est

dp — m dp.2 -|- ndo.y -f- p | [ae?p3 — ß^p2],

ou encore

dp I m - p j rfps

f 1 edp2dp3
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Les équations cie 1'hoclog rap lie de son système des vitesses

sont donc
v m v2 -f- nv% -\-p I — ßrj,

-= (S|a)ë8g—_(s|_p)(»,!«,) i -
Si'2 v3

„
(£la)(vjv:îj—{(Jß)tv )-T i ?i T P 1 r,.I sv2vs ;

1

On a maintenant dpQ o, c0 o, et

0 + m z—
1 (£j£__

1 "3)
° 11 '

V7 id?ïd?

est l'équation de la ligne double cle SA et Sâ.

Pour le passage cle S de la position SA à la position S2 par une
rotation autour de la ligne double comme axe, le déplacement
angulaire et la vitesse angulaire sont

sjdp2i \Jdp.pt v-> v
d»'^ - —pr~ > W-Tp= h'f

Si U est un point quelconque du système S, AiU1 p, on a,

comme le point A est en repos, a|i/a o, o, ainsi
p|c/p o, et. comme do est en outre perpendiculaire a s, nous

pouvons poser
dp — x i (sp).

de plus le déplacement d'un autre point X du système 3] est,
d'après cela, en posant AaXa A,

Mais on a aussi

p I d'il I dp ^z o.

cle manière que l'on a aussi, en combinant les trois dernières
équations

p I [#11 (4)1 + A141 (£p)1 =0,
ou

#i(p4) + 4A£P) °>

d'où il résulte
dp dAj

M4 ~K4T '
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Kn posant
— ïz + Z ' r + Zn (£ 1 z) — ZIZII — 0 >

il suit
dp 555# I (e/ V, f/$ .t' j ;£/ J,

les déplacements des points U de - sont 5 quant à leurs
grandeurs, directement proportionnels à leurs distances à l'axe £ passant

par le point A4 A.,.

D'après tout ce qui précède, les déplacements des points de Z

forment un système de déplacements qui peut être obtenu par
une rotation autour de cet axe, de sorte que, parce que .r est
infiniment petit, l'amplitude de cette rotation est

7
do ebb

cU\< — .r —
i (£z) i (-zi)

Nous obtenons ainsi les équations valables pour tous les points
du système Z

dp — dw | (eg) — dsv | (e/)

V OZl w I (zp) — W S (syj

Les déplacements infiniment petits de, et dp., des points B et C

sont donnés, on a donc

do0 do« " m-
CUV — ~ ' 'J W

(Ea) | (Eß) '
| (sa) ~ [ (s?)

Nous obtenons maintenant, pour le radius vector y A1 IL
du point U après la rotation

'b — g -{- ebv j (eg)

| 8.— Appliquons-nous maintenant au cas général, savoir celui

où, dans le passage du système Z d'une position donnée Zt à une
autre position donnée Z2, aucun point du système ne demeure en

repos.
L'équation de l'hodographe du système des déplacements des

points de Z s'écrit

o ot + j moK + no? +p | [afi? — + o«op] J

Le déplacement de tout point de Z se compose d'après cela de
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deux parties ou composantes, d'une translation commune a tous

les points du système

égale au déplacement AXA, du point A et du déplacement

0, zu moy. + «03 +p I [»10? — efi* d~

qui est parallèle au plan de l'hodographe, de sorte que le

système des déplacements 3,, est réalisable au moyen d'une rotation.
Les déplacements des éléments d'une droite du système 1

parallèle à s sont égaux entr'eux, il existe dans S une droite
dont les points sont déplacés clans sa propre direction d'un

vecteur

— c
0

V7

elle se conjoint avec la ligne double sans points doubles de

Ï1 et ï2? leur équation est de la forme

0, Pl + ai + [4 + « I (oVL).
~0 a O'i oOtt0"p

Les projections des déplacements des points du système X sur
les droites du faisceau parallèle à s sont égales au déplacement
minimum o0, de sorte que, dans le passage du système S de la

position S1 à la position chaque point du système X est

déplacé dans la direction de £ du vecteur 3(J.

Comme l'on a
% •N I "S t "S

0 o1-for=o/4o1,

le système S peut être conduit de la position S1 à la position
par une translation et une rotation, ou par une rotation et une
translation. Tous les points du système S ont une translation
commune, qui est égale au déplacement total o1 du point A, la
rotation doit avoir lieu autour de l'axe s passant par le point
A Ax, l'équation de cet axe est

0 — p] -j- a-.

Si nous considérons les déplacements de B et C dans ce
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mouvement, nous obtenons pour l'amplitude de la rotation

2 sin -î— „.-./JSEpL i/JSEHiL.

Si un système invariable 2 possède une rotation autour d'un
axe et une translation inclinée sur cet axe, son mouvement est

équivalent à une rotation de la même amplitude autour d'un
autre axe parallèle au premier et à une translation parallèle à cet

axe, translation qui est égale au déplacement total d'un point
quelconque du système dans la direction de cet axe.

Maintenant si o0 est la translation du cas précédent et si nous
choisissons l'axe en question comme axe de rotation, comme les

points du système situés sur cet axe se déplacent seulement du

vecteur o0 dans le passage de a S.,, le nouvel axe coïncide avec
la ligne double de et S2, son équation est donc

ir Lorsqu'un système invariable I passe d'une manière
quelconque d'une position donnée à une autre position donnée S2,

son mouvement est toujours équivalent à un mouvement
hélicoïdal et c'est le mouvement le plus simple possible réalisant le

déplacement donné, d

Si nous partons de la réduction du système des déplacements
des points du système S au point A A1? respectivement pour
la direction t passant par le point À =s AL, les déplacements des

points d'une droite du système - parallèles à £ étant égaux
entr'eux, si A désigne la distance de l'axe du mouvement
hélicoïdal au point A An l'on a

— (îo,) |s + cotang u'|(äo,)

et, par conséquent, l'équation de cet axe

ps p, -f- — J (so,) |s + cotang n-| (eo,) j + us

L'équation du radius vector du plan contenant les points A1?

et C1 est
y — pA i/ßi-
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Pour le point d'intersection de l'axe du mouvement hélicoïdal

et de ce plan, on doit donc avoir

+ yh —-7-1 (e3i) I£ + cotans I (£°i) I
>

ou, en multipliant cette équation par e;?

*',*1*) + 2/(1V) 7- I [°i — (£l °i)£]£ + cotg w I [(e3i) 1£] j >

•*'K£) +2/(M ~I(°i£) + cot§ (£l°i)£] j •

Il en résulte, en multipliant successivement cette relation

par ß, et a,,

X[ait?ÙI (Sl£ßl)+COt§ ~" l,'[(ßll3l) — (e I 01) (s- I ßi)3 I

?/(ßi£ai) Y I (°i£ai) + cotg ^-«'[(ajoi) — (e| o,)(£|«i)] j

formules qui donnent les valeurs des coefficients x et y pour le

point d'intersection de l'axe du mouvement hélicoïdal et du plan
contenant les points An BA et Cr

Par ce moyen on a aussi une équation de cet axe

?5= ?i+ 2(g1ß1£) ï + C0'S i 5i)(£ 1ßj) (ßll Sl)] j ai

+ 'yÈx)(+cotg "7 "'tf£isa (e| «a — (ai 18i)] i + "£-

De deux équations relatives à la ligne double de ,S1 et S., résultant

les relations numériques

Sf )-!(<,!«,)]

~
a («A) l+COt§ T "'[(£ !3))^sJ a') - («1 ] 8J] •

On détermine encore la distance de l'axe du mouvement
hélicoïdal au point A, an moyen de sa première équation.

On doit avoir
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de sorte que I on a aussi

O (o;301£)(a1]s) + (Ô±02£) (ßt I s) -f.# fi (o«0;i;:

d'où nous obtenons

À
1

(o:Jo1£)a1 + (o,oä#i — [(o„Ois) (at | s) + (o^sHfi, | t)]e '

et l'équation de l'axe est de nouveau

ps — p1 -f- X -j- uz.

L'équation de l'hodographe du système des déplacements des

points de S s'écrit

o — oA -j- mo„ -f- P I } ai0? — S fi". + XL S
-

Le déplacement total d'un point quelconque X de S se déduit
de là comme composé de deux parties, dont l'une est égale au

déplacement total d'un autre point quelconque U du système et

dont l'autre est parallèle au plan de l'hodographe.
Si nous posons

o =r ox + mio« -j- noo _J_p >if

on a

0ï 0! + + JixOo -\-pxp.

De cette équation résulte, par l'élimination de

oJ: o + [mx — Mi)o« -f- {nx — n)o» + (p., — p) \x

OU

% ^ fj -f" ®r,x := °J\x G-

On en déduit, en posant x— if a, 3...,

oi o -f- 8?,i o — j /mo« -)- nop -|- p\x J,

0, •' O -{- 0rjü 0 — j [m. l)o« -f- rtQjj + p (J. J

Ô3 0 + 0r,3 •••- o — /MOa + (tt l)o«j + j

0- 0 -j- Oyj, 0 — } (ni — Mijo« + (m ~ //, )L + {p — p,) [J. j,

Les composantes o,v,, des déplacements 3if o2, or..fcJ

c'est-à-dire or /;, .f i, 3... forment, puisqu'elles sont parai-
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11Mes au plan de l'hodographe, dans leur ensemble, un déplacement

résultant d'une rotation, elles sont égales à la différence
i entre le déplacement total or du point du système S et le

déplacement total d'un point du système arbitrairement choisi U,

commun par conséquent à tous les points du système et
perpendiculaire au vecteur déterminant la position du plan de l'hodo-

: graphe.
De là et en se reportant au cours de notre développement, on

déduit directement la proposition :

ce Lorsqu'un système invariable S passe d'une position donnée
d'une manière quelconque à une autre position donnée S2, son
mouvement est équivalent à une translation du système, qui est

égale au déplacement total d'un point quelconque du système ï
et à une rotation de S autour de l'axe passant par ce point du

système et parallèle au vecteur qui détermine la position du plan
de l'hodographe du système des déplacements des points de %.

Comme par la translation S reste parallèle à lui-même, quelque
soit le point dont le déplacement ait été choisi comme déplacement

total, et que l'hoclographe reste là même pour chaque point
de réduction, l'amplitude de la rotation et la direction de l'axe
de rotation restent les mêmes pour toute réduction du système
de déplacement. L'ordre suivant, par lequel sont opérées la translation

et la rotation est indifférent, et elles peuvent être
simultanées

Si nous choisissons le moindre déplacement o0 comme vecteur
de translation du système 011 a

Vr — °o °r..:r — 0 Vjx G,,,

J'axe de rotation coïncide alors avec la ligne double des
systèmes SI et S2, tous les points de S possèdent alors en commun,
quand S passe de S1 à 1J, la moindre translation, et si la rotation
et la translation s'effectuent uniformément, les points du svs-
i'eme S décrivent des arcs d'hélices de même pas autour de la
ligne double comme axe.

Le mouvement d'un système invariable il passant d'une
manière quelconque d'une position S:i à une autre position £ est
équivalent à un mouvement hélicoïdal, qui est son mouvement le
plus simple. »
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Si nous prenons un point quelconque 0 de, Taxe des hélices

comme pôle des coordonnées, Ton a pour le déplacement d'un
point quelconque U du système S, en posant U1 0 + o, Iy

(e | p)e -f- cos <c[(ep) | s] -f- sin w | (sp) -f- o0?

et le déplacement total de ce point du système est

o — — p (i — cos o')[(ps) je] -f- sin o'j (sp) -f- ô0.

Les formules correspondantes, quand on prend un autre axe

quelconque pour faire passer le système S de la position Si à la

position S2 sont les mêmes moyennant le remplacement de o0

par le déplacement de cette droite considéré comme droite du

système S.j

§ S'. — Si les déplacements des points du système S sont
infiniment petits, l'équation de l'hodographe des déplacements des

points du système est

dp zzz dpl-f- mda -|- iid'p -f- p | [ac/ß — ßda],

le système des déplacements infiniment petits se décompose en les

deux systèmes partiels

dpL — dpL

dpr z=z mdi -f- nd$ -f- p | £sed[i — çpdc/~\,

de sorte que l'on a

dp — dpi -|- dp,, ~ dpr~\-dpl.

L'hodographe des vitesses des points du système S a évidemment

l'équation

V — Vf + m (vt- -vj+ n(vs —vJ+y>| ty) — ßfö—^)]i

le système des vitesses se décompose dans les deux systèmes
partiels

vr — mrj! + nf -\-p | [aß' — ßa'].

Le déplacement du système S est équivalent à une translation
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infiniment petite dpL cle ses points et à une rotation infiniment

petite autour de Y axe passant par le point A Ai et ayant pour
équation

?~?l + uz^ z — : \/(dad$)= =z[J(a'ß')] : \/ (a'ß')S

l'angle de la rotation est

^ __
s!{do^—do^'- \/[do^ ~ dpj-

I/rf " T^f—
et la vitesse angulaire

y/v,)- _ vfa—n
\/{zy.y.\J(£?);

Si nous choisissons comme axe de rotation la droite qui coïncide

avec la ligne double de S1 et S0, l'équation de cette dernière
est

ps — px -(- —vyr- J (s^pg^pja-j- (sc?pAc?pâ)ß J -)-?/£,

ou encore

==-) (^3®I3K+ («Vl'yjß
1 111 m

h Je système S se déplace alors parallèlement à lui-même suivant le
| vecteur
I

7 do,do^dûn
•i dp0 ; y - 1

- e

j \/ \d y. d'dyi

i avec la vitesse

\ V0
1 - — £,

vVSV:

• l le même déplacement angulaire et la même vitesse angulaire
que précédemment, son mouvement consiste donc dans un

mouvement hélicoïdal infiniment petit,
V En prenant le pôle des coordonnées sur l'axe des hélices, on a

^pour le point U du système S

^ P + dw \ (sp) -f- dom

dp — dw | (so) -}- dpQ, v —W | (ep) -f- v0>

Enseignement math, 14
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§ 9. — Les cas généraux développés dans les paragraphes 8

et Sf comprennent tous les cas particuliers. Nous allons pourtant

examiner différentes acceptions relatives à des déplacements

g, A et A ou doL, do., et do., déjà traitées comme cas
particuliers.

10. — 11 nous reste d'abord à exprimer les résultats généraux
habituels en coordonnées rectangulaires, il s'agit notamment de

l'équation de l'hodographe du système des déplacements, de

l'axe hélicoïdal, de l'amplitude et de la translation du mouvement

de torsion.
Soit

Aj ~ O -f- p1 z= O .risi A v.s, + Oj A A -S AA A A"A «

O + t., O -f .r,si + r + zfa h d/sL + + c^'%.
A 0 ff- p:i — O -f- .r.jîj + -f- 0., zi dPoi -f- A'A -f- A"A, »

Nous en déduisons

éi — y-A —A L S- r., —ri £0 A A:î --- q -(- b,z, -h b.,0z.

A cLJ f/j' £1-7- d->" dd, 4 "h {dp'" A'' 4 Ah AAA A A'8'1, "

Le radius vector d'un point quelconque U de A ==3= L^, ou

l'équation du système ponctuel ^ est maintenant

m ,r,Z) A- 7- m A Ujjïg 4- -f- /7 7ofij A* A%A AA
A-p j aj).> — a.J)L 'sA£è A- AjA—".-A AA A" AA — "1A qq) J,

ou

— a'i A- 777771 ~t~ 77A S-P AiAct.,bvA A- ^'1 A- 777 77A- 77èA" p ' 77Ai *~~~ ®
1

]E1

A» Li A 777 '7;; A" 77 A A ftLb$"—'/(;>bP: A:;«

Les coordonnées de ce point sont donc

.1' ..'z .r, -t- A" 77 A A p 77A:>, — "J'-i — >ri A 777 771 A 77 A A pc\,
y — i'! A w^èA7A A p /An — «AA== J'i A 777 ^2 A77 A Apc2,
ié^ q A 77777.j A77 A A JAAA — AAÎ — ~i A777a-.'J A 77 A Apc:3 •

On déduit de là les valeurs des coefficients /n, /?, exprimé
en fonction de .r, ?/, s et des quantités données.
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Nous écrivons, pour résoudre ces équations par rapport a

wy n et p5

maiei-\-iibiei-[-pcvel~ (.r

1na2e% nb2e> pc±c2 — (j •— Ti)en leie-ie3) — 1 •

nu(2c?j nbso9 -|-pß:/;.= (S — -*i)03»

l'addition de ces équations donne

+ a2c2 + rt3e:J) + n{biei + b2e2 -f- CC.a) +J/J(cV>i + c2e2 + c3eJ

(•* — af eL -j- (r — 4.1) e-2 + C -J Cu

et nous en déduisons, par la multiplication extérieure, pour my n

et p les relations

<(ï a2 e.> x — •ri» J —Jn z

777 h b2 é e h h
CL c2 C3 1 ci C,y H

h b2 b;] as — «*'i> J" ~ "" 3'] z z2

77 C!L v ,> CA : c. C3 C'A

fh <1 "a 'h (/.y (/A

CL C-, c;; x — y Jj' Z ^
P (L\ r/., 77., a2 "a

h C b2 h

5 Ces équations donnent directement les valeurs de m, 11 et p.
•'nur le développement ultérieur il faudra toujours prendre les

valeurs précédentes pour my 11 et p.
Nous obtenons maintenant pour le déplacement du point U eeve Ui

n système S de coordonnées x, y et z :

— -j- d"Lz.2-{-ä}'"z:,-{- m J aL'e1 -j- a2'z2 -f- r78'e;i J -\-n{bi'ei + b2'z2-{~ b./e2)

+ P M;/ ,r — ipb.J)e2 + {aJ}A — a± C)s8
' — (W — Ni — (b:)a2 — bla2')s2 — {bLa2 — b2aL')s.6

(*W — I7:;'^2/)£I + Cé/C — + {ai'^2 — a*&i!) h ]

nu, en ordonnant par rapport à sx, s3J s.,,

0 =: d'$i -j- d"e2 -|- d"'e.{

—- d/ *4" ' -j-p[ eyèf—eeè/—è2n/-[- b2a2-\-a.pbd—«f/>.,'] t tx

+ d/'+ am/ -j- «C2' + /?[rt3/>j'—«dV—CdV+ ^A'+'C'V—«//;./] J £,
4 + J (h">Jr maJJr nb2-~)rp[aLb.J—Â2èf—èf] je3.

i
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Cette équation donne directement les composantes du déplacement

total d'un point quelconque du système S parallèles aux
axes des coordonnées.

Avec o comme rayon vecteur, d', d" et d!" sont les coordonnées

courantes du plan de l'hodograplie du système des déplacements
des points de 1".

La seconde des équations de l'hodograplie nous donne

\{d' ^'1) si + {4" —d\") e2 + ld'" — dd") s4

X !«% + ^2,£2+<«y) (^1A + è2'ô2+/>,>,) j — O,

l'équation de l'hodograplie est donc, avec les coordonnées d\ d!'

et d'",
I d' — d-d, d'' —- dd y d"' — dd

a L

' ad «>'

è/ bd bd

Pour le déplacement minimum, nous obtenons au moyen de la
première formule, qui donne o0,

•

00 c/0,£1 4- c/0"£2 -(- dd"%

dd dd' d-d

dd dd' dd

dd dd' dd

||72 b.> — rt., br, )S| q* C — b% )£_> —{- Ka| bd — ((dbd)

«H- "•>/J + a32) (V2+ ^'2+ è.o—(AVA «MY

équation dont nous pouvons tirer directement les composantes
de o0 parallèles aux axes de coordonnées, la grandeur de ce

déplacement est
dd di" d "'

\/o0- dd dd' dd"
dd dd' d-d"

î {ai2 + ((22~\~ a?!2) Ja'2 + C'2 + è;>'2) — («i'bL A adbd + ad^hY i 2

L'équation du radius vector de l'axe de rotation, quand on

prend le point A Ax comme point de réduction du système des

déplacements, est

ou

P pi "L « I (3*Bjï)p

(p —Pi) |(o«o?) o,
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d'où l'on a encore

(x — -j- (j — r1)e2 -)- (s XX
X j Ut±bj— «37;2')£i+ (rta'V— r'W)£2 + {aî^-î a^Ji)h | — °>

d'où résultent directement, comme équations de cet axe en
coordonnées habituelles

__ _
y—yi __ ~ —x

a?J)v —aL^3 — rt.2'^1'

j L'équation du radius vector de Taxe pour le mouvement héli-
jeoïdal du système S s'écrit

1

?s h + MMß. a< + iÈX|àl ?i + „,(5.3?).
(o«o?)r (Oc,0;i

Nous posons pour abréger,

11°»-°?) ^ {a'2^3 CLè^-l)zl 4" ai'b;\)z2 (*W X^l'x;
— Ci,£1 -j- C2/£2 H- %,£3'

moyennant quoi, le vecteur fixant la position du plan de l'hodo-
îgraphe est

£ — (cl'£i + c-lh + c:\'h) ' s/CL1-\~C21 + C31 i

m

£ b/£r+ câ's2 +c;/e

Nous en déduisons d'abord

c'1 — c/2 -f- c/2 -f- c3'2.

I d d
jogoj I (oKo?) 7/ 7/'

I 6'/ C.)" C.j"

d'i 'h" &i*
(3ÀJI (Ly.03) 7,' 72" 7.,"

c/ ré c3'

A.,.

Maintenant il résulte de l'équation du radius vector de l'axe
hélicoïdal

,X xl)eL -j- (y (~ — zi)h — (/n£i + «2s2 -f a:iz.A)

; + xf- (^i£j. + ^2£2 + £3 £s) + di/£i + c2'e2 + <Vsa)

i
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d'où
/,,A,

V j

J—Jj '/,At /;,A,
r., c J c., c -

a.S, h., A.,

en multipliant cette relation par {('/('JeJ (''''') il vient

; — fjLX2^ *

^ j c'%—yj — <(., \L — />2A2 J C./C/

=z | c'2(s— sj •—• <7., A, — h.,A., j C'i'c'./,

et, en exprimant encore #25 azi /q, h,, en fonction
de quantités données, on obtient comme équations en
coordonnées habituelles de l'axe du mouvement hélicoïdal de 1"

J — xï) — \(.r2 —xt) — £g(.r;, — .r}) gV,'

— — ri) — \b'î —h) — h'*—ri) c*cî

— | e ~ [z -g) - A, g zL) A2("f{- z{) | g c±

Il reste encore à déterminer l'angle de rotation u\
Pour cela nous possédons l'équation

4 sm-

ce qui donne

l\ Slie
{ai + ut + "'.H0'1 —" ("ici' + aé'-i (L.\c-.\)

'

et cette équation détermine l'amplitude de la rotation.
Paisons maintenant passer le système èi de ^ a ~3 au moyen

d'une rotation autour de l'axe de torsion et de la translation 30.

En choisissant un point de cet axe comme origine des

coordonnées, les axes du nouveau système de coordonnées
étant parallèles à ceux du système primitif, on a, si mat xL sA

+ y v s2 + g £.? est le rayon vecteur d'un point quelconque
U U1 de ï et i x g + y g + 3 le rayon vecteur
du point correspondant dans H après le déplacement de

>1 (s| p)s + cos ii'(sp) | £ + sine | (so) -f o0,
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d'où, en posant.

£ (ci,£1 -f- c.2'e> + c3's3) — eLsL -f- G-V-i + e8£;3,

•r£i + Js2 + — (* — cos (<V'i +"e±ïi + e3-i) (<ù£.i + °2h + esh)

+ C0S»'(^£i4-J§|-H-£3)

4- sin W j {e2zL — e,rl)sl + (esxL — + LiJi — e2xi)E3

~h ch'zi ~f~ ^O"£2 + d0'"£3,

ou

.rsA + js2 +-.£8 I (1 — cos w) (ej2xl 4" e&yi 4- e:ie&) + cos wxL

+ siûH'(eî:1-4-^V £i

4— î (l C0S "') ieLe2XL + e22Jl + Vl) + C0S (l'Jl

4- sin 4- d0" j s2.

4" j (1 — cos iV) !^:>,prri + eN:\Yi + C;j'~ ~l) ~b cos ** -1 4~ sin"'èVi— <%•*"]) -f- ch'" £:v

De cette équation 011 déduit directement les coordonnées du

point U (/, //, y) du système ^ après le déplacement.
Si l'on fait coïncider l'axe de 3 du deuxième système de

coordonnées avec Taxe de torsion, l'on a & — s.,, c\ c± o, c, 1,

dQ' d0,! o, dj" — d0, ce qui entraine

Z£i + J£2+^3 COS(V/^—sin o-rL j J cos n'Vj 4- simr/^ J s >4- -i4"^o 4-

d'où

x — cos wxl — sin wjy y — cos xyL sin «'y, 3 — zi + dQ.

§ il. —• Par ce moyen est résolu le problème du déplacement

d'un système invariable ï? qui passe d'une manière

quelconque d'une position donnée SA dans une autre position donnée

S.}5 en ce qui concerne son mouvement le plus simple et son

système de vitesses.
On peut aussi effectuer la solution de ce problème au moyen

de la multiplication algébrique du facteur de déplacement. La

publication de cette dernière solution est réservée pour une
autre époque.

Peu dinand Kraft (Zurich).
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