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KQUIVALENCE DU MOUVEMENT

DUN SYSTEME INVARIABLE A TROIS DIMENSIONS X
QUI PASSE D'UNE MANIERE QUELCONQUE =
D’UNE POSITION DONNEE =, A UNE AUTRE POSITION DONNEE Y,

§t.— Sotent ABCU, A, B,C, U, et A B,C,U, des pyramides homo-
logues appartenant respectivement aux systemes X, X et X,; ce

sont, en raison de I'invariabilité du systeme X, des pyramides

e el e v,
R R WA A st T 0 B

Cm]gruentes.

Prenons un point fixe O
de I'espace pour origine
des rayons vecteurs des
points des systemes X, ¥
et X,. Soitent donnés dans
les systemes ¥, ¥ et X, les
points respec*tivement ho-
mologues A, B, C; A, B,
C,etA,, B,, C,, avec (AB(,
== 0. Soit U un point arbi-
traire, variable, de X, de
maniere que U, et U,soient
respectivement les points
correspondants de ¥ et

avec la condition

(ABCU) = o.

Si nous posons (fig. 1

Oy AiCi T (31, A1_~:O+P“ B1 :O+927 (:L_O+P:i’

A o
U, =0 + z, I'équation du systeme ponctuel ¥, ou U, sera

p =g+ mau~+ ab, 4+ pl(af,).

1




EQUIVALENCE DU MOU VEMENT D'UN SYSTEME 179

ou encore
o=p, +m{ps—o) + nlos—p) + pIlle2—0) (s —2u).

. , . . » L1
ot m, net p sont des variables numériques, indépendantes l'une
de Dautre.

Si le systeme I passe de la position I, a la position X, les
points A, B, C et U subissent les déplacements totaux

N\ ~ \
AA,=3,BB,=09,, CC,=u0,, U,

N\
— o,

—_

. - . . . . R b . ;
de maniere qu’il existe pour le systeme ponctuel X,, s1 'on pose
U, =01, la relation

U= p—}—B: 91+81+”l(9~2+8->“_91"81) + 1 (Ps—}—as‘“.oj._'al)
2

ol

ma, +n8—4 pl (o0

mo, + nds -+ p | {a,8s — %6, 40,0,

+4

et, sl nous posons

ry el
|
E

(os+3,)— (P08 ) ] = AeBy = oy, [(p5 + 8y) — (o, -+ 6, = 0,0, =B,

l’équation polaire du systeme ponctuel X, est encore v
b= o3k mag by L p | (3,8,

On en déduit pour le déplacement total du point variable U
du systeme X

0 =(V—p) =38, + md,+ nd; + p | [#,05 — [18a - 0u0s].

« Les déplacements totaux de quatre points et plus du systeme X
ne sont pas indépendants. Les déplacements totaux de tous les
points U du systeme X sont déterminés, lorsque ceux de trois
points du systeme non situé en ligne droite sont counnus, le
svsteme ¥ est passé de la position T, a la position ¥,, lorsque

trois points de ¥ non situés en ligne droite, qui coincidant
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auparavant avec les points correspondants de X, coincident avec

les points homologues de X, ».

12

En prenant ¢ comme radius vector, la derniere équation est
celle de l’hodogmphe des déplacements totaux des points du
systeme X.

La multiplication de cette équation par (¢,c,) donne

2
2]

1210 — 319+ 0u84] | (3u82) = (2,05) | (3uS2) — (B,34) | (3u) +H(8ub2)2
=l 0B BalBe— | Bl R Beld ] Blde bl
aylos ezl Slo: ould: Sul0:  Cay Oy
= (1% 22— (2] 8) (810:) — (B,134) (3al3:) + (B,]0:)8u2 48282 — (84 :)2
=1 (@382 (31122 82+ 3282 { — (8l32) § o185 4 Baldu - B[ |
= — (¢«]2y) : 3185+ (Ba—02) | Su + Su] & ;
= — (3]} 4| 3 B | Bu—3el 83413
= — (3132 J o 132t Eyl B !
= o,
par suite
| 2,82 — 50u—+ 0ulz] (CuSs) =0

« L’hodographe des déplacements totaux des points du systeme
Y est un plan parallele aux différences des déplacements totaux
des extrémités des segments a et 3 ».

Déduisant de la premiere équation de cet hodographe les
déplacements totaux de trois autres points coplanaires du sys-
teme et développant avec ces déplacements 1’équation de I'hodo-
graphe, nous obtenons de nouveau le méme hodographe.

« L’hodographe des déplacements totaux des points d’un sys-
teme indéformable X, lorsque celui-ci passe, de toutes les manieres
possibles, d’une position ¥, i une autre position X,, est constam-
ment un plan ».

Nous pouvohs encore écrire

38,95 + 030, + 8,0,) = €,0,9,.

W
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En prenant §,, 8, et ¢, comme vecteurs de ’hodographe, le
plan de cet hodographe passe par les extrémités de ces vec-
teurs.

Si nous transportons les déplacements 6,y O

,» 9, des points

- A, B, C en 'espace de maniére que
leurs origines coincident avec le
méme point O, de I'espace, le plan
déterminé par leurs extrémités D,,
D,, D, (fig. 2) est le plan de 'hodo-
graphe du systeme des déplace-
ments, O, étant le pole de I’hodo-

| graphe, car on a (Dfl—Di) — o,
Lo > * . *
(D, —D,) = q,, et I'équation de ce
PN o / 2 .
- plan est Fig. ».

(3—28,) (385) =o.

Le vecteur

“est, parce que (xG,0,) = o, parallele au plan de I'hodographe
- etestune somme de multiples de 5, et ¢,, de sorte que nous pou-
vons poser

P = a0q ~+y0s = |[2,0s — B9« - Su0:].

. Sice désigne le vecteur déterminant la position du plan de I'ho-
dographe, on a

¢t la multiplication de I'équation précédente par = donne

e(eb) (83 =2 | 3 — Bid).

De cette équation résultent, par les valeurs des coéfficients x
ey,

‘ £,08 Ou| o
: w = — Out
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Mais nous avons

(:2) Lioyse — Ey0a] = (%3] | (095) — (9:8) | (2154
=3ln tlm|—[508  2|5]
~ ) ~N e | o
6y |0z 2|0y 03|06, €0,
= (2] B;) (8a]82) — (2]2))5:2
(5')’/-) [“La=“— rexa'/-_ = (204) [(7189) — (58'4;‘ [ \/(516’1)
=zl Sula | — 2|8 37.1(3&
z|8s  oul oy 18, 0.0l

~N LN .
car o, et o, sont rectangulaires avec ¢, de sorte que nous obtenons
encore

Avec cette valeur de u, I'équation de 'hodographe du systeme
des déplacements peut maintenant s'éerire

) /
3:3‘—}—: m —{-—\]-\vrfs

S [(=15) (Bl 30)— (e 4) 322 13,
g 2040
o =B a2 (Bul ) — (5] 503,21 (3
: 040 ,

-~

formule au moyen de laquelle le déplacement ¢ d'un point quel-
conque du systeme ¥ est représenté comme somme de multiples
de trois déplacements donnés.

Moyennant la valeur de &, 'équation de l'hodographe, cn
forme d’un produit, nous conduit a 'importante relation

ou

« Les projections des déplacements totaux des points du
systeme X sur la direction du vecteur de position du plan de
l'hodographe sont égules entre elles ».

§ 1I'. — Si les déplacements des points du systeme I sont
infiniment petits, si 5, = dp;, alors les équations de 'hodographe
du systeme des déplacements sont

do=ds, +mda—~+nds 4 p|iadi—da,

car {dad(ﬁ) peut 1ci étre négligé vis-a-vis des autres quantilés
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comme infiniment petit d’ordre supérieur et st les déplacements

qout infiniment petits en posant o, = a, 3, =3, o, = do,
9,= 3+ dpB; de plus |
5,: ; P . o
dp:dpi—-}—:m—{—?d—d—o-[ |8) (deldp) —(e]o )lf};d“
+5 0+ —h [l 9) (| dB) — (2| B)de2] | 4
( edad’ )

4

\

(do—dp))|e=o0, dple=dp e, c=[|(dad?)]: (dadp)2.
Nous obtenons ainsi, pour vitesses des points du systeme X,

E:F—}—m(vr—-v>—}—/1 (U —*vl/—{—p[[ ( *) ?J(U-_; _ﬂ5
(3—5‘1) |e = o, g L(v,_) :/ \v ——'v \/[ By '“1/ \v:;—vl)]%a

et la formule donnant la vitesse v, déduite de I’équation encore
utilisée des déplacements totaux infiniment petits, peut aussi
olre écrite directement,
~ les dernieres équations, en y prenant'—u comme radius vector,
sont celles de I'hodographe des vitesses des points du systeme X
¢’est un plan parallele au plan de '’hodographe des déplacements.
§ 2. — Parmiles déplacements totaux des points du systeme X
‘il en existe un qui est le plus petit 1l est égal & la perpendicu-
laire abaissée du poéle de 'hodographe, égal a la projection du
déplacement total d’'an point quelconque du systeme X sur la
direction du vecteur ¢,
Pour ce déplacement, que nous désignons par o, existe la
condition
Cg = ¢, + m3,—+ndz + p | |o080 — 2,64 4 6,85
x| (8408 =ye=(3, |¢)e.

de sorte que

~ —_—
Op —

‘n multipliant I'équation de condition par ¢, on oblient

(e8,) + m(e8s) 4 n(eds) + pe| (o3

Jl’“} — 0,
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si nous multiplions cette équation d’abord par ¢,, ensuite par ¢,,
il vient

(S:20) - m(e0ady) + p(Oge) | [2,0: — B3] = o,
(3a23)) -+ 1 (3u28) + p(3ag) |[@,0: — B184] =0,
d’ou
- €040, 4 (e02) 1 [0 —— B,04]
T aes €5403 :
B — 25,9, . (e34) | [2,5: — Bi84]
SR R & SBud

Si nous substituons ces valeurs de m ct de 2 dans I'équation
(qui donne ¢ en fonction des déplacements donnés, nous obtenons

€0,0 £8,0
NN 391 1¥2 A
00__.01 — =~ %« + = Gz,
0403 €0405
ou
N I \ D AN /N N AN o X 4 /
0= —=m = ; (€9383)0,~} (€0,0,)0, 4 (€6,9,)0; $
EOU‘OIS 3 P2

équation par luquelle le déplacement minimum est déterminé en
fonction des trois déplacements donnés.

o’. — S1 les déplacements totaux des points du systeme X

jv7e

sont infiniment petits, le déplacement minimum est évidem-
ment

iy = - dpldpzdpa e,
V (dadp)?
ou encore
I ( , J
0= gzap | Cdeadpa)do+ (dpy doyde, + (edpy doo)dpy
de sorte que la plus petite vitesse est
- 0,03, ]
o = /l/‘— N =\ o
V vy —v )0, — Ul) J'
ou
— - 1 T = ey I
Yo — I :(51’2 vy)v; + (evy0,) 0, + (501”2>v3$ '
5(”’2_01) (’03——’01) . /
§ 3. — II s’agit maintenant de délerminer a quels points du

systeme correspond le déplacement o,.
L’équation des radii vectores des points auxquels appartient
le moindre déplacement s’obtiendra en substituant dans I'équa-
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;;,_u(m des radii vectores des points du sy%tcme ponctuel ¥ les
\ah,uls de m et n trouvées dans le § 2, ce qui donne, en dési-

ggmnt par g, le radius vector de ce heu,

+ 4 , ;[(30“ | (2,55 p1 oty [(008) | (%02 — £184)]6; + (€0u02) | (28)) ;

Ce lieu est donc une ligne droite, qui est parallele au vecteur

)

b= [(55.3) l (@02 — texav-”“r + [(Ca8) | (2,03 — B,64) 1B, -+ (580-8{5) l (“1?’1) .

~ Si a désigne I'angle que cette droite fait avec la direction du
\ecteur de position ¢ du plan de 'hodographe, on a

/

¢ oy — I 2 . ~ s
tang a = ‘/W")— CEly).

Quand nous usons d’abréviations, nous pouvons écrire
o = as + b, ol ()
d’olt nous obtenons
() = aleay) 4 b(ef)) + ez (2,5))].
On a donc aussi

| (o) = a[(8u83) |, ] + b[(Ba0g) [ B1] + €[(Guds) (2,211,
[ (&) = a[(8a l%) 39 — (0] a;)\a]:l— B3B3 — (341 8)84]

| (ev) = [a(dul o) + b (8u|By) (S *‘1:81)]8‘3
— [a(0s] o)) 4+ 6(3g1 1) + ¢(Bex,£))]0u,
ou en abrégé
| (ev) = rds + sc,.

Mais nous avons

a— (’1“1)8‘5

a2y
8( 43 aaia(/ 8{3lar/.
' ~N ~
= e, Su]x, oa|ay |,
[e|By CalP,  celfy
e(Bu,By) = 32l 130) (1 £) = (e12) Bu] 35) (3.1 £
N ~N
. — (51\51) (ail Gu) (Cu | Gg) — (e %) () 102)842;
c{os2, [£,) = (e040p) (Cpx, B))
Y ~N N N N
el O.[0s Oylce
= |ela, Cula;, Osfol,
PelBy ©ulP, oslp,!
~N ~N
C(ODIL@J — (51181 (o, l cp) (aff-la'i) (s|a1)\f)118(,_)83_-’
— (1B (2] 8)0e2— (e]oy) (B, 105 (3| B2)
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5 | | .
et ¢ est pourquoti

r=1 {e|a)0:2 — (=8, (3.19) | (] %) + e{B)02 — (212,) (8a]89) § (B,) 54
+ &8, /lli aw:‘a'/.—)._*‘ SEN 1\31[8,,/ (8,]3:) — (2] By (2] a'/) \avlaﬁ)
S PN EACHS
r=y (2l ey e s ’(Sigﬁ’i.&ﬂa#}auf 's =+ (51161)8’/-%(‘;(3118’#_0‘1]8.‘3}
—2 (2|3 (7-118’1-) (Bulty),
r= el a2 ) Bl sy ey : I ERICAEAICALAR
r=fz 51\8135 M a/+72|a a'/la’ : — 2{3 (31)(11 1’3/)(5/’3%
P — BRG] S [ — ) (8] — 2(21 By (2,194, (94| 22
e I COAL R ALPE SERLY \\
! —*(3}51\‘(8'/ a.) : 71‘}“’/3”8/:
=0
de plus nous obtenons
=) sl (1B B |l | L2 — Eln G | (s
s 18) B BB (e o (6 B2 — (o] B | 3032
USRI AR

le second membre de cette équation peut ¢tre traité exactement
de la méme maniere que le second membre de l"(?([uation en o7,
ce qui donne

Nous obtenons ainsi

¢ est-a-dire que le lieu des points dont le déplacement est o est
une ligne droite parallele a ce déplac(}ment ainsi quhzzu vecteur

déterminant la position du plan de 1’hodog1‘aphe.

§]

Pour p ==o0, le radius vector de cette droite est égal a

I\
/

=
£G

O

NN
(26,0, (25,

N
S 0L 2,47

P \/
ZLTT al\»‘

.43

O

de sorte que l'équation du radius vector du licu en question
s"éerit dans la forme la plus simple

\ N s NNy 7

P T ¢ = o e
o= T , (2050, )n 4 (205, 5
<940

£l
3
v

-O

Dans le changement de position du systeme X cette ligne,

i
&

;

A
£
7
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envisagée comme appartenant a ce systeme, se déplace sur elle-
méme, chacun de ses points subissant le déplacement ¢,. Deux
droites homologues de ¥, et 3, coincident avee cette droite consi-
dérée comme ligne de l'espace absolu, clles constituent ainsi
une ligne double dg , ¢t X, sans points doublcs et lorsque o,=o
une hgne de points doubles.

Lorsque le systeme I passe de la position ¥ a la position
Y,, I, et 3, ont toujours une ligne double, qui n’a généralement
pas de points doubles, les points de I situés sur cette droite
subissent le plus petit déplacement qui est possible dans le chan-
gement de. position de I ».

[y

§ 3. — Si les déplacements des points de ¥ sont infiniment
setits, Péquation du lien des points de déplacement minimum
st ¢evidemment

[

I

. ‘ . w5 4
0y =0 ——— " zdodz ) (zdodo))s ¢ - us
) \’J+ 3({1(]5 (\ S Pty ) _l_\ ] ‘.’)n >+
ou encore
! R e PV R
ps =0+ === TR EE e CE G S
S\y—Uly \U;“*vi) 4
§ 4. — Vraisemblablement, les déplacements des points des

Iroites du systeme X qui sont paralleles a la ligne double de ¥,
et X,, présentent des propriétés particulieres,
L’équation d'une telle droite, parallele a ¢, s'¢erit

Ay e - ! L { -
o= mx 3y s,

\

. - C :
mais on as==(9,6,), G, et o, sont des quantités invariables, donc
oz = o, de sorte que

:81+71114,—§—11 o,

comme le second membre de cette ¢quation est une quantitc
constante, les déplacements des points de cette droite sont égaux
entre eux.

Les déplacements des points d'une droite du svsteme Y,
parallele au vecteur déterminant la position du plan de 1’hodo-
graphe, de son systeme des déplacements (parallele i la ligne
double de e I, ¢t X,) sont égaux entre eux et en géndral coalement
inclinés sur cette droite ».
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Cherchons, s'il existe des droites du systeme ¥ qui solent paral-
leles au vecteur déterminant la position du plan de 'hodographe
el dont les points soient déplacés parallelement a ce vecteur.

I’équation d'une telle droite est

_ i 2 -
o= p,+ ma 4 nB - us,

le déplacement de ses points doit ¢tre donné par 'équation
0==0, + moa - nos = xc
d’ou résulte

048, -+ m(edsd,) —o, €040, - 1(20,03) = 0.

Ces équations donnent pourm et n des valeurs réelles, quin’ont
qu'une seule signification, en les portant dans les équations
donnant s et 2, nous obtenons

Il n'y a done qu'une telle droite, les déplacements de ses
points sont égaux au déplacement minimum possible, et cette
droite coincide avec la ligne double de I, et X,.

Nous sommes ainsi parvenus indirectement a I’équation de la
ligne double de X, et X, sans nous étre engagés dans un calcul

8
plus long que pour la détermination de sa direction.

« Les points d’une droite ;—Jj de ¥ parallele a la ligne double n.°
de I, et X, subissent le méme déplacement, la projection de ce
déplacement sur la dircction de la droite est égale au déplacement
G,y lorsque X passe de la position ¥, a la position I,. Si nous
déterminons dans le systeme X des sections planes, normales a
i, ¢'est-i-dire & ¢, ces sections planes constituent des systemes
partiels congruents de X, les points correspondants de ces sections
c¢'est-a-dire les poihts situés sur la méme droitep, ont le méme
déplacement; il en résulte que les déplacements de ses sections
planes, lorsque X passe de la position X, & la position I,, sont
égaux entre eux »,

B
4
|
|
i
i
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§ 4'. — Lorsque les déplacements des points de T sont infini-

£ ment petits, le déplacement des points d’une droite :j est

b . do = do,+mda + ndp,
.+ leur vitesse

v= v, 4-m (v, — 51) -+ l':— v—l\ )

et 'équation de la droite du systeme I ayant le déplacement dz,
est la méme quiau § 3.
§ 5. — Nous allons maintenant nous appliquer a la recherche
des mouvements simples, par lesquels le systéme invariable X
- peut parvenir d’une position dounée T, a une autre position I, et
"4 la détermination la plus simple de ces mouvements. Pour cela
~ partons des cas spéciaux, que nous résoudrons directement. Le
~cas o l’on a ¢, =0,=0¢,==0, ne donne lieu a aucune considéra-
" tion, puisque 'on a alors ¢ = o, le systéme Y n’a alors aucun dépla-
cement.
Soit premierement ¢, ==¢,==o0, de sorte que les points A et B
de ¥ ne soient pas déplacés.
Alors A=A, et B, =B, sont des points doubles de ¥, et X, la
droite A B, =A,B, est une ligne double de I et X, n’avant que
les points doubles.

L’equation de l’hodographe des déplacements des points de X
cst maintenant

8 =nc,~ pl(=:2,).

Pour d’autres points qui n’auraient pas de déplacements on a
a condition

Q2
~
~
O

. s . " ~ ’ ~ P .
douil résulte, o, et] («c,) étant des vecteurs non paralleles,

n=—o, PF=u,

valeurs qui, substituées dans I'équation dusysteme ponctuel I,
donnent

o= oy muy,

(qui est I'équation de la ligne double de I, et X, laquelle aurait pu
¢tre éerite directement en raisonde A, = A et B, =B,. Il n’existe
pas d’autres points sans déplacement.

Enseignement math.
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-Comme l'on a, dans le cas général
a8y B, ¢, = o,
on a maintenant

2,18, = o,

d’ou on déduit, en multipliant par «, I'équation de I'hodographe,

de sorte que les déplaccmcnts des points de X sont 1'cctungulaires
avec la 1ignc double.
Pour le déplaccment minimum on 2

= (a1 : V2.2,

O

Q]

, = (9,]g)e=o,
mais, s1 'on a 6=o0,0n an=p=o0 et il en résulte que le lieu
des points sans déplacement est la droite AB=A B, du sys-
tcme X.

1’équation d'une droite du systeme, dans X, parallele a o
s’¢ertt |

o=+t 68, ey,

les déplacements des points de cette ligne sont

60— (Ci -+ Cz>83 :

ils sont égaux entre cux.

« S'1l existe deux points du-systeme ¥ sans déplacement, la
droite qui réunit ces points est sans déplacement. Les déplace-
monts de tous les points du systéme sont normaux a cette 1igne
et directement proportionnels aux distances des points a la droite
sans déplacement. Les déplacements des points qui appartiennent
a une droite parallele an licu des points sans déplacement sont

égaux entre eux ».

-Comme A B = AB, est une ligne double de X, et X, n'ayaul
(que des‘points doubles, les points homologues de X et X, sont
¢galement éloignés de chaque élément de cette ligne. 1l en
vésulte, en tenant compte de la proposition précédente, que le
systeme passe de la position ¥, a la position X, de la manicre la
plus simple par une rotation autour de la double ligne, l'ampli-
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lude de la rotation étant égale a l’angle de deux plans homologues:

de ¥, et I, se coupant suar la double ligne, ou encore égale a
'angle des perpendlcuhlres abaissées dee points C, et C, sur la
double ligne, ot elles se rencontrent d’ailleurs.

Pour le déplacement du point C, nous obtenons ainsi

8,= (| B)e -+ cos w(eB,) |e 4 sin w]|(eB,),
!

0, —=08,—pB,= (1—cos w8, 1e)e —B,] 4 sin w| (By).

S1 nous posons
Gi=bz+y,, b=

il vient

([ =elyl=o0, yR=y2="h3

75 =cos wy +sinw| (7],

0, = (cosw —1)7% + sinw | (g7

b sm—— (€ S— !‘/od

Nous obtenons maintenant pour un point quelconque U du
steme I, sivy, et v, désignent les distances normales des points
et U, a l'axe de rotation,

—cos wy, -+ sinw| (ey,),
—v,— ¥, = (cos w— 1)y, +sinw]| (ey),

Lo =

oz x.;

 ileurs, par lesquelles le mouvement du systeme I est pleine-
1ent déterminé. Chaque point de X déerit, dans le passage de la
osition X, 4 la position X, par rotation autour de la ligne double
P8 .. Y et X, un arc de cercle dans un plan perpendiculaire a 1'axe
‘v rotation, dont le centre est situé sur cet axe,.

« Lorsqu'un systeme invariable ¥ posséde deux points sans
“placement, 1l a également une droite sans déplacement, savoir
e qui réunit les deux points ; le sy steme X parvient de la posi-
on Y, a ‘la position ¥, de la maniere la plus simple par une
station autour de cette ligne comme axe, en prenant I'amplitude
i la rotation égale a I'angle de deux plans homologues quel-

unques de ¥ et X
§o'. — Si les deplacements des points de ¥ sont infiniment.
clits, Uéquation de 'hodographe des déplacements des points

§ 0 systeme X est, en conséquence du § 5, si d3, =0, do,=o,
(1

do = ndo;+ p | (adg,),
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et, par suite, les vitesses de ses points sont
V= nv,; +pl(avy) :

le lieu des points sans déplacement, c’est-a-dire sans vitesse, est
denné par
o= 0,+ ma.

L’angle de la rotation autour de la ligne double de X, et X, est

dw — (‘/C@' k;) — (ds3 : k;%

et la vitesse angulaire du systeme X est alors

w= (1)3 R,

Pour un point quelconque U du systeme X nous avons

Ya= Y1 T dwl (e1,),

do=dw|(zy,), v=1wl(ey,).

§ 6. — Nous considérons maintenant le cas ot I'on a o, = o,

~ ~
G, =t Gy,

Alors le point A de X est sans déplacement, A, = A, est un

point double de 3, et X,, et les déplacements des points B et C

1
sont égaux entre eux.

équation de l’hodographe des déplacements des points'de ¥
s’éerit

o = (m +njS, ~+pl[{e,— fy)5,]-

Pour le lieu des autres points pour lesquels on pouvait avoir
n =0, on doit avoir
M R0, PG,

d’ou il résulte, en vertu de 'équation du systeme ponctuel T=X ,

_ ( o
o= p1tmlay—f).

/

Donc le lieu *des points sans déplacement est une droite
passant par le point A, = A, ==A et parallele a la droite joignant

Jes points B, et G, ; ¢’est une ligne double de X et X, composée
uniquement de points doubles,
Les déplacements des points B et C étant égaux, les déplace-
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ments des points de la droite AB sont a cause de cela égaux
| entre eux. Donc la double-ligne de X et 3, est parallele a la dr01te
B B.C, et le déplacement du point A etﬂnt égal a zéro, elle passe

| par le pomt A _—A et est entierement composee de pomts
§ doubles, comme cela résulte directement de son équation,

D’une maniere générale, on a

(01,1332 — (B33 = o

d’ou il résulte, pour notre cas spécial,
(2, — B8 =0,

¢ qui donne, avec I’équation de I’hodographe
] O b

L’équation d’une ligne droite de X, parallele au vecteur (“1— 51)
. neut étre écrite

p=p +ma + n, B4 pyl(fy) + w(e, — N

Aol nous obtenons, pour les déplacements des points de cette

;c(f
.igne,

= (m, -+n,)6, + p, 1 [(«, B1)0,],

“.de sorte que les déplacements des points d’une telle droite sont
¢gaux entre eux. '
| « Lorsque le systeme X possede un point sans déplacement et
?»jn'ue les déplacements de deux autres points du systeme sont
~.“gaux, il présente une droite sans déplacement, qui passe par le
.premier point et est paralléle au vecteur déterminé par les deux
‘é;‘:.utres points. Les déplacements des points d’une droite du sys-
“ttme parallele a la ligne sans déplacement sont égaux entre eux.
Les déplacements de tous les points de X sont normaux a la droite

Lo

ixe du systeme et sont, en grandeur directement proportion-

Jucls aux distances des points a la droite fixe. »

g Si nous remplacons la ligne double du cas déja traité par la

ligne double actuelle des systéemes ¥, et X,, nous reconnaissons
(fue le systeme X peut étre transporté de la maniere la plus 81mple
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de la position ¥, a la position Y, par une rotation autour de cette
1 2 ,

ligne, mouvement pour lequel sont valables, avee

o Gy e/ 7a w2
v — ,\11—‘&)1) * \/ [\/l—J‘

-

les formules correspondantes du § 3, Pamplitude de la rotation
doit étre déterminée par I’équation

L 1 — 4 N9
28I — W = \\/0_,_ /q
§ 6/. — Si les déplacements des points de X sont infiniment
4 3 { ~ S ~ — ~ Ly 7« Y ’ o
petits, et si dz, = o, dz, = ds,, I'équation de I'hodographe du

systeme des déplacements est

do=m + n)ydos, 4+ p|lz—3)ds,! .

[V

et, par suite, I'équation de 'hodographe du systeme des vitesses
de T est

2*-711—}—11]0 —j—p{hd "‘\

le lieu des points sans déplacement, ¢’est-a-dire sans vitesse. est
donné par

p=p A m{r—3)
on a encore
! ) ~— ‘A G\ gy
‘\1——"1/\161‘4_0, (% ‘JHU—O

arrraa / / "
dy — [\/d?z;): /21/‘ e t\(ls.zi hnl), w = (’02 i /th).

§ 7. — Supposons que le déplacement du systeme invariable X
soit tel, que 'on ait seulement 5, = o.

Alors les systemes X, et X, possedenl un point double A = A,
qui est donné.

L’équation de 'hodographe des déplacements des points de X

s’écrit maintenant

o= mo, -+ us, +p oo, — 518, 4 0.0,
ou
/ ‘N P\ r N R N ’ (A\ \ ~ oo
N \ 45) “7103_ 310:] ) \ (20,1 [ [2y93 — 3,0,] 4 A
0= - m ) o n - 0,
’ ’\ +[ 6':_18:: ) 2 +( +[7 Sa;az ! E

Pour le plus petit déplacement nous obtenons

N
0,=20,

[ SR
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les points du syteme ayant ce déplacement sont situés sur la

droite

c=o, +us, ==[]0.3)]: V50,2,

O

équation que 'on obtient en faisant 51 — o dans I'équation de la
ligne double, qui a é1é développée dans le § 3, cette ligne passe
par le point double A, = A, de ¥, et ¥, ; c’est auss I'équation
de la ligne double qui est composée uniquement de points

doubles.
On a maintenant

!Q’équution d’une droite quelconque de ¥ =X parallele au vee-
teur ¢ qui détermine la position du plan de l’hodographe du
svsteme des déplacements peut étre écrite

— " 0 -
o =p,+ mya + mipy A uE,

il en résulte, pour les déplacements de ses points,
c=m0, -+ n;o,;

ils son égaux entre cux,

« Lorsqu'un point du systeme invariable X reste en repos dans
le passage de ce systeme de la position X, a la position 3,, eelui-c1
posséde toujours une droite en repos, elle passe par le point fixe
donné, est perpendiculaire au plan de 'hodographe du systeme
des déplacements des points de X, plan qui passe par le pole de
'hodographe, avee chaque point de cette ligne coincide une paire

de points homologues de X, et X,, elle coincide avec la ligne

1
doable de £ et ¥, composée uniquement de points doubles. Les
déplacements des points de ¥ sont normaux a cette ligne, aucun
point de X ne se déplace dans sa direction, les déplacements des
points sont, quand a leurs grandeurs, directement proportion-
nels aux distances de points a cette ligne. Les points homologues
de ¥ et ¥, sont & égale distance de la ligne double. »

Le systeme X peut donc étre transporté de la position ¥, a la
position X, par une rotation autour de la ligne double de I, et 3,.

Les distances en grandeur de deux points quelconques homo-

g
logues de ¥, et ¥, a un point quelconque de la ligne double sont

¢gales entrelles puisque l'on a X« I, Les projections de
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I, et I, sur un plan perpendiculaire a leur ligne double forment

deux systemes plans congruents ayant un point double a I'inter-
section du plan et de la ligne double. Chaque plan perpendicu-
laire a la ligne double de I, et X, coupe ces systemes en des
systemes plans X', et ¥/, congruents, dont le point double coincide
avec le point d'intersection de ce plan et de la ligne double ; les
systemes X', et aussi les systemes Y, dans des plans perpendicu-
laires a la ligne double sont congruents entr’eux. Le déplace-
ment d’un point du systeme X =X, est égal au déplacement de
sa projection sur un plan perpendiculaire a la ligne double.
Lorsque X passe de la position X, a la position X,, ¥ va de la posi-
tion X' & la position Y,, ce qui a lieu de la maniere la plus

stmple par rotation autour du point double de ¥/ et X', situé sur

)
la ligne double. Si ce passage s’exécute en une section plane, il
s’exécute aussi dans toutes sections planes et, par suite, le sys-
teme X passc de la maniere la plus simple de la position X, a la
position X, par sa rotation autour de la ligne double de X, et X,.

La grandeur de 'angle de la rotation résulte directement, en
maintenant les relations déja posées et en considérant les dépla-
cements des points B et C, de la formule

. S
5 NG
I \/02: . \/035

9 8In — W — T
2
1

2 /zi

« Le mouvement d’un systeme invariable ¥ qui possede un
point fixe en passant, d’'une maniere quelconque d’une position X,
d une autre position Y,, est équivalent a une rotation autour de
I’axe passant par ce point et perpendiculaire au plan de 1'hodo-
graphe de son systeme des déplacements, et c¢’est la maniere la
plus simple de réaliser son déplacement. »

§ 7' — Si les déplacements des points du systeme X sont infini-
ments petits et que l'on ait dp, = o, le point A étant ainsi en

repos, 'équation de I'’hodographe du systeme des déplacements

est
do=mdp, - ndo, 4 p |[adp; — dp,],

ou encore
o Eladp,i—(elp)(doy|doy) G
=g edp ,dy, j e
(o (ela)(dp,]dp,) — (5] B)dp )
+( S edp,dp, ) s
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Les équations de 1’hodographe de son systeme des vitesses

i
a4

| sont done

v = /nv.g—}—lll—)-g—{-—puc'.t;;—— (w:],

— (] 2) 02— (e] B) (0] v5) |
L__\(I)l——P i §

, [— 11— -2 \
< 1o (valvy) — (el Bey /-
-+ 1t +p ) e ( vy
s €V V3 “
On a maintenant dz, = 0, v,= o0, et
do,do. | (v, v,
Po=p tus, == | B8l "*), = \———_2_'”,, ;
V (doydpy)? \/\'02?)3>‘—
est 'équation de la ligne double de I, et I,.

Pour le passage de T de la position I, ala position I, par une

volation autour de la ligne double comme axe, le déplacement
angulaire et la vitesse angulaire sont

dw — \/d‘ozf’_ = \/do‘%

L w — —_—
/ 14 ? / s
hi /11 /z,1 hl

Si U est un point quelconque du systeme I, A, U =

0, on a,

comme le point A est en repos, aldd = o0, P|d3 = o, ainsi

s|ds = o, et, comme do est en outre perpendiculaire & &, nous
pouvons poser

de plus le déplacement d'un autre point X du systeme

\1
d’apres cela, en posant A X, =

~ est,

!
Y

dy =z, ().
Mais on a aussi

pldb+4dldo=o,

de maniére que l'on a aussi, en combinant les trois dernicres
¢quations

o102, 1 (4)] -+ ¥ x| ep)] =0,

x(osd) + x(dep) = o,
d’ou 1l résulte

dp dd

EEE .

[ (=0) | ()

;1’1::(,‘:
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I n posant

=i v=yE e Bl =i =o,
1l suit
do=wxlz7), db=ux|z7),

les déplacements des points U de ¥ sont, quant a leurs gran-
deurs, directement proportionnels a leurs distances a I'axe = pas-
sant par le point A, = A,.

D’apres tout ce qui précede, les déplacements des points de X
forment un systeme de déplacements qui peut ¢tre obtenu par

une rotation autour de cet axe, de sorte que, parce que 2 est infi-
niment petit, amplitude de cette rotation est

dn
dy — ¢ —

‘ d
a5p
N

Nous obtenons ainsi les équations valables pour tous les p()ints
du svsteme X

Les déplacements infiniment petits dz, et da, des points B et C
sont donnés, on a done

! do, do, - 7:; T
asy —— — ) — i )

| (52) | (=8) | (z2) | (=2)

Nous obtenons maintenant, pour le radius vector ¢ = A\ U,
du point U apres la rotation
'%J:p+d("l<€‘),

§ 8.— Appliquons-nous maintenant au cas général, savoir celui
ou, dans le passage du systeme X d'une position donnée X, a unc
autre position donnée X,, a
repos.

ucun I')Oiﬂt du systéme ne demeure cn

L’équation de l’hodogrnphe du systeme des déplacements des
points de ¥ s’écrit

(o)

=0, + 2 ms, -+ nos +p | (o385 — B84 4 0u0¢] }

Le déplacement de tout point de ¥ se compose d’aprés cela de
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deux parties ou composantes, d’unc translation communc a tous
les points du systeme

o

N —
8 =90

ég;ale au déplacement AA, du point A et du déplacement
8,== M8y 1oy +p| [9,65 — 5,00 -+ Cuby],

(qui est parallele au plan de ’hodographe, de sorte que le sys-
teme des déplacements ¢, est réalisable au moyen d’une rotation.

Les déplacements des éléments d’une droite du systeme X
parallele a = sont égaux entr’eux, il existe dans I une droite
dont les points sont déplacés dans sa propre direction d’un

vecteur

elle se conjoint avec la ligne double sans points doubles de
¥, et I, leur équation est de la forme

(1))
O/

o

.

. £9,0,

= oy '"_}i‘\%_}‘ul(av-a?)-
)

|

O

s

-O
o

wm

O

“

o/
e
(O]
o2
Q

[.es projections des déplacements des points du systeme X sur
les droites du faisceau parallele a ¢ sont égales au déplacement
minimum 6,, de sorte que, dans le passage du systeme X de la
position ¥, a la position X, chaque point du systeme X est
déplacé dans la direction de ¢ du vecteur o,.

Comme l'on a

le systeme X peut étre conduit de la position ¥, a la position Y,
par une translation et une rotation, ou par une rotation et une
translation. Tous les points du systeme X ont une translation
commune, qui est égale au déplacement total 3, du point A, la

rotation doit avoir lieu autour de 'axe

(O}

passant par le point
A= A, 'équation de cet axe est

0= o0y tuc.

S1 nous considérons les déplacements de B et C dans ce
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mouvement. nous obtenons pour amplitude de la rotation
b

.1 (0, —6))? (53 — 9y
2 SIn — 4y — __—%n-—Tj———— p— —
A EEy - (e20)?

‘e . . " 5 \ . 3
Si un systeme 1nvariable X possede une rotation autour d'un

v

[Q]

axe et une translation inclinée sur cet axe, son mouvement est
équivalent a une rotation de la méme amplitude autour d'un
autre axe parallele au premier et a une translation parallele a cet
axe, translation qui est égale au déplacement total d’un point
quelconque du systeme dans la direction de cet axe.

Maintenant si o, est la translation du cas précédent et si nous
choisissons I'axe en question comme axe de rotation, comme les
points du systeme situés sur cet axe se déplacent seulement du
vecteur o, dans le passage de £, & ¥,, le nouvel axe coincide avec
la ligne double de X et X,, son équation est donc

3.3.2 3.3e

D00, 8 40,8

o 371 172 2 =,

r/,y—-Pl+‘f\—\— a1+ = .J1+U:"
20403 SR

« Lorsqu'un systeme invariable ¥ passe d’une maniere quel-
conque d'une position donnée £, a une autre position donnée X,
son mouvement est toujours équivalent a un mouvement héli-
coidal et c’est le mouvement le plus simple possible réalisant le
déplacement donné. »

Si nous partons de la réduction du systeme des déplacements
des points du systeme X au point A = A, respectivement pour
la direction zpassant par le point A = A, les déplacements des
points d’une droite du systeme X paralleles a ¢ étant égaux
entr'eux, si A désigne la distance de l'axe du mouvement héli-
coidal au point A == A, 'on a

ol == (s5,) | ¢ -+ cotang —% wl(z3))

et. par conséquent, 1'équation de cet axe
bl ’

s =01 —

) I
9

(28,) |e -+ cotang —;— w| (581)){ ~+ uz.

’équation du radius vector du plan contenant les points A , B,
et G, est
7. =0 taa Yo




EQUIVALENCE DU MOUVEMENT D'UN SYSTEME 201

i Pour le point d’intersection de I'axe du mouvement hélicoidal

" et de ce plan, on doit donc avoir

3

R

2, +yB = —2—« \( (€0,)]& 4 cotang —i—- w| (e0y)

ou, en multipliant cette équation par ¢,

vin) + Y6 = o § 1By — (E13)<le+ cotg —— wile) | {
1) +y(0) = | Bre) + ootg 2 w][,— E13) | .

Il en résulte, en multipliant successivement cette relation

e .
- par B, et a,,

3 (3, 58)+00Lg"““’[«1l°) (elo) (18]

-
x\“ﬁx’i) — ’

b

P
e S -~

wl.—. ul»—c

X
y(Bien) = — 5 (8,52,) + cotg — w{a18) — (2] 8,)(e] )] |
~{ormules qui donnent les valeurs des coefficients x et y pour le
- point d’intersection de I'axe du mouvement hélicoidal et du plan
- contenant les points A, B, et C .
Par ce moyen on a aussi une équation de cet axe

80]; x

) A I - ~N ol
) (0,B,5) + cotg e w(e] 01)(81(31) ~— (B

Buoys) + cotg = wl(e]3) (el ) — (2,18)] | &, -+ wc.

De deux équations relatives a la ligne double de X, et X, résul-

tant les relations numériques

'33813 L I { P\ L >
aaa[ﬁ °‘131E Z "{'—COtg— W[( lol)( 1581) \Bl!al)] ) s
0,0,8 1 ( } _ N

S alo,f) 2 0,a,€) —}—cotg wl(e [o Yela,) — (a,]8))] 2 .

On détermine encore la distance de 1'axe du mouvement
hélicoidal au point A, au moyen de sa premiére équation.

On doit avoir

>I
O] O}
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de sorte que l'on a aussi
0= (8:5815)(“11@ -+ (81825)(5115) —+x \/(30_33)3

d’ott nous obtenons

—

Wil ) (958,8)ay + (31852) B — [(85012) (| ) + (8,8:8) (B, 18 Je ¢,
Vi(saBe)2 / |

el l’é([ua’[iou de 'axe est de nouveau
0y =0, + A+ us.

[’ équation de l’llodographe du systeme des déplacements des
points de X s'écrit

5 =84 mb, - nds4pld ads — B33 1.

Le déplacement total d'un point quelconque X de X se déduit
de la comme composé de deux parties, dont l'une est égale au
déplacement total d’'un autre point quelconque U du systeme et
dont Pautre est parallele au plan de l’hodographc.

Si nous posons

6 =0, + ma, + nég -+ p,
on a

62 7= 0y + M8, 4 nabs 4 pop.

De cette équation résulte, par 'élimination de o,

8, =06 - (m, — m)o, + (ny—n)oz+4 (p.— p)p-
ou
0, =0-F8pp =8z 4 C.
On en déduit, en posant x =1, 2, 3...,
3, == 84 =08 — 4 md,4-nds4-pp !,

!
6,7~ 6 Cpa= 06— : (m— 1)8, 4+ nés—+pp : .
‘
'
\
'

mo,—+(n —1)0z + pp. : ’
(m —m,)o,~+ (n—n,)os +(p—p,) : ’

~

N ~N 1. P N ~ ~
Les conlposantes D1y Dpy Dpgyens des deplm_,emcnts Y

"3

¢’ est-a-dire o,,, =1, 2, 3... forment, puisqu’clles sont paral-
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]

% leles au plan de 'hodographe, dans leur ensemble, un déplace-
‘ment résultant d'une rotation, elles sont égales a la différence
cntre le déplacement total 6, du point du systeme X et le dépla-
cement total d'un point du systeme arbitrairement choisi U,
- commun par conséquent a tous les points du systeme et perpen-

diculaire au vecteur déterminant la position du plan de I’hodo-

~graphe.

De la et en se reportant au cours de notre développement, on
déduit directement la proposition :

« Lorsqu’un systeme invariable X passe d’une position donnée X,
d’'une maniere quelconque a une autre position donnée I,, son
mouvement est équivalent a une translation du systeme, qui est
¢gale au déplacement total d’un point quelconque du systeme X
¢t a une rotation de ¥ autour de l'axe passant par ce point du
systeme et parallele au vecteur qui détermine la position du plan

de 'hodographe du systeme des déplacements des points de X,
Comme par la translation ¥ reste parallele & lui-méme, quelque
soit le point dont le déplacement ait été choisi comme déplace-
ment total, et que 'hodographe reste la méme pour chaque point
“de réduction, 'amplitude de la rotation et la direction de I'axe
de rotation restent les mémes pour toute réduction du systeme
de déplacement. L’ordre suivant, par lequel sont opérées la trans-
lation et la rotation est indifférent, et elles peuvent étre simul-

~lanées »,
Si nous choisissons le moindre déplacement o, comme vecteur

de translation du systéme on a

i —— '\ ~N — ~ 1 ~N
Lo =0 - Orz==Op,z —+ Oy,

'axe de rotation coincide alors avee la ligne double des sys-

temes X, et X, tous les points de ¥ possédent alors en commun,

quand X passe de X, a ¥,, la moindre translation, et si la rotation
et la translation s’effectuent uniformément, les points du SYS-
feme I décrivent des arcs d’hélices de méme pas autour de la
- ligne double comme axe.
« Le mouvement d'un systeme invariable ¥ passant d'une
maniere quelconque d’une position ¥ a anc autre position Y, est
dquivalent 4 un mouvement hélicoidal, ui est son mouvement le

plus simple. »
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Si nous prenons un point quelconque O de 'axe des hélices
comme pdle des coordonnées, I'on a pour le déplacement d’un
point quelconque U du systeme X, en posant U = O -5, U
=0 + qu

b= (e| p)e -} cos w[(en) | €]+ sin w] (ep) 4o,

et le déplacement total de ce point du systeme est ;
6 =LY —p= (1 —cos w)[(pz)je] + sinw](sp) + ¢.

Les formules correspondantes, quand on prend un autre axe
quelconque pour faire passer le systeme X de la position ¥ a la
position X, sont les mémes moyennant le remplacement de ¢,
par le déplacement de cette droite considéré comme droite du

systéme 2.

§ 8. — Si les déplacements des poinls du systeme T sont infi-
niment petits, lcquatlon de 1hod00" aphe des déplacements des é
pomts du systeme est

do = do, 4+ mda 4 nd + p | [ad — da],
le systeme des déplacements infiniment petits se décompose en les
deux systémes purtiels
do, = do,
do, = mda - ndfi - p|[ad3 — Bdo],

de sorte que I'on a
dp =dp,~do, =dp,+dp,.

L’hodographe des vitesses des points du systeme ¥ a évidem-
ment 1’équation

le systeme des vitesses se décompose dans les deux systemes

v="0,4+m (5,—v,) + n(v,—v,) +pi[=(v;

partiels

vy =7,

v, = ma + n@' —-p

2 — o).

Le déplacement du systeme X est équivalent a une translation
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infiniment petite d91 de ses points et 1 une rotation infiniment
petite autour de I'axe passant par le point A = A, et ayant pour
équation

o=, fus, e=[|(dxdf)] : \/ dadf)? =[] (8] :\/(1’(3’)? .

l’angle de la rotation est

div — \/(d%_(]‘?\)g _ \/@3_ do,)?

et la vitesse angulairc

\/ <Fz_~:l)z \/\v%__
V()2 V()2

w =

Si nous choisissons comme axe de rotation la droite qui coin-
i cide avec la ligne double de ¥, et ¥,, I’équation de cette derniere

5 ou encore

e systeme I se déplace alors parallelement & lui-méme suivant le
~ vecteur .

iavee la vitesse

~ ¢t le méme déplacement angulaire et la méme vitesse angulaire
“fue précédemment, son mouvement consiste donc dans un mou-
vement hélicoidal infiniment petit,

F . A 1 'l ’ ) I e

‘n prenant le pole des coordonnées sur 'axe des hélices, on a
3?93} our le point U du systeme X

' b= o+ dw| (p) + oy,
do=dw|(e0) + do,, v =w| (e9) + v,

Enseignement math. /




206 F. KRAIT
§ 9. — Les cas généraux développés dans les paragraphes 8

et 8" comprennent tous les cas particuliers. Nous allons pour-
tant examiner différentes acceptions relatives a des déplace-
ments o, o, et 5, oudz,, ds, et dz, déja traitées comme cas parti-
culiers. '

§ 10. — Il nous reste d’abord a exprimer les résultats généraux
habituels en coordonnées rectangulaires, 1l s’agit notamment de
équation de T'hodographe du systeme des déplacements, de
axe hélicoidal, de 'amplitude et de la translation du mouve-

ment de torsion.

Sott
— S -~ | -~ ! " YARTIN
X ()+J1 ()‘J— :‘J.H;‘.?l:"_’—r“'l:‘?’ﬂ OJ___(/ "1+Cl v)—i—( SN
- - - - ~ ’ -
Ul =0 _“L" ol = = LJ 4~ A% _‘—q:'ﬁ“_ Rrath “, -—‘dz <y + ({2 °g+d2m:::'
- ,
C,=0 42, =0 -+x;z +5.5,+ 52, n,—=d,)z 4d )"z, 4 d,)z,,
Nous en déduisons
U= hg — X E - ¥a NS, 2y, — 308, =g a,z, ags,,
2 Fp — Xy 3 =y, —anE, Az -3y =bz b, b
o= d,)—d 2 d,)—d" 2, d)—d," s, = e e,
~ . _ " "o 14 1y b & gt s - '
o d [z, — d d" =z Hid) " —d)" s, = 0, e

Le radius vector dun point quelconque U de X=2X, ou

Yéqndtl(m du svsteme ponctuel X =2X  est maintenant

(@]
1

~
oy
Y
)
(]
W)

= i - 1 s | - ! =)
Wy Tz, T I /)1:’1 = /)A_.:2 -T- [)‘.;:;;/‘

N

L | —_— 2 o= 4 s \’::\‘_L_'I s ‘J/:':\'
=l b, ityby 2z, A lasby—alh, zye) lab, —ayb, (2.2 \

ou

i s,_)—{— =
= v, ma b+ pab—alb, —‘r— Ly Fme, =+ nb, +plah, —a, b, s,
+ 3 g S nb, - p r/lb._, — b)) s,

Les coordonnées de ce point sont donc

mey 4 nb, 4 pey,

xy A mey 4 by 4 plah, —ab, = ax -
. | D! Yoe o s ; .
¥y ey b, 4= plahy — by = v - may +nb, + pe,,

i

I

5y 4 ma, = nby + plab, — b)) =z 4= ma, 4+ nb, 4 pe,.

On déduit de Ta les valeurs des coellicients m, n, p, exprimé
en fonction de @, 7, 5 et des quantités donndées.
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Nous écrivons, pour résoudre ces équations par rapport a
| 0, noet p,

mae, —nbe, +pee, = (x — e,

maye, -+ nbye, 4 pese, = (y — yp)es, (e,eye,) — 1,

Mty =+ nhye, - peyes = (5 —3y)€y,

'addition de ces équations donne

m{a e, -+ ae, + age,) -+ n(be, -+ bye, -+ b,e,) + plejes 4 eye5 + cqe,)
= (@—a)e, 4 (y — ¥y)es (s—=5)es

%1 oL nous en déduisons, par la multiplication extérieure, pour 7z, n
%i et p les relations

é‘}.

oy By N F—Hy
mi b, b, by| = b, by b, ,

B & & I €y 3

by b, b, | x Ty, ¥ —7y), S— 5
e Ty Oy | = ‘ ¢, €y ¢, ,

(o, dy ( @, «

€ 6 G X=X ) =5y
R — o, «, a,

by by, by b, b, b,

- Ces ¢quations donnent directement les valeurs de m, n et p.
CPour le développement ultérieur il faudra toujours prendre les
vuleurs précédentes pour m, n et p.

~

Nous obtenons maintenant pourle déplacement du P oint U= U,

. systeme X de coordonnées x, y et s

c=d's +d's, 4 d"z, :
—=d/s,+d"e,-H+d, e, m z ae H-aye, - aje, | Fn(b'e, + b,)e, - 0,<)

- p ) (0,0, — b))y 4= (b — ab)Vey + (b)) — a, bz,
— (byay — by ey — (bya,'—ba)ye, — (bya,' — bya)')e,

3

+ (1,0 — a;)bs)ey + (a/b) — a'by)e, 4 ()b, — a))b)z, } )

o, en ordonnant par rapporta e, s, ¢

22

39

o =d'sy+d", + d"e,
=, d,/ +ma) + nb 4 plab,—ab,)—bya,'+ by, +a,b,)—a,'b,' 2 g,
- ;‘dj”—{— ma, = nby' + playb/'—a,b/—bya+b,a,+a)b/'—a,'D,) f €,
—+ : d""+ may+nby' 4 plab)— a,b)'— b ay) +bya'+a, by, —a, b : -
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Cette équation donne directement les composantes du déplace-
ment total d’un point quelconque du systeme I paralleles aux
axes des coordonnées.

Avec o comme rayon vecteur, d’, d” et "’ sont les coordonnées
courantes du plan de 'hodographe du systeme des déplacements
des points de X.

La seconde des équations de I’hodographe nous donne

(@ —d)e (@ =) ey b (@ — ),
> H(ll’el —+ ey ay'zy) (by'ep - by'e, 4 b 83)/;’: N

(')

1
39

I'équation de I'hodographe est donc, avec les coordonnées d’, d”
et ",
d—d,/, d'—d"

" 1t
N [y d" —d,

Pour le déplacement minimum, nous obtenons au moyen de la
premiére formule, qui donne o,

op=ds, +d)"s, +d)=
d/ d," d;"
— | d,) d,) d)"
d) d;)" d)"
()b — @, by )2y 4 ()b — /D)2, 4= (/D) — a)'D))
() = a2 = a2 (2= 0, = b)) — (/b @, by ) b))

équation dont nous pouvons tirer directement les composantes

de o, paralleles aux axes de coordonnées, la grandeur de ce

déplacement est
. dl/ (]IIV dll//
‘/_a:':)—‘: d2’ (]211 dg/ll
[ d;;/ Clg” dg”'

.
2

V() 2 a0 D) by — (@b A @by @by :

[équation du radius vector de l'axe de rotation, quand on
prend le point A = A comme point de réduction du systeme des
déplacements, est

ou

i e S e

L e i A B S B AN 2N

A e

5

Al

<
i

§
!
4
:
i
i
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bl \ 9
d’ou l'on a encore

Z (2 —2)e, 4 (y — e+ (5 —3))5, ;

> : (a)b) — ;b)) e, 4+ ()b — a b)) e, -+ (@, by — ay b))z, : = o,

ol résultent directement, comme équations de cet axe en coor-
- données habituelles

: X —2x, . ¥ —, o z— 3
! )by —ay'h, ab,—a/'b, /b, — by

L’équation du radius vector de l'axe pour le mouvement héli-
Ccoidal du systéme X s’éerit

o B3] 33 BRI B) . L s
i -0 oL, = 0 Y
\ o EIOAE «, - (Bq_Sﬁ)—’ B, 4 v (540

Nous posons pour abréger,

) = (@y'by — /by )e; + (a0 —a,'by )z, (a)by — @,/ b))z,

= ci'ey - 6y'e, - ey,

O/

(5.

moyennant quoi, le vecteur fixant la position du plan de I'hodo-
| égraphe est

e = {¢,'8; + ey F ¢y'ey) \/01(2—}‘ By~ - €

au
s = (efe Fofe toyey) s, = Pdet e
Nous en déduisons d’abord *

d:'», d3” dt%m
Bl |Gl = | d) d" d" | =,
C}I 02/1 (,.3”,
dil C[lv‘l dll'l
G (Bud) = | d) d) dy |= »,.

L '
C C, Cy

‘ Mamtenant il résulte de équation du radius vector de l'axe
hélicoidal

L A
B x—xy)e - (y — )+ (5— )8 = c"—l’ (e + @) 4 agey)
'3‘2 /b ﬁ‘ { { ! ' /
+ o2 \iE T 0y8 by z) +uleye, - c)e, C5'€y) .
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v ) A
d’ou
- L L2 NE)
¢, &, & a,'s
Y (£, b,A,
¢, ¢y BB gy B2
_ s—x ), b iy
- L1 T Ty T Ty
c, o cy'e

en multipliunt cette relation par <ci’(:2’c3/c"“’) il vient

) e — ) — A — b, By
— b ay | .
= ¢ (y—o) — A — b, ; e)e)
= Hz—z) — A — by, b eley,
et, en exprimant encore @, «,, «, b, b,, b, en fonction
de quantités données, on obtient comme déquations en coor-

données habituelles de 'axe du mouvement hélicoidal de X

Vo2 N A (e N A e Nt

p €T\ xy) Ay —a) — A (y —x)) ooy
=\ 3 L A yooee/

y €70 Y1) Al —u A (=) y o1

S o2 =) [~ ~\ foe e Y '

P E—m) — A5 ) — (s —5) ey

Il reste encore a déterminer l’zmgle de rolation .

Pour cela nous possédons 1'équation

(AR a2
so1D 2 VA 4 -
4 sin? — v = = :
2 (22,2 o2 {2, ]e)?
\ b A\ -
ce qui donne
(@2 a2 1y 12
| /i %ill2 ———I [S S — VL*’* ”2 s JC
B ; — T ;2 2) of2 (i1 o ! . L2t
D) (P T R (e ey e - age)

et cette équation détermine 'amplitude de la rotation.,
Faisons maintenant passer le systeme ¥ de X, & X, au moyen
d'une rotation autour de 'axe de torsion et de la translation o,
Iin choisissant un point de cet axe comme ovigine des

coordonnées, les axes du nouveau systeme de coordonnées

étant paralleles a ceux du systeme primitil, on a, si o= ., ¢

—+ 9y, & —+ 3, & est le rayon vecteur d’un pomnt queleconque

U=U de Y=Y ¢t b=uc¢ e, z 2, le rayon vecleur
1, 1 1 1 e 2 3 )

du point correspondant dans ¥ ==Y, aprés le déplacement de X,

b= (z] p)e 4 cos w(ep) | & 4 sinw| (zp) - o,




)
2
i

| d’oir, en posant
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I

= — (ce, - c))e, ¢z =g —+ €452 - €8s,

CI

(O]

[LH)
(O]

L 0es - sey = (1 — cos w)(epr ey - ey, (0,3 ea5, -+ €585)
4 cos wlxz, +ye, + =2)
+ sinw ) (6,5, — eyry)E (e — 5 )8 ey 0 — €213y ;

4 dy'e, - dyey - dy'sy,

X

+ze, = ‘( (1 — cos w)(e,2x, + e,e,y14 e,e.5) 4 cos wx,
- sinw(eys,—eyx) 4§ 2
+ 1§ (1 — cos w) (e ey 4= e,y) + es0y7) 4 cos Y,

4 sin w(egr, — e 3) 4 dy" | e,

i
—}—: (1—cos w){e,e 2, 4 e,e4y, -+ e,25,) -+ cos wz) -+ sinw (e v —e,x)) - dy" Le.
De cette équation on déduit directement les coordonnées du
point U (a, 7, =) du systeme X apres le déplacement.
Si I'on fait coincider 'axe de = du deuxieme systeme de coor-

données avec l'axe de torsion, 'onac=—=z, ¢, =¢,=o0,¢,=1,
/A 70 ___ a s aaat
d,) =d,) = o, d)) = d,, ce qui entraine

Y " . . N | Vo cone C e - .
%2y + yeyt 58 T COs W —SIn Wy § & cos 4 sinwr, |2, ,‘ z,+4-d, | San

d’olr
X T=eos wa, — sinwy, ) = cos wy, - sinwa, ==z 4 d,.
§ 11. — Par ce moyen est résolu le probleme du déplace-

ment d’un systéme invariable X, qui passe d’une maniere quel-
conque d’une position donnée X dans une autre position don-
née ¥,, en ce qui concerne son mouvement le plus stmple et son
systeme de viresses.

On peut aussi effectuer la solution de ce probleme au moyen
de la multiplication algébrique du facteur de déplacement. La
publication de cette derniere solution est réservée pour une
autre époque.

Frrpivaxp Krarr (Zurich).
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