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SUR I’ENSEIGNEMENT ELEMENTAIRE

DES FONCTIONS ELLIPTIQUES

-

Malgré leurs applications a des questious fondamentales de
agéométrie, de mécanique pure ou apphiquée, de physique, les
fonctions elliptiques ne font pas partie de Uenseignement élémen-
taire. Il en résulte que les physiciens, les ingénicurs, et ceux en
aénéral, qui ne sont pas mathématiciens de profession, sont pri-
vés dun instrument de travail dont ils comprennent pourtant
Vutilité; sans doute, bon nombre d'entre eux ont étudié les fone-
tions eclliptiques; mais Uexposé qui lear en a été fait visait a étre
aussi complet que possible, tout en étant rapide et le temps leur
a manqué pour sc les assimiler d'une fucon suffisante et surtout
durable,

Les méthodes d'exposition emplovées sont basées soit sur
I'étude d'une équation différentielle. soit sur la construction «
priori d'une fonetion doublement périodique ; mais par suite de
leur caractere général et abstrait. elles exigent de longues
réflexions. Une étude hitive en est impossible. Il suffit sur ce
point, de rappeler 'anecdote de Sylvester et de son professear ('),
Par conséquent si I'on ne dispose que d'un temps limité, 1l faat
se borner aux propriétés essentielles.

Les {fonctions elliptiques se sont introduites dans Panalyse sous
la forme d'équations différenticlles: mais pour enscignement,
il est permis de prendre un autre point de départ, si Fon y

trouve avantage. Un débutant ucquérerait difticilement une idée

evue des Sciences pures el appliqgucées, 'I'. VIII, 18-, ne 1~ 11, Picard. Nolice
) R les S / {appliquces, 1. VIII, 1897, nv 1=, 1I. Picard. Not
sur James Joseph Sylvester.
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nette de la fonction sin & par exemple, sion la lui présentait
comme la fonction inverse de 'intégrale

I

il est intéressant de considérer comme exercice, cette délinition;
mais il ne viendra a personne 'idée de la prendre comme point
de départ de I'étude des fonctions circulaires au licu de la défi-
nition usuelle. Les fonctions elliptiques sont plus complexes
que les fonctions circulaires puisque celles-ci n’en sont qu'un cas
limite ; 1l est done désirable qu’on aborde leur étude par une
méthode aussi facile, s1 faire se peut, que celle qui a servi pour
le cas particulier. Or en partant d'un probléeme élémentairve sur
les tangentes aux coniques, on peut arviver tres facilement a I'in-
tégrale d’Euler, a la notion de la double périodicité, au probleme
de la multiplication par un nombre entier, ¢’est-a-dire aux pro-
priétés fondamentales des fonctions elliptiques et a ce qui est
nécessaire pour leurs applications les plus usuelles,

Ce probleme consiste a étudier les points de contact d'une
ellipse avec une ligne polygonale qui lui est eirconserite en méme
temps qu’elle est inscrite dans une ellipse homofocale a la pre-
miere.

Soit une ellipse E dont le demi-grand axe est pris pour unité
et dont la demi-distance focale est £. Soit u un pointfixe de E et P
le point ol la tangente a E en u coupe le petit axe; considérons
Pellipse E homofocale a E et passant en P, désignons par M un
point mobile sur E', par R T'une des extrémités de la polaire de
M par rapport a E. Cela posé, si I'on définit le point fixe u. el les
points mobiles M et R par les compléments o, o et © de leurs
anomalies excentriques, on trouve presque immédiatement la
relation

(1) COS 0 == COS W oS ¢ - sinw sin ¢ Vi— /2 sin? a.

Sous forme rationnelle, elle devient

, . _ .
(1) 2 —sin® o — sin® w —sin? o — 2 ¢0s %4 €05 W cOS ©
—+ /7 sin®asin?w sin?2 o = o

Enscignement math.
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ctest syméirique ens, » et o. En la résolvant par rapportaz, par
exemple, puis en posant
sin 2= a sinw—.x sin o —.x'

on trouve

.z'v/‘ I — a2 ‘ 1

- ., /' 7 4 » 7
Yy P ' xt — ko

)

—~
o
e

I-— A% 22 a

telle est done la velation entre les abeisses du pomt w et des
1 ‘

points mobiles M et R le double signe correspondant aux deux

points R extrémités de la polaive,

In difféventiant (2), @ étant constant, on obtient I'équation

. drx " dx'
L& / 24/ JEE - [ 2/ EaERl
Vi—ax?y 1 —Ai?x Vi—a= Y1 —Ait

(2] est done une intégrale algébrique de l'équation (3). Clest
.i‘intégrale d'Euler. St 'on revient aux notations primitives 3

devient
de (']g

;) ——— = — —0:
4 9 L) . / ) < ’
VI —A%sinfo Vo1 — A% sin o

(1) est done une intégmle de 141, Clest 'intégrale obtenue par

hngran ge.

Argument ell{pli(/(w. — Revenons a la figure précédente que
nous appellerons la ﬁgure I et considérons une 1igne polvgonale
inscrite a I/, eirconserite a I et tangente a celle-c1, a 'une des

extrémités du petit axe. ])ésignons par @, = o labeisse de ce

Q
point, puis par .r,, ., ... sy, .., celles des points de contact sue-
cessils obtenus en partant dans un sens déterminé, a droite du
petit axe, par exemple; 7n opérutions (une opératinn consistant
dans le passage d’un point de contact au point de contact sui-
vant) nous fournissent une grandeur 2y,

Nous allons voir que I'on peut définir une variable = el une
fonction de cetle variable telles que lorsque la variable prend des
valeurs proportionnelles a o, 1, 2. ., 7, la fonction prenne les
valeurs @, v, @

peees Aapens

A cet effet counsidérons : le point Q de Pellipse E ayant meéme

anomalie excentrique que M, la tangente a E en Q, et les mter-
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o : 1
sections de -cctte tangente avec les tangentes 1ssues dae M. On

trouve que les lieax de ces deux interscctions sont une seule

et méme ellipse E” ayant pour demi-axes les racines carrées de

1 - \"”1 — k% sin? » (1 — 43 (IiI -1 \/I — k% sin? y.)
? e ——— 4
V1—/l2sina 4-cos «

1—-cos

dirigées respectivement snivant OXN et la direction perpendicu-
laire. ,

La différence de ces deux quantités est A% done 17" est liomo-
Jocale a I et I La ligne polygonale inscrite a E”, circonscrite
a I2 et la touchant auméme sommet que la précédente, nous four-
nit ainst deux séries de pomts; d’'abord ceux d'abeisses @, @,
Lan-.. déjuobtenus, puis une deuxieme série de points intermdé-
diaires. Nous pouvons continuer ainsi, obtenir de nouvelles
ellipses ", E', homolocales aux précédentes et insérerentre deux
points d'abeisses vy, v, , ., un nombre 27 — 1 de points inter-
médiaires, = ¢tant aussi grand que Fon voudra.

Considérons maintenant Dellipse B et loutes celles qui luisont
homolocales: la tangente a £ en un sommet du petit axe déter-
mine a droile de cet axe un point Nrsur Pune des cllipses de la
famille.

La deuxitme tangente a Eissue de N touche B en un point B;
soit 2 son abeisse: lellipse qui passe en N peut ¢tre définte par le
parametre 3. On démontrerait aisément que si on continue la
ligne polygonale dont NB est un ¢o6té, les projections sur ONXe des
différentes polaives des sommets tels que N sont toutes plus
peiites que % et vont méme en déeroissant du moins tant quon
natteint pas laxe OX. Des lors soit . Pabeisse d'un point de E
situé dans le premier quadrant: on pourra loujours déterminer
une ellipse de paramétre suffisamment petit 3 et un entier 2suffi-
samment grand pour quapres un nombre 2. dopérations on par-
vienne en un point de I8 dont Nabeisse differe de . d'une (quan-
lité aussi petite que Pon voudra etquiscra plus petite que 5. Nous
représenterons par 5 la limite du produit 23 quand 3 tend vers
ZCro.

A toute valeur de v correspond une valeur de = (et méme une
infinité; car a celle que nous venons de définir il faut ajouter
cclles qui sont égales a celle-ci augmentée d'un multiple de 4K,
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K étant la limite du produit 2% quand on choisit @ = 1, ¢est-a-
dire quand laligne polygonale embrasse le quart de Pellipse) et
réciproquement a toute valeur de = correspond une valeur de a
et une seule. On dit que z est I'argument elliptique de module
ket Ton écrit

& == 50 (k. 5)
ou simplement

x == sn (z).

On peut comparer avec z l'angle © complément de 'anomalie
excentrique du point dont 'abeisse est .v; on dit que o est 'am-
plitude de z; ce qui s’éerit

W am 3 ;
on a done
X T sinw —— SIn am 5 == $71 3.
D’apres la définition de =, on a

~y

sno—octlm

— I pour s =—o0.

A

E/]u(zliaiz (Z///é’/'en(ielle de snz. — Revenons a la relation (2)

que nous avons dédutte de (1); cette derniere élant symétrique

en o, w et o, en la résolvant par rapport a sin o = 2/, on a :

(2) e T \/1 N — 2 d —1‘—(&\/1—;1“—’ ‘/I—~/ﬁ2x2

1 — k*a? x?

Formant la différence 2’ — &, la divisant par @ et passant a la

limite (pour a = 0) on obtient

!
i x —x e R T B
lim ——— :\/1-—;1;3 \/I — k2 ar
a

. .. dx .
le premier membre peut s’écrire —— ; en effet sil’on pose v == sn:

a =sn Az on en tire 2’ = sn (z -+ Az) on a donc

x' —x sn(s+Az)—snz

-_ 2

« snAz

la limite du second membre est la méme que celle du rapport

sn(z-FAz)—snsz

Az

3
b
h
]
3
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. . . SNz .
puisque la limite de —— est 1 pour s = 0. La fonction & = sn =

a donc pour équation différentielle

(5) dx :\/1'——.1:2 ‘/1—/."—’ X2

dz

En représentant s en fonction de & par la notation
& al’g. Sn x
on voit que l’équa’[ion (3) d'Euler a pour intégrale

arg. sn x ZEarg. sn x' — Cte |

Le théoreme d’addition de la fonction sn = nous est donné par
la relation (2/) ott 2/, 2= et @ représentent respectivement

sn(z-p), snz  snp,

p étant comme s un argument elliptique.

On peut remarquer que si les deux ellipses E, E"au lieu d’étre
homofocales étaient concentriques, semblables et avaient mémes
directions axiales ou encore se réduisaient a deux cercles concen-
triques,’sn = dégénérerait en sin 3, 'équation différentielle (5) et
les théoréemes d’addition se réduiraient a

dx SR — -
= :VI—.):* , (r’:,r\/l—a'—’—{—a \/1—,1“3.

Si les deux coniques étaient un cercle et une ellipse avant
pour petit axe un diametre du cercle ; sn = dégénérerait en 17 =.

gument s est considéré

comme la limite da produit 23; on peut le représenter par une

Courbe d’Halphen. — Jusqu'ici lar

sarface en employant la représentation géométrique d’Halphen
ou une autre analogue, la suivante par exemple que nous appelle-
rons la figure II.

En posant » =sin v, équation () devient

dw
FEE

k2 sin?w

d’ ol
w dw

0 \/I — At sin? w
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Soit un cercle de rayon 1, une cllipse dont les demi-axes
sont 1 et — (k :\/I — k%), considérons lacourbe G dont le rayon
veeteur est la moyenne proportionnelle entre ceux du cercle ct
de Vellipse; st Pon prend pour axe polaive le petit axe de ellipse
et st o représente Pangle formé avee lut par le ravon vecteur 2
I'équation de Dellipse est

I

~o—

S T
Vir— & sin® w

lil C()HI‘})(‘ G d d()ll(,‘ p()lll‘ (3(11121[1()11

i

(1— A sin® w)

4
el son aire déterminde pm‘l ;mgle w est

e

T {_’; (/m’

2 J Y1 — L2 sin®

elle est done égale a la moitié de Vargument elliptique z; dail-
leurs

SIN ) == J == S/ G,
Periodicité. — Fn eontinuant la ]igno polvoonale '(’figm’o 1) ins-

crite a KB et etreonserite a I8 on finira par trouver des points de
contact voisins de ceux déja obtenus ; on concort méme que Pon
pourrail déterminer Vellipse B de telle sorte quapresun certain
nombre dopérations on retombe exactement sur les premiers
points de contact obtenus; la fonction sn = est done périodique;
on le voit d’ailleurs d'une facon bien plas nette sur la figure Il St
I représente Paire comprise entre axe polaire, un axe perpen-
diculatre et la courbe G, onvoit que sn = reprend fes mémes

valeurs quand 5 augmente d'un multiple de I par saite

su{z4+4iRK)=snz;

-~

on voil aussi que la fonction ne fait que changer de signe si =
angmente de oI5 Ta quantité oK est la demi-période; elle joue le

méme role que = pour les fonctions circulaires.
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Multiplication de Z’m'gument/)a/' un nombre entier. — La mul-

gument par utl cntier 71 C()Ilti(:l]t deux qUBS—

tions : étant donné sn s trouver sn mz; étant donné un secteur s

tiplicati()n de Dar

de la courbe G, trouver l'angle déterminant un secteur m fois
plus grand; le premier de ces probléemes peut se résoudre en
faisant usage duthéoreme d’addition; de plusla figure I en four-
nit une représentation géométrique;il est clair que si 'on déter-
mine Uellipse E’ de telle sorte que l'abeisse de . soit égale a la
valeur donnée de sn = que nous pouvons supposer positive; en
construisant la ligne polygonale ayant un premier contact en .
et en tournant dans un sens convenable, les abscisses des points de
contact successifs auront pour valeurssn 3z, sn 5z... sn(2n -+ 1) =.
En construisant entre les deux mémes ellipses une seconde ligne
polygonale ayant un contact au sommet du petit axe de I8, les
abseisses des contacts successifs seront sn 23, sn 4z... sn (an =

Maintenant que 'on connait la valeur de sz mz on peut la
reporter sur la figure Il et déterminer ainsi le rayon vecteur ct
I'angle (aun multiple de o pres) qui détermine sur l'aire embras-
sée par G, un secteur mz; si ¢ est la valeur trouvée de sn mz on
aura simplement a résoudre 1"équation

sSin

ey

A',,/ 3 F—
Vi —/A7sin? o

ce qui donnera pour 1’angle w cherché quatre valeurs faciles #
diseuter.

Valeurs imaginaires de Uargument. — On peut, soit admettre
dans une premieve étude, soit démontrer assez facilement en
s‘appuyant sur le théoreme d’addition, que lorsque la variable est
purementimaginaire, la fonction sn est aussi purement imaginaire
sion lut impose la condition d’¢tre une fonetion analytique (1.
Nous ¢erirons done

sn (: \/:> = v: on ()= x vV —1

ol Sn z représente une fonetion réelle de zet o1l’on pose.r==>Snsz.

(") Yoir Nourelles Annales. 3¢ sérvie. T. XIX. juin 1900. Exposition géométrique
de quelques proprictés fondamentales des  fonctions elliptiques de  premicre
especee,
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Le théoreme d’addition et I'équation différentielle s1 1'on y rem-

place a, x et 2’ par a\/— 1, x V/~—— 1, X/ \/——~ 1, deviennent

¥ — .’17\/1—}—612 \/1—}—/:‘3(/,2—}—(;\/,1—-{—;1;3 \/1 + A2 x?

1 — A2 az X2

= \/1 -+ x? \/1 A2

>

d.’X:

dz

Une induction natuvelle conduit & penser que la nouvelle
relation entre «, v et 2’ doit étre la solution d’un probleme ana-
logue au précédent. Lin effet, dans le premier probleme,

l’équation des ellipses rapportées a deux axes rcctnngulaires

est
B2 2 A2y2 = A2 B2,
avec
A2 — B2=— /2,
En changeaut 2% en — 2% on a les hyperboles.

—B2a? A2y =A2B?

avec la méme relation entre A et B. Elles ne sont pas homofo-
cales ('), elles ont les mémes axes que les ellipses dela figure 1.
En répétant les mémes constructions que dans le premier pro-
bleme on arvive a des résultats analogues en ce qui concerne la
périodicité, la multiplication de l'argument; mais on arrive &
voir que la fonction Snz devient infinie pour certaines valeurs
de z; dans les calculs, les {fonctions circulaires sin cos sont rem-
placées par les fonctions hyperboliques S/ et Ch. La représenta-
tion de 'argument parune surface se fera d'une maniere analogue
a celle du premier cas; on considérera le rayon vecteur hyper-

8
ordinaire et de l’angle. Nous rappelons que st les coordonnées

bolique (*) et l'ar

gument hyperboli([ue au lieu du rayon vecteur

d’un point sont x, y son rayonvecteur hyperbolique est ‘/3‘3 — %

(1) Silon considérait des hyperboles homofocales on aurait bien une rclation de
méme forme, mais £ serailsplus grand que 1 car il n'esl aulre que Uexcentricité de
ces hyperboles.

(*) Yoir Laisant. Essais sur les fonctions hyperboliques. Gauthier-Villars 1874,
(ela montre une fois de plus 'intérét qu’il y aurait aintroduire franchement dans
I'enseignement usage des fonctions hyperboliques.
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L’analogue de la courbe G est alors une courbe G’ dont le rayon

vecteur hyperbolique est la moyenne proportionnelle enire ceux
1 , . 1 * £ b ) 1 1

de I'hyperbole équilatere de demi-axes égaux a 1 et de lhypel—

. I . ’
bole ayant pour demi-axes 1 et — le demi-axe transverse étant

7
celui qui est égal a l'unité; l'aire comprise entre la courbe, son
asvmptote et l'axe transverse est représentée par K’ et Snz a pour
peériode réelle » K.

Double ])ériodiciié de snz. — De ce qui précéde on conclut
que la fonction snz a deux périodes; 'une réelle et égale a
4 K, Vautre imaginaire et égale a 2 K’ \/: par suite le plan
des = est partagé en rectangles par des paralleles a I'axe réel et a
l'axe imaginaire, quand z occupe dans ces 1“ectanglés des posi-
tions relatives semblables la fonction prend des valeurs égales;

dans chaque rectangle la fonction devient deux fois nulle et deux
fois infinie. Ses zéros sont 2m K - 22K’ \/—— 1 ; ses infinis sont

ami o (n+ 1) K \/—— 1 ot K et K sont les deux intégrales

/H dx 0 dox
Jo Vii—2 (1 — k2 a?) o V+a) (1w

que I’on peut calculer par des séries; m, n sont des entiers quel-
conques,

Variations de la fonction snz. — Pour se rendre compte de la
maniere dont varie sns quand = décrit un chemin déterminé dans
son plan, 1l suffit d’examiner deux cas principaux, celui ol =
décrit une parallele a 'axe réel et celui cu il décrit une paral-
lele a l'axe imaginaire ct de chercher les courbes décrites par
la fonction. Les points de celles-ci peuvent étre obtenus au
moyen du compas.

Pour le prcmier cas on posera :

2= U vy Y sn(u—{—s'o\/——l): U—{—V\/—l .

en dé\'eloppant le second membre au moyen du théoreme d’addi-
Lion, puis en séparant le réel et I'imaginaire et posant

SRU==E, B v—=V
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a1 d

2N 2N o VB — ) (1 — )

Tel est done Te Tieu déerit par snz dans Te premier cas, V) est

Fordonndée d un point ou la courbe coupe axe imuginuire. Pour

e second cas on posera

sy e s (i Ry — 1) = LV —
53 { . ] . R / | ) Q) .
on développera encore sn lu vy plns posant Sne =1,
sy = U, el séparant le réel de Pimaginaire on a
SR ST e S A e vi Xl — 2 LR
L= A2 U ’ o 0= 42 US et

L /1\
Climmmation de 7 donne )
L gy — M UE Fo— U2 .
f i N e A e ——**—*L* + A —— | V-
v ' r — LU: po— A7 U

~l\,

R

S O El;‘z—{' 1==0;

L, est Pabscisse d'un pomt ol la courbe coupe T'axe réel. On

remarque (ue 1\}([uati<m j) se tire de G, en changeant respecti-

vement

On pourrait démontrer non seulement que les systemes (6) et (=)
sont bien orthogonaux comme exige la condition d’analyticité
timposce a la fonction, mais encore que les courbes (=) sont &

elles-mémes lears propres 'tm‘jcctoircs orthogonules. Sile para-

. - . I E .
metre U est compris entre 1 ctozon a les courbes relatives au

‘,(') Loc. il

EADHPWED. Y ST L
=
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premier cas; s'il a une auatre valeur positive on a les courbes

relatives au second cas.

B
o
<

e

i}

Ces courbes sont susceptibles d'une définition simple. A cet

effet, on mettra I'équation () sous la forme

£{LN) = Cw

en la résolvant parrapport a la constante arbitraive Uj. Le caleul

ne présente aucune difliculté et 'on trouve

‘ Ry R
N fo — j2_~ 1 -+ Ry i1 / T
R C h_[o__Q [ - L'
¢ 1 -k ]‘szi\/(I_}—H}{—’-‘_; SR
o 2 U

ol Nous avons posé

R2=12-4-YV~=,

Désignons par I et I' les deux points de lTaxe des U avant
pour absecisses 4 1 et — 1; par G et G’ les deux points du méme
1 I Gy e o '
— et — — ;so01t U, V un point du plan :
7 i I I
fetf ses distances a I et 1, le lieu des points pour lesquels le

axe ayant pour abeisses -+

rapport £ f est le méme qu'au point considéré est un cervcie:

on trouve que ce cercle coupe 'axe réel aux points d abscisses

1 R2Ey o RT2— L2
o U

De méme st 'on désigue pargetge les distancesduapomt U, V &
et G' le lieu des points pour lesquels le rapport ¢ : o est le

o

méme qu an point considéré, est un autre cercle qui coupe laxe
réelaux points d'abeisses

E ; / n . T R “
1k R 7T - AR — 4 T
B /

»

he
r~

Ces valeurs sont précisément les facteurs du second membre
de Téquation (8). Dés lors si nous représentons dune ma-
niere générale par i lesabscisses d'intersection du premier cercle
avee laxe OU, par jles points analogues pour le second cercle:
les courbes (7) auront pour équation

Ul =1i/:
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on voit que I'on obtiendra autant de points que 'on voudra de la

courbe coupant en == U, I'axe réel, au moyen des intersections

de deux cercles faciles a construire, I'un arbitraire du parametre 7,
(T2

I'autre dont le parametre est j == -L—"

Théoreme de Poncelet. — A propos de la figure I nous avons
dit que 'on pouvait concevoir Uellipse I/ telle qu’apresun certain
nombre d’opérations on retombe exactement sur des points de
contact déja obtenus; 1l est clair quil sullit pour cela que le
point u d’abscisse sin o = sn p soit choisi de telle sorte que p
soit un diviseur de la période 4 K ou plus généralement soit
commensurable aveec 4 K; mais alors si I'ellipse vépond a cette
condition, on pourra prendre poursommet du polygone un point
queleconque de E’ et les polygones ainsi obtenus auront tous le
méme nombre de cotés; une conclusion analogue se présente
quand on considere les hyperboles dont nous avons parlé; on
arrive ainsi a deux cas, tres particuliers a la vérité, des théore-
mes de Poncelet, mais qu'on peut évidemment généraliser par
projectivité. Il conviendra de signaler que I'équation algébrique

par laquelle on déterminera sn/)[p — ’7)} K, m, n eutiers] n’est
pas résoluble saul dans des cas tres particuliers.

Les considérations précédentes peuvent s’étendre presque sans
changements aux fonctions a multiplicateur o de VWeierstrass (*).
En les complétant par quelques notions sur les fonctions cn, dn et
cn général sur celles qui sont reliées a s» par une équation algé-
brique; par la réduction des intégrales dépendant de la racine
carrée d’un scul polynome du quatrieme degré aux trois types
canoniques, par la transformation de Landen, par les théoremes
fondamentaux sur les ares d’ellipse et d’hyperbole qui ne présen-
tent aucune dilliculté théorique, on aura les éléments nécessaires
pour les applications les plus usuelles et pour pouvoir utilement
employer les tables. L’étude des fonctions considérées comme
définies par les équations différentielles au moyen des intégrales
curvilignes, les développements en séries et en produits, les fone-

(Y Les coniques sont deux ellipses ou deux hyperboles ayvant meémes directions
axiales, mais non homofocales.




ENSEIGNEMENT ELEMENTAIRE DES FONCTIONS ELLIPTIQUES 105

tions de Jacobi, la formation a priori d'une fonction admettant
deux périodes, les problemes de la division et de la transforma-
tion en général seraient réservés a U'enseignement supérieur.

Dans l'enseignement moderne on laisse au second plan les
fonctions sn ¢n dn et U'on considere d’abord la fonction p de
Weirstrass. Si dans un enseignement préparatoire on préfere
commencer aussi par I'étude de cette fonction, on peut suivre une
méthode analogue & celle qui vient d’étre exposée. Nous nous
bornerons a dirve que e, e,, ¢,, désignant trois constantes dont la
somme est nulle, on considérera les deux paraboles dont les
équations en coordonnées rectangulaires sont :

(P) gzi\/;— (P) 2ay=(e,—e,) (e,—e,)F a2 b\/_l

) /

ou

5= V(““eg_'“el) (—e, 4 ¢y
et ol o est une constante arbitraire. Alors si 'on pose

— (Y R
a=p (L ey 05 €)— ey,

si 'on prend sur P un point d’ordonnée égale & pl=) — e, et
. . . :

si on considere une hgne polygonule partant de ce point ayant
ses cOtés tangents a P et ses sommets sur P/, les ordonnées des

points de contact successils augmentées de e, seront

p(==7), plE2y,..... plz==nl), ... .

les deux signes correspondant aux deux directions possibles
qu’on peut suivre en partant du premier point.

E.-M. Liugeray,

(Saint-Nazaire.)
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