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S U R I /EN S EI G N E M E N T E L E M E N T AIR E

D E S FONCTIONS ELU P T1Q U E S

Malgré leurs applications a des questions fondamentales de

géométrie, de mécanique pure ou appliquée, de physique, les

jonctions elliptiques ne (ont pas partie de renseignement élémentaire.

Il en résulte que les physiciens, les ingénieurs, et ceux en

général, qui ne sont pas mathématiciens de profession, sont privés

d'un instrument de travail dont Ils comprennent pourtant
l'utilité; sans doute, bon nombre d'entre eux ont étudié les (onctions

elliptiques; mais l'exposé qui leur en a été lait visait à être
aussi complet que possible, tout en étant rapide et le temps leur
a manqué pour se les assimiler d une façon sulfisante et surtout
durable.

Les méthodes d'exposition employées sont basées soit sur
l'étude d'une équation différentielle, soit sur la construction a

priori d'une fonction doublement périodique ; mais par suite de

leur caractère général et abstrait, elles exigent de longueso o o
réflexions. Une étude hative en est impossible. Il suffit sur ce

point, de rappeler l'anecdote de Sylvester et de son professeur L

g

Par conséquent si l'on ne dispose que d'un temps limité, il faut

se borner aux propriétés essentielles.
Les fonctions elliptiques se sont introduites dans l'analyse sous

la forme d'équations différentielles: mais pour l'enseignement,
il est permis de prendre un autre point de départ, si l'on y
trouve avantage. Un débutant acquérerait difficilement une idée

(') Revue des Seiences pures cl appliquées. T. VIIJ, 1897, n° 17. E. Picard. Notice
sur James Joseph Sylvester.
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nette de la fonction sin x par exemple, si on la lui présentait
comme la fonction inverse de l'intégrale

il est intéressant de considérer comme exercice^ cette définition ;

mais il ne viendra à personne l'idée de la prendre comme point
de départ de l'étude des fonctions circulaires au lieu de la
définition usuelle. Les fonctions elliptiques sont plus complexes

cjue les fonctions circulaires puisque celles-ci n'en sont qu'un cas

limite ; il est donc désirable qu'on aborde leur étude par une
méthode aussi facile, si faire se peut, que celle qui a servi pour
le cas particulier. Or en partant d'un problème élémentaire sur
les tangentes aux coniques, on peut arriver très facilement à

l'intégrale d'Euler, à la notion de la double périodicité, au problème
de la multiplication par un nombre entier, c'est-à-dire aux
propriétés fondamentales des fonctions elliptiques et à ce qui est
nécessaire pour leurs applications les plus usuelles.

Ce problème consiste à étudier les points de contact d'une
ellipse avec une ligne polygonale qui lui est circonscrite en même

temps qu'elle est inscrite dans une ellipse homofoeale à la pre-

Soit une ellipse E dont le demi-grand axe est pris pour unité
et dont la demi-distance focale est k. Soit g un point fixe de E et P

le point où la tangente à E en u coupe le petit axe; considérons
l'ellipse E' homofoeale à E et passant en P, désignons par M un
point mobile sur par R l'une des extrémités de la polaire de

M par rapport à E. Cela posé, si l'on définit le point fixe x et les

points mobiles M et R par les compléments a, id et 03 de leurs
anomalies excentriques, on trouve presque immédiatement la
relation

(1) cos a — cos m cos cp -j- sin m sin cp sj 1 — k'1 sin2 a.

Sous forme rationnelle, elle devient

E) 2 — sin2 a — sin2 to — sin2 o — 1 cos a cos to cos o

miere.

-fi- k'1 sin2 a sin2 to sin2 o ~ o

Enseignement math.
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et est. symétrique en a, o> et o. En la résolvant par rapport a a, par
exemple, puis en posant

sin a a sin to — x sin o =5= a*'

011 trouve

a x\i i — x'2 y i — JE x'2 dz.r' y i — X- \/ i — JE x1

1—JE x2 x'2

telle est donc la relation entre les abeisses du point g et des

points mobiles M etR; le double signe correspondant aux deux

points R extrémités de la polaire.
En différentiant (2), a étant constant, on obtient l'équation

dx dx'
')) ~—- —— • — o ;

Vi — a*2 y i — JE a'2 y 1 — x'2 y i — JE x'2

(2) est donc une intégrale algébrique de l'équation (3). C'est

l'intégrale d'Euler. Si l'on revient aux notations primitives 3

devient
d f>) do

; 4) -——
'

* =0 ;

\/ i — JE sin2 co y i »— JE sin2 o

(0 est donc une intégrale de 14). C'est l'intégrale obtenue par-
La grange.

Argument elliptique. — Revenons à la figure précédente que
nous appellerons la figure 1 et considérons une ligne polygonale
inscrite à ES circonscrite à E et tangente à celle-ci, h l'une des

extrémités du petit axe. Désignons par x0 o l'abcisse de ce

point, puis par ,r,, ,rm celles des points de contact
successifs obtenus en partant dans un sens déterminé, à droite du

petit axe, par exemple; n opérations (uni opération consistant
dans le passage d'un point de contact au point de contact
suivant) nous fournissent une grandeur x.2n.

Nous allons voir que l'on peut définir une variable r et une
fonction de cette variable telles que lorsque la variable prend des

valeurs proportionnelles à o, 1, 2. n, la fonction prenne les

valeurs uy, .r2, a\..., x,n...
A cet effet considérons : le point Q de l'ellipse E ayant même

anomalie excentrique que M, la tangente à E en Q, et les inter-
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sections de cette tangente avec les tangentes issues de M. On

trouve que les lieux de ces deux intersections sont nue seule

et même ellipse E" ayant pour demi-axes les racines carrées de

i -}- \/ I — /.:- sin'2 a (i —/i2) i -f- sji — IC sin2 se

—. —i
^
—

1
i ('us a y i — JE sin a -f- cos a

dirigées respectivement suivant OX et la direction perpendiculaire.

La différence de ces deux quantités est !r ; donc le" est homo-

focale à E et E\ La ligne polygonale inscrite a ß", circonscrite
à E et la touchant au même sommet que la précédente, nous fournit

ainsi deux séries de points; d'abord ceux d'abeisses .r,, .r,.
a\2}1... déjà obtenus, puis une deuxième série de points intermédiaires.

XL us pouvons continuer ainsi, obtenir de nouvelles
ellipses E'X E1V, homofocales aux précédentes et insérer entre deux

points d'abeisses A\lm s\2:n 1 un nombre or — i de points
intermédiaires, y étant aussi grand que Eon voudra.

Considérons maintenant l'ellipse E et toutes celles qui lui sont
homolocales ; la tangente a E en un sommet du petit axe détermine

à droite de cet axe un point X' 'sur Lune des ellipses de la
l'a mille.

La deuxième tangente à E issue de X touche E en un point 33;

soit j son abeisse ; l'ellipse qui passe en X peut être définie par le

paramètre j. On démontrerait aisément que si l'on continue la
ligne polygonale dont XB est un coté, les projections sur OX-des
différentes polaires des sommets tels que X sont toutes plus
petites que [3 et vont même en décroissant du moins tant qu'on
n atteint pas 1 axe OX. Dès lors soit .r l'abeisse d un point de 13

situé dans le premier quadrant; on pourra toujours déterminer
une ellipse de paramètre suffisamment petit 3 et un entier a

suffisamment grand pour qu'après un nombre A d'opérations on
parvienne en un point de E dont l'abeisse différé de .r d'une quantité

aussi petite que l'on voudra et qui sera plus petite que y. Xous
représenterons par 3 la limite du produit a3 quand 3 tend vers
zéro.

A toute valeur de ,r correspond une valeur de - (et même une
infinité; car à celle que nous venons de définir il faut ajouter
celles qui sont égales a celle-ci augmentée d un multiple de 4K?
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K étant la limite du produit Xp quand on choisit x 1, c'est-à-
dire quand la ligne polygonale embrasse le quart de l'ellipse) et

réciproquement à toute valeur de .s correspond une valeur de x
et une seule. On dit que .3 est l'argument elliptique de module
k et l'on écrit

x — s il [h. z)

ou simplement
X zzz S fi [z).

On peut comparer avec 3 l'angle to complément de l'anomalie
excentrique du point dont l'abcisse est x; on dit que <o est
l'amplitude de c:; ce qui s'écrit

(x> ~ am v ;

on a donc
x ~ si it oj ss sin am 3 ~ sn z.

D'après la définition de 3, on a

sn z
sn o o et iim îs= 1 pour 3 zzr o.

Equation différentielle de snz. — Revenons à la relation (o)

que nous avons déduite de (h); cette dernière étant symétrique
en a, (o et ce, en la résolvant par rapport à sin o x', on a :

x sj 1 -— a1 s]1 — h~ a- -f- a \J 1 — x- \J 1 — k2 x2

1 — k2 a1 x2

Formant la différence .-F —x1 la divisant par a et passant à la
limite (pour a o) on obtient

lim — 3= sj1 — x2 \! 1 —• h2 x'1 ;
a

le premier membre peut s'écrire ; en effet si l'on pose x sn z

a — s?i A3 on en tire x' sn (3 -f- Ac) on a donc

x' — x sn (3 -|- A s) — sn z

a sn A 3

la limite du second membre est la même que celle du rapport
sn (3 —J— A3) — sn 3

Ä3 ~~
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puisque la limite de est 1 pour z o. La fonction x si1 z

a donc pour équation différentielle

|5) sj 1—x1 \/% —k- x- •

En représentant ,3 en fonction de x par la notation

z arg. sn x

on voit que l'équation (3) d Euler a pour intégrale

arg. sn x zb arg. sn x' — Cte.

Le théorème d'addition de la fonction su z nous est donné par
la relation [a') où xf, x et a représentent respectivement

sn (z +p), sn z, snp,

D étant comme z un argument elliptique.
On peut remarquer que si les deux ellipses E, E' au lieu d'être

homofocales étaient concentriques, semblables et avaient mêmes
directions axiales ou encore se réduisaient à deux cercles
concentriques,3 dégénérerait en sin z, l'équation différentielle (5) et
les théorèmes d'addition se réduiraient à

— \J1 — x'1 x' zz x s/1 — a1 -f- a \J 1 — x'2 „

Si les deux coniques étaient un cercle et une ellipse avant

pour petit axe un diamètre du cercle ; sn z dégénérerait en Th. z.

Courbe cVHalphen, — Jusqu'ici l'argument z est considéré
comme la limite du produit à[3 • on peut le représenter par une
surface en employant la représentation géométrique d'Halphen
ou une autre analogue, la suivante par exemple que nous appellerons

la ligure II.
En posante sin (o, l'équation (5) devient

d LO / :
-— — SJi — k- sin2 co

d z r

d'où
d co

0 \J 1 — X:1 sin2 co
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Soit un cercle de rayon y une ellipse dont les demi-axes

sont i et ~ [li =\/1 — considérons la courbe G dont le rayon

vecteur est la moyenne proportionnelle entre ceux du cercle et
de l'ellipse ; si l'on prend pour axe polaire le petit axe de bel! ipse
et si o) représente l'angle formé avec lui par le ravon vecteur p ;

l'équation de l'ellipse est

-s -—— s — ^

y i — k- sin- m

la courbe G a donc pour équation

(i — / - sin-

et son aire déterminée par rangle (o est

i J \/ i —. k2 sin - m

elle est donc «'gale à la moitié de l'argument elliptique .5; d'ailleurs

Period—En continuant la ligne polvgonalc ffigure I)
inscrite a E7 et circonscrite il El; on finira par trouver des points de

contact voisins de ceux déjà obtenus ; on conçoit même que Eon

pourrait déterminer l'ellipse lv de telle sorte qu'après un certain
nombre d'opérations on retombe exactement sur les premiers
points de contact obtenus ; la {onction sn z est donc périodique;
on le voit d'ailleurs d'une façon bien plus nette sur la figure II. Si
K représente l'aire comprise entre l'axe polaire, un axe
perpendiculaire et la courbe G, on voit que s/i z reprend les mêmes

valeurs quand v augmente d'un multiple de j k par suite

S 71 | Z —j— i Iv] ï— SU Z

on voit aussi que la fonction ne lait que changer de signe si r-

augmente de ak ; la quantité alv est la demi-période; elle joue le

même role que t: pour les fonctions circulaires.
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Multiplication de Vargument par un nombre entier. —La
multiplication de l'argument par un entier m contient deux questions

: étant donné sn z trouver sn mz ; étant donné un secteur z
de la courbe G trouver l'angle déterminant un secteur m fois

plus grand; le premier de ces problèmes peut se résoudre en

faisant usage du théorème d'addition ; de plus la figure I en fournit

une représentation géométrique; il est clair que si l'on détermine

l'ellipse E/ de telle sorte que l'abcisse de g soit égale à la
valeur donnée de sn z que nous pouvons supposer positive ; en

construisant la ligne polygonale ayant un premier contact en y
et en tournant dans 1111 sens convenable, les abscisses des points de

contact successifs auront pour valeurs sn ZzjSn 5,z... sn(pn 1) r.
En construisant entre les deux mêmes ellipses une seconde ligne
polygonale ayant un contact au sommet du petit axe de E, les

abscisses des contacts successifs seront sn 2z, sn 4-... sn (2n E.
Maintenant que l'on connaît la valeur de sn mz 011 peut la

reporter sur la figure II et déterminer ainsi le rayon vecteur et

fangle (à un multiple de 2-près) qui détermine sur l'aire embrassée

par G, un secteur mz; si ç est la valeur trouvée de sn mz 011

aura simplement à résoudre l'équation

sin oj
à / lû * o

** ~ 1-2 *

y i — k- s 111- co

ce qui donnera pour Tangle co cherché quatre valeurs faciles à

discuter.

Valeurs imaginaires de Vargument. —- On peut, soit admettre
dans une première étude, soit démontrer assez facilement en
s appuyant sur le théorème d'addition, que lorsque la variable est

purement imaginaire, la fonction sn est aussi purement imaginaire
si 011 lui impose la condition d'être une fonction analytique (T,
Nous écrirons donc

mi (-• \J— 1) — Sj — i S/i (3) x sj — 1

où Sn z représente une fonction réelle de ~ et où l'on pose ;v Snz.

(.') A oir Nouceltcs Annales. ;3° série. T. XIX. juin 1900. Exposition géométrique
de quelques propriétés fondamentales des fouettons elliptiques de première
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Le théorème d'addition et l'équation différentielle si l'on y
remplace a, x et x' par a Sj— i, x \J— i, x' \J— i, deviennent

j x sj i -f- a2 \J i -f- k2 dß -|- « \/1 -f- x2 \J i q- k2 x2

i — k1 a2 x2

y x.

-j— i=z \/i + a;2 \Ji -f- k'2 x2 •

Une induction naturelle conduit à penser que la nouvelle
relation entre x et x' doit être la solution d'un problème
analogue au précédent. En effet, dans le premier problème,
l'équation des ellipses rapportées a deux axes rectangulaires
est

B2 x'2 -j- A2 y2 À2 B2.

avec
A2 — B2 k2.

En changeant x'2 en — x2 on a les hyperboles.

— B2 x2 -f- A2 j — À2 B2

avec la même relation entre A et B. Elles ne sont pas homofo-
eales (x), elles ont les mêmes axes que les ellipses de là figure i.
En répétant les mêmes constructions que dans le premier
problème on arrive à des résultats analogues en ce qui concerne la

périodicité, la multiplication de l'argument; mais on arrive a

voir que la fonction Snz devient infinie pour certaines valeurs
de z\ dans les calculs, les fonctions circulaires sin cos sont
remplacées par les fonctions hyperboliques Sh et Ch. La représentation

de l'argument par une surface se fera d'une manière analogue
a celle du premier cas; on considérera le rayon vecteur
hyperbolique y) et l'argument hyperbolique au lieu du rayon vecteur
ordinaire et de l'angle. Nous rappelons que si les coordonnées
d'un point sont#, y son rayon vecteur hyperbolique est y/ J2 — 4*'2.

PJ Si l'on considérait des hyperboles homofocales on aurait bien une relation de

môme forme, mais k serait*plus grand que i car il n'est autre que l'excentricité de

ces hyperboles.
(2) Voir Laisant. Essais sur les fonctions hyperboliques. Gaulhier-Villars 1874.

Cela montre une fois de plus l'intérêt qu'il y aurait à introduire franchement dans
renseignement l'usage des fonctions hyperboliques.
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L'analogue de la courbe G est alors une courbe G' dont le rayon
vecteur hyperbolique est la moyenne proportionnelle entre ceux
de l'hyperbole équilatère de demi-axes égaux à i et de l'hyperbole

ayant pour demi-axes i et— ; le demi-axe transverse étant

celui qui est égal à l'unité; l'aire comprise entre la courbe, son

asvmptote et l'axe transverse est représentée parK/ et Snz a pour
période réelle 2 KL

Double périodicité de snz. — De ce qui précédé 011 conclut

que la fonction snz a deux périodes; l'une réelle et égale à

4 K, l'autre imaginaire et égale à 2 K' \J —1; par suite le plan
des 3 est partagé en rectangles par des parallèles à l'axe réel et à

l'axe imaginaire, quand .s occupe dans ces rectangles des positions

relatives semblables la fonction prend des valeurs égales;
dans chaque rectangle la fonction devient deux fois nulle et deux

lois infinie. Ses zéros sont 2 m K + in¥J \/— 1 ; ses infinis sont

2 /72K + 2 (n~\- 1) K/ — i où K et K/ sont les deux intégrales

In dx n dx
JO \/(1 — xi) t1 — ^2 -x'2) Jo \/(1 "h x*) P + x'r)

que l'on peut calculer par des séries ; m, n sont des entiers
quelconques.

Variations de la fonction snz. — Pour se rendre compte de la
manière dont varie snz quand ,3 décrit un chemin déterminé dans
son plan, il suffit d'examiner deux cas principaux, celui où 3

décrit une parallèle à l'axe réel et celui où il décrit une parallèle

a l'axe imaginaire et de chercher les courbes décrites par
la fonction. Les points de celles-ci peuvent être obtenus au

moyen du compas.
Pour le premier cas 011 posera :

" -f r0 V-i s7?.G-|~r0v/— 1) U + V \J— 1

en développant le second membre au moyen du théorème d'addition,

puis en séparant le réel et l'imaginaire et posant

sn u — ç, Sn v'0 — Y0,
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OU a

11 + Yjj) : i + Y2'

u 4- P 4 Vgp

Kn éliminant 4 on trouve

4- / - Y2

V2
va d-4) (jz^ii!)

p + ^ 4 4 4

O ; L'- Y2;2 —
i 4 Y2

I 4- "Y,7

/2 V2
i:2

-V^+^ VI Y2 4 i o.

1 el est clone je lieu cl(Vrit par s/iz clans le premier cas. Y0 est
\ ordonnée cl un point où la courbe coupe l'axe imaginaire* Pour
le second cas on posera

'

V - ' • S// (,7n p-i; =ï-4Yt
on développera encore sn. 'n4" r \ — 1 pois posant Snv

s/i nK) ss= UM ei séparant Je réel de l'imaginaire on a

o= Y /2 4^4
tY v2!2

O — É1 14
Li 4 /Y C;

l'élimination de y, donne ;4

— h1 VI
k2

_ + k'- V m+I=0;

I est l'abscisse d'un point où la courbe coupe Taxe réel. On

remarque que l'équation 4 se tire de 'G, en changeant respective

men t

V2. Y2 et U2 eu — 14 — U2 ei — Y2.

On pourrait démontrer non seulement que les systèmes (6) et (y)
sont bien orthogonaux comme l'exige la condition cPanalytieité
imposée à la Jonction, mais encore que les courbes (y) sont à

elles-mêmes leurs propres trajectoires orthogonales. Si le

paramètre Lq est compris entre 1 et on a les courbes relatives au

') Loc. cil.
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premier cas ; s'il a line autre valeur positive 011 a les courbes

relatives au second cas.
Ces courbes sont susceptibles d'une définition simple. A cet

eilet, 011 mettra l'équation (y) sous la lorme

f(U.Y > Cu'

en la résolvant par rapport à la constante arbitraire U0. Le calcul
ne présente aucune difficulté et Ton trouve

O ÏG -

X 4- k'2R-±v'(itYK-
•2 k2 u

ou nous avons pose
R-2 ~ YC

Désignons par F et F les deux points de l axe des U ayant
pour abscisses -j- 1 et — 1 ; par G et G les deux points du même

axe ayant pour abeisses-j ~ et ; soit F, Y un point du plan :

fsif ses distances à F et Fb le lien des points pour lesquels le

rapport f : f est le même qu'au point considéré est un cercle;
mi trouve que ce cercle coupe l'axe réel aux points d'abscisses

2 L*

De même si Ton désigne par g et G les distances du point XL Y h

G et G' le lieu des points pour lesquels le rapport g : y est le
même qu au point considéré, est un autre cercle qui coupe l axe
i eel aux points d'abcisses

i —{— Ih 112 zt y y -j- IF 1 2 — 4 />" L 2

x#t
Ces valeurs sont précisément les facteurs du second membre

de l'équation (8). Dès lors si nous représentons d'une
manière générale paix les abscisses d'intersection du premier cercle
avec l'axe OU, par j les points analogues pour le second cercle ;

les courbes (y) auront pour équation

u ^ i j
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on voit que Ton obtiendra autant de points que l'on voudra de la

courbe coupant en zb: U0 l'axe réel, au moyen des intersections
de deux cercles faciles à construire, l'un arbitraire du paramètre /,

l'autre dont le paramètre est j ~
Théorème de Poncelet. — A propos de la figure I nous avons

dit que l'on pouvait concevoir l'ellipse E; telle qu'après un certain
nombre d'opérations 011 retombe exactement sur des points de

contact déjà obtenus; il est clair qu'il suffit pour cela que le

point g d'abscisse sin a sn p soit choisi de telle sorte que p
soit 1111 diviseur de la période 4 K ou plus généralement soit
commensurable avec 4 h ; mais alors si l'ellipse répond à cette

condition, on pourra prendre pour sommet du polygone un point
quelconque de V: et les polygones ainsi obtenus auront tous le

même nombre de côtés; une conclusion analogue se présente
quand l'on considère les hyperboles dont nous avons parlé ; 011

arrive ainsi à deux cas, très particuliers à la vérité, des théorèmes

de Poncelet, mais qu'on peut évidemment généraliser par
projectivité. 11 conviendra de signaler que l'équation algébrique

par laquelle on déterminera snp ^ K, m, 11 entiers n'est

pas résoluble sauf dans des cas très particuliers.
Les considérations précédentes peuvent s'étendre presque sans

changements aux fonctions à multiplicateur cr de Weierstrass (1).

En les complétant par quelques notions sur les fonctions en, dn et
en général sur celles qui sont reliées à s/? par une équation
algébrique; parla réduction des intégrales dépendant de la racine
carrée d'un seul polvnome du quatrième degré aux trois types
canoniques, par la transformation de Landen, par les théorèmes
fondamentaux sur les arcs d'ellipse et d'hyperbole qui ne présentent

aucune difficulté théorique, 011 aura les éléments nécessaires

pour les applications les plus usuelles et pour pouvoir utilement
employer les tables. L'étude des fonctions considérées comme
définies par les équations différentielles au moyen des intégrales
curvilignes, les développements en séries et en produits, les fonc-

Les coniques sont deux ellipses ou deux hyperboles ayant moines dircelions
uxiaies, mais non bomofoeales.
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lions de Jacobi, la formation a priori d'une fonction admettant
deux périodes, les problèmes de la division et de la transformation

en général seraient réservés à l'enseignement supérieur.
Dans l'enseignement moderne on laisse au second plan les

fonctions sn en dn et l'on considère d'abord la fonction p de

Weirstrass. Si dans un enseignement préparatoire on préfère
commencer aussi par l'étude de cette fonction, on peut suivre une
méthode analogue a celle qui vient d'être exposée. Nous nous
bornerons a dire que en e3, désignant trois constantes dont la
somme est nulle, on considérera les deux paraboles dont les

équations en coordonnées rectangulaires sont :

(P) y ~t x. (?') 2 a.y rr (f3 — e±) (e.2 — eL) -j- x: zt 2 S \J x

où

S \J(a. — e;> + cq) (a — <°2 -j- tq)

et où a est une constante arbitraire. Alors si l'on pose

a~p eL, e,, e,) — cj5

si l'on prend sur P un point d'ordonnée égale à p (s) — ei et
si l'on considère une ligne polygonale partant de ce point ayant
ses côtés tangents à P et ses sommets sur P;, les ordonnées des

points de contact successifs augmentées de & seront

P(zzt^), p(zzt'i a, p(z±:uÇn

les deux signes correspondant aux deux directions possibles
qu'on peut suivre en partant du premier point.

E.-M. Lùmeiiay.
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