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Les nombres sont d'une classification très facile, ainsi que Les

opérations qu'on peut effectue^ sur eux, et il me semble que;
l'étudié de cette classification ne serait pas stérile pour tous ceux
qui s'en occuperaient. • ä

^ i

Ch. Berdellé (Rioz, Haute-Saône).

DÉMONSTRATION ÉLÉMENTAIRE DE LA FORMULE
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I. Un le m m i-. — De la double inégalité bien connue

(y)

il suit que

Slïl©
I é> > COSQ

•*" J' H Slüö ; ; •©.- :

O < i < i — coscû zz % Sut- —
cp

'
-, s

sino
o<i+r^-<a;

d'où en multipliant,
sin-o—< 4 sin- -

pu\, après la division par la quantité

/ • •>sin-o — 4 sm — cos- -

U' ' 0< .J —O' •' Slïl^O ©- ' COS-— •

4
'2

En supposant 3 obtus, cette double inégalité permet de

conclure que la fonction

sirucp cö-

reste finie daus l'intervalle
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II. — Je pose z> xrz pour avoir les infinis de la fonction i

sous forme simple, et je vais considérer la somme évidemment

convergente
0°

»V — CO

qui devient infinie pour les mêmes valeurs que la fonction

fi Lv). On voit d'abord que l'on a

/;(.*• + //*)= £(.*), — im =±L I, I±2, dt 3,

puis on s'assure que la différence

(4) effW=/iW"-fäW

reste finie dans l'intervalle ^ — et par conséquent pour
tous les x.'

En effet, on a

— —r +/i (<*')>

la fonction

f" w ^ '(v=± '•± a'± 3" •0

restant finie dans 1 intervalle ^——- > —-J et la quantité

8 W siivfr- ~ ^ — fs W

devient la différence de deux fonctions qui, dans l'intervalle
— — restent finies.\ 2 2 J

Il y a donc une constante positive C telle que partout

0) I g (x) I < C,

la valeur spéciale de cette constante 11 avant d'ailleurs aucune
importance pour nous.
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III.—Si, dans la série (3), on transforme l'indice sommatoire
v en posant

v ~ p -f- m (p — 0,1,2,. m — i ; p. — o, zt i, it: %..

oii m signifie un entier positif quelconque, il vient

j/î x In — 1 oo

r ?trjrrC — — cc

ou bien
m — i

ç —0

Une équation fonctionnelle toute semblable subsiste pour la

fonction

fi (*) :

mais nous nous bornerons pour l'établir dans le cas particulier de

m — 2% k étant un entier positif quelconque.
On a d'abord

,> .rTT
4 cos^.

— - f (x).
„ xiz „ ,ttt sin-.rr: 1

i sm- cos -

de la sorte que l'équation
m - l

se trouve vérifiée pour m — 2. Admettant qu'elle subsiste pour
une valeur /;?, nous transformerons les termes du second membre
en l'employant dans le cas de m — 2, ce qui donne
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et il s'ensuit au lieu de (7)
m — 1 rn — 1

'<*=2 « )+2 ' (^±i)
?—o ?—0

ou bien
2/» —1

ç —0

ce qui est la formule (7) écrite avec la valeur un de l'entier m.

La formule (7) ayant lieu pour m — 2, sera vraie, par
conséquent, pour m — 4, 8, 16, et en général pour m 2/l.

IV. —Les deux formules (6) et (7) ayant lieu pour m 2Â, il
s'ensuit pour la fonction

*'(•*) /i (*) — A W

Ja formule de la même forme
m— i

e—0

Puisque pour toute valeur de x l'inégalité (5) a lieu, cette
dernière formule permet de conclure

m C C j.
g (.r) |<—7- — {*» ~i o K ; i m> m

et il s'ensuit en faisant croître k au delà de toute limite, que
l'on a

ls(*)! o.

Ceci vérifie l'équation (.r) f2 (yc), ou Jjien

00
7T2

__ y I
sm2#^: (x -f- v)2

v — 00

qu'il s'agissait d établir. Elle fait voir, d'une manière qui me

paraît élémentaire et simple, que la fonction sin x~ est analytique,
ce qui permet d'obtenir son développement suivant les puissances
tie x sans faire usage du théorème de Taylor-Cauchy.

M. Lerch (Fribourg, Suisse).
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