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366 p. ZERVOS

l'on déduit que
a. a9

a.1 — a > o
an a.

mais, pour cela, il faut que a soit un nombre plus grand que la
racine positive de l'équation

;) ai a2 __
aa an

(parce que a> o) d'où

aia>~—F

qui est plus grande que-^-.

IV. Limites de racines

On connaît les relations entre les racines et les coefficients,
c'est-à-dire

a + ß+T+ — «î
aß +aT+ +a2

aPï T= (—

Nous pouvons en déduire des règles pour trouver des limites
des racines ; par exemple :

i. — Si clans un polynôme du degré p. avec des racines toutes
réelles, nous avons

I ÖH-1 I ><*v.

il y aura nécessairement une racine en valeur absolue moindre

que p.

Démonstration. — La somme des produits des racines p—i
à p — i donne en valeur absolue le terme | | La valeur
absolue du produit des racines est ] a*>. | Des produits p— i à

p— i, le plus graud en valeur absolue est celui qui n'a pas la

racine la plus petite ; et si nous multiplions ce produit par
p, nous aurons un nombre plus grand que | a^—i | et par
conséquent que | av- | ; tandis que si le même produit est multiplié

par la racine a plus petite, nous aurons le terme | & |
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D'où l'on voit que y est plus grand que la plus petite racine.

2. — Dans un polynôme qui a toutes les racines positives

et
| | > | «n-i |

il v a nécessairement une racine positive plus grande que le

degré du polynôme.

Démonstration. — La somme des produits des racines y — i
à [x — i est égale à | &i | tandis que le produit de y racines
est é^al à

i «H- I

Des produits y— i à y— i le moindre sera celui qui n'a pas
la plus grande racine. Donc ce produit, multiplié par y, nous
donnera un nombre plus petit que jet par conséquent plus
petit que a,K.

D'où il suit que le nombre y est plus petit que la plus grande
racine.

P. Zervos (Athènes).
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