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SUR LES DIVISIONS HO;\IOGRAPHIQU}CS

IxtroptcTiox, — Quand on développe la théorie des divi-
SLons homoqraphiques au moven de l’équation algébrique fonda-
£ v
mentale

i 5l 3 L 1 Ny m—
XX — AX — ux v =0

on est amené a considérer deux-origines O et O pour compter
les segments ., .0,

En disant que 1'équation doit étre satisfaite quelles que solent
les origines, on admet le fait comme évident & priori. Cependant
nous crovons bon, dans l'intérét des débutants de la géométrie
synthétique, de donner une forme plus concrete et plus précise
a ce principe, en l'énoncant comme un théoreme dont la démons-
tration simple conduit d'une maniere palpable aux propriétés
connues des coelficients A, =, et v.

Tel est le but que nous nous proposons dans les lignes qui
suivent. | )

Dérintrion. —  On  appelle divisions homogmphiques des
suites de points telles qu’a chaque point de I'une correspond un
point et un scul de autre,

Fouation. — Il existe done entre les segments 2 et ' déter-
minés sur deux bases [ et {’, par deux points homologues et
comptés depuis deux origines données, une équation du premier
degré de la forme : :

xx' —Ax —ux' v =o.

Les coellicients 7, u, v sont déterminés par trois paires de
points homologues fondamentaux.
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TuatoreME : Ftant donné 3 paires de points homologues fonda-
mentawr, la position des éléments d’ une quatriecme paire sur les
bases est indépendante des origines.

DEmoxstraTiON, — So1t O et O les origines, «,a’; b, b et ¢, ¢ les

-+ 3 paires de points homologues fondamentaux.
Désignons les segments comme suit :

0 - Oa—1 ab — m ac=n
\ 5 1 . Q‘
L Oa =1t a') = m' a'c'=n'.
g
3
1 L’ équation de définition s’appelle :
CIE L R
' ' S 'y
= AL — AL — 11X~ % T2 0.

Calculons d’abord les coelticients 2, w et v
en formant les 3 équations correspondant aux points donnés;
nous avons :

A — At — pt +v=o0
(tm) (' +m) —At+m)—p{t'+m)4v=o,
(t+n) &+ n) —r{t+n) — p{t’'+n)+v=o.

Les solutions 2, wu et v seront

Formons ensuite ces déterminants

— 1 — ! 1
A= | —(t+m —(t'4+m)-+r1
— ({t4n —({t'+n) 41
— ' —t’ 4 x
Ay =) —t+m ('4m) —({t'+m)41
—(t+n) ' +n) —{'4n)4x
— — {t' ~+ 1
A,y= | — ({t+4m) — ({t+m) {@'+m) 41
() () @A) 4o
s § wee I — '
Ay= 1| —({t+4+m) —{4m) —{+m t'+m)
—({t+4n) — 40y —({4n {4+ n)
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D éveloppons et simplifions :

A = m'n— mn,
= t' (mn' — m'n m'n' (m —
A, =t (mn V'n vn' (m—n),
—_— 4 r_ o 1 I o !
A, =t mn m'n) -+ mn (n m',
A, = ' (mn' — m'n) 4 tm'n' (m—n) = ma (—m').

On peut encore éerire évidemment :

CA = A e’ (m— n),

\
1 A, = At mn (' — m),

A, =A N M — A,

\

Prenons maintenant un 4° point d sur {, donnant

x=1-+|p avec p = ad.

Son homologue d’ sur ! donne

x' =+t 4 p' avee p’ = a'd’.

La valeur 2/ se déduira de celle de & d’apres l”équution fonda-

mentale : »
xx' — hx — px’ + v=o.

On aura:

O —v
71,*—-{‘1.

Introduisons les valeurs des déterminants :

LY A,
Loy —
x' = A A A1'1’ — A,
— A, Ax — A,
X —t -
A

Avece les segments p, ¢, p/ et ¢/, on a:

At p)—aA,
f— =t
I Yy

Développons ensuite P
[ Aj(t.—}_—}))—__-‘s3 —
£ (t+p)—2,
At A p— A, —1tA—t'pA TS,
B At+ Ap — A,
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En tenant compte des valeurs (1) et en simplifiant, on obtlient:

ik F
, m'n' (m—n)p

p = :

p (mn'—m'n)—mn (n'— m')

D’ow 1l vésulte que la position du point d' par rapport aux
points a’, ' et ¢ est indépendante des valeurs ¢ ez ¢/, ¢’est-a-dire
indépendante des origines O et O' sur les bases [ et /. C. q. f. d.

Resarque. — Puisque la position des éléments des paires
nouvelles est indépendante des origines primitivement choisies,
on peut prendre celles-ci d’'une maniere arbitraire sur les bases,

cu observant que les 3 paires fondamentales déterminent chaque
fois des nouvelles valears de 4, u et v.

CALCUL DES COEFFICIENTS, — NOUS ayons cu
| . A, A,

A == = —> V= —==
A A A

En introduisant les valeurs tirées des déterminants, on obtient:

5 At +m'n" (m —n) / m'n' (m — n)
T A T m'n’ — m'n
At mn (n'—m') mn (n' — m')
% == =1+ : ——
A mi — mn
At A — A tm'n' (m—n) -+ U (10 —m')

v =t
) 3 e

mn' — m'n
V= a4 ot — U

CaAs prarTIcULIERS : 1° d tombe en b ow en ¢.
On a alors

1) —_— m ou [) - n.

Supposons donc p == n; on obtlient :

) m'n' (m—n)n

]7:

o n{mn'—m'n)—mn(n'—m')

—

On voit que d’' tombe sur I'homologue de ¢, soit ¢
De méme avec b et 0.

2" Les origines sont une paire de points homologues comme a, .




2
o
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Dans ce cas les valeurs ¢ et 7' sont nulles et on obtient

m'n' {(m —n
F ] 7 '
mn'— m'n
mn (n' — m')
:,L —_— y y )
mn' — m'n
v T 0

[’équation générale devient :

rx' — i — pax' = o,
ou
w = fa,
avec
FA m'n' (m —n
k= _ — ! ,
X — 1 (mn'—m'n) x — ma (' — ')

On voit que &' s'annule avee x

4° Le conjugué d’un point comme b est a Uinfind.

Dans ce cas on a m' = = .

Les valeurs 7, v et p’ ne présentant pas de remarques parti-
culicres.

la valeur w prend la forme: n=1-m = 0.

Si on faisait de méme 7 ==cc, c’esi-a-dire s1 on prenaii ¢ &
I'infini, on aurait

r=1t'4+n = 0'c.

Les points conjugués des points a l'infini portent le nom de
points limites.

On en conclut que les coefficients % et u. sont donnés par les
distances des points limites de chaque base a I'origine correspon-
dante.

En outre, siles points limites étaient les origines, on aurait :

N

) = 0, L == 0.
D’ou

I = — y == B

t et désignant les distances de ces points aux points a et a'.

5 On prend d a oo .
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e conjugué o du point ¢ donne alors la distance

ne'n ‘me— 1)
! "’ \ N I3
) R g = =
4 mi' — m'n
Cette valeur peuat du reste ¢tre déduite directement du  cas
px‘écédent.
.. Crevier (Bienne. Suisse).

LA FORMULE DE STOKES

Rappelons que le théoreme de Stokes se résume dans U'identite

/ (Ndx 4 Ydy ++ Zd=z)
o

[ [ oL aY oX o7 Y 3\ L
_»/S( <~5_}. _—’5’?> L+ (5?’— 57) m - (”é; - 67) n )(/u

dans laquelle le premier membre est une intégrale curviligne cl

le deuxicme une intégrale de surface limitée par le contour de

la premiere ; X, Y, Z sont des fonctions de x, ¥, =, finies et con-

tinues sur la surface, admettant des dérivées finies et continues

aux mémes endroits ; [, m, n sont les cosinus directeurs de la nov-

male a I'élément diw de la surlace.
Nous poserons

= fla ),

Xy g, ),
s = hiu,v),
de telle sorte que ce soient

X /1‘\'1, II), cle.

oz [ ). ete.

les ¢quations des courbes 1-0 et 3-4,

x = [lv, 1), cle.

A= iy, Hyl Bl

celles des courbes 2-3 ct 1-4.
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