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SUR LES DIVISIONS HOLOGRAPHIQUES

Introduction. — Quand on développe la théorie des

divisions homographiques au moyen de l'équation algébrique
fondamentale

xx' — ax — [ix1 -f v — o

on est amené à considérer deux-origines 0 et 0' pour compter
les segments x\ ,vr.

En disant que l'équation doit être satisfaite quelles que soient
les origines, on admet le fait comme évident à priori. Cependant
nous crovons bon, dans l'intérêt des débutants de la géométrie

v - O

synthétique, de donner une forme plus concrète et plus précise
à ce principe, en l'énonçant comme un théorème dont la démonstration

simple conduit d une manière palpable aux propriétés
connues des coefficients A, r, et v.

Tel est le but que nous nous proposons dans les lignes qui
suivent.

Définition. — On appelle divisions homographiques des

suites de points telles qu'à chaque point de l'une correspond un
point et un seul de l'autre.

Equation. — Il existe donc entre les segments x et x! déterminés

sur deux bases l et l', par deux points homologues et
comptés depuis deux origines données, une équation du premier
degré de la forme :

o

xx' AX [IX' -|— V o.

Les coefficients A, a. v sont déterminés par trois paires de

points homologues fondamentaux.
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Théorème : Etant donne 3 paires de points homologues
fondamentaux, la position des éléments d? une quatrième paire sur les

bases est indépendante des origines.

Démonstration. — Soit 0 et O7 les origines, a, a!; b, b' et çt r' les

3 paires de points homologues fondamentaux.
Désignons les segments comme suit :

o

O a i
O 'a' — t'

ab =r

a'b' :

L'équation de définition s'appelle :

xx ' — A.r ' — p..*'
' -{- y ~ o.

Calculons d'abord les coefficients à, o et y

en formant les 3 équations correspondant aux points donnés;
nous avons :

it' —/J — \j.(' 4~ v o

(t + m) (t' -|- m') — X (t 4- m) — jjl (t' -f m') -f- v o,

(t + n) {t' + n') — A (t -f n) — p. [t' -}- n') 4- v o.

Les solutions Xv5 g et v seront

A
A

A,
"ÄT

A.,

T"

Formons ensuite ces déterminants

- t — i' 4- ï

- (if 4" m) — (t' 4" m>) -f- 1

- (t 4- n) — (*'+//') + I

-it' — t' +1
- (t 4r m) [t' m>) — 4'4~ m') +i
~ ~f" ri) 4 4~ ^ —~-{t 4~ n 4~

I — t — tt 4- i
A., 'lxâ I — (f 4-v',r) [t 4- ai) (<f 4- m 4- t

I — (* 4~ n) — F 4~ n) E 4- ri) 4~ i

t i' — tt'
A., — (t 4- ni) — (i' 4- tri) — (t 4- m) q' Em')

- [i 4~ ri) — (t-4- n') — (t 4- a) f1' 4~ n')
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Développons et simplifions :

A :=r m'n — mn',
— t' .nui' — m'n) -f- m'n' [m —/«),

A_> — t ,{iwi — m'n) -j- mn (/// — m*Jf

A:; — p/i/i' m'n) -j- tm'ri (m —n) -f- t'nr.i (n' ni).

On peut encore écrire évidemment :

^

Aa zz: A£' -f- m'n' (m — n),

i A2 z=r A / -J- mn [ii — m'),
[ A., iLt + A2 t? — A W.

Prenons maintenant un 4e point d sur l, donnant

x — f-j~p avec p — rte/.

Son homologue d' sur V donne
o

x' zr: t' -f- p'. avec p' — a'd'.

La valeur x! se déduira de celle de x d'après l'équation
fondamentale :

xxl — Ax — ax' -j- v ~ o.

On aura :

ax v
X

n — ijl

Introduisons les valeurs des déterminants :

A-* — Al
A A A..J- — A„

m: —:r — -—! ——
A> A.r — A.,

* A

Avec les segments p, \f, p' et t', on a :

P' + t'=
A (t -j-p) — A.,

Développons ensuite pr

n> __ Ai d +P) —
P M) —A,

Aa£ -f- A,p — A;} — OA—
St —Ap — A.,
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En tenant compte des valeurs (i) et en simplifiant, on obtient:

m'n' (m — ii) p
^

p [mn' — m'n) — mn [n' — m')

D'où il résulte que la position du point clf par rapport aux

points ab' et d est indépendante des valeurs t et c'est-à-dire
indépendante des origines O et O' sur les bases l et V. C. q. f. d.

Remarque. — Puisque la position des éléments des paires
nouvelles est indépendante des origines primitivement choisies,

on peut prendre celles-ci d'une manière arbitraire sur les bases,

en observant que les 3 paires fondamentales déterminent chaque
fois des nouvelles valeurs de A, p. et y.

Calcul des coefficients. — Nous avons eu

A, _ A,
^ _

A.,
A— —— v__.

En introduisant les valeurs tirées des déterminants, on obtient :

A t' -4-m'n' [m — n) m'n' (m — ri)
A

1

— t v ;

\ 1

A m n' — ni n

\t-\- mn (n'—m')
^

mil (n'— m')
A mn' — m n

— Att'
|f_j_ t'ddim—-n) -f- t'mn [ii—m'

A mn' — m'n

v — At —j— \xl -**—* il

Cas particuliers : i° d tombe en b ou en c.
On a alors

p — m ou p zz n.

Supposons donc p mm n ; on obtient :

m'n'(m—n) n
P n [mm' — m'n) — nin[ii — m')

On voit que d' tombe sur l'homologue de c, soit d.
De même avec b et b'.

'2° Les origines sont une paire de points homologues comme a, a
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Dans ce cas les valeurs t et t' sont nulles et on obtient

m'n' (m — n)

mn'—m'n
mn (/?' — fi')

a 7 7—— >

mn — m n

v o.

L'équation générale devient :

xx' — A.r — aL o,

x' — kx,

A m'n' (m — n

x — a (???7?' — 77?'/?} «t — mn [n' — m')

On voit que $f s'annule avec x

4° Le conjugue d'un point comme b est à Vin fini.
Dans ce cas on a m' — co

Les valeurs A, v et p! ne présentant pas de remarques
particulières.

La valeur p prend la forme : a t-\~ m 06.
Si on faisait de même n oc, c'est-a-dire si on prenait c a

l'infini, on aurait

X t' -j- n' — OV.

Les points conjugués des points à l'infini portent le nom de

points limites..
On en conclut que les coefficients A et a sont donnés par les

distances des points limites de chaque base a l'origine correspondante

En outre, si les points limites étaient les origines, on aurait :

a — o, jirso.
D'où

xx' i_-: — v ~ Il'

avec

t et t désignant les distances de ces points aux points a et a!.

5° On prend d à 6 ce



3/S4 A. SILVA

Le conjugué d du point d
y

donne alors la distance

m'it' {m —- n) ^ t
^ mn' — tn'/i

Cette valeur peut du reste être déduite directement du cas

[) recèdent.
L. Che lier 'Bien ne. Suisse).

LA KO UMILE DE STOKES

Bappelons que le théorème de Stokes se résume dans l'identité

I (Xclx + Vdy +

dans laquelle le premier membre est une intégrale curviligne et
le deuxième une intégrale de surface limitée par le contour de

la première ; X, Y, Z sont des fonctions de .r, y v .s, finies et
continues sur la surface, admettant des dérivées finies et continues

aux mêmes endroits ; /;?, n sont les cosinus directeurs de la nor¬
male à l'élément dsv de la surface.

Nous poserons

x — fin, r]f
y SSV r).
r. — h(u, r),

de telle sorte que ce soient

M : : /(Vj, u) etc.

X ::z fx, m). <vt('

les équations des courbes i-> et 3-4,
et

X zm /N, ufj, etc.

X rrz fy, etc.

celles des courbes st-3 et 1-4.


	SUR LES DIVISIONS HOLOGRAPHIQUES

