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LES LIMITES ET L'ATOME

On appelle ordinairement limite d'une quantité variable, en

Géométrie, une quantité fixe dont la variable peut s'approcher
indéfiniment, sans jamais pouvoir l'atteindre. Cette condition
imposée à la limite, de ne pouvoir jamais être atteinte par la
variable, est formulée en termes trop absolus. Ne sait-on pas que
la tangente en un point A d'une courbe est la limite des positions

que prend une sécante, issue du point A, lorsqu'elle a

tourné autour de ce point, de manière à ce qu'un second point
d'intersection de la sécante avec la courbe vienne se confondre
avec le premier La parallèle menée par un point O à une droite
n'est-elle pas la limite des positions que prend la perpendiculaire
abaissée du point O sur la droite, lorsqu'on la fait tourner autour
de ce point d'un angle droit Et dans ces deux cas, du moins,
iCest-il pas visible que la variable atteint sa limite, et exactement

Il est vrai que, si l'on cherche à atteindre cette limite en appliquant

à la variable une construction géométrique, on n'y réussira

pas. Si, par exemple, après avoir mené parle point A d'une
courbe une première sécante, on détermine la seconde enjoignant
le point A au milieu de l'arc que sous-tend la première ; si l'on
opère de même sur la seconde pour avoir la troisième, et ainsi
de suite ; on obtiendra des sécantes qui s'approcheront de plus
en plus et même indéfiniment de la tangente; mais, aucune moitié

d'un arc ne pouvant être nulle, jamais la sécante ne deviendra

tangente. De même*, dans le cas de la parallèle, si l'on joint le

point 0 à des points de la droite de plus en plus éloignés de la

perpendiculaire, on obtiendra des obliques faisant avec cette
perpendiculaire un angle de plus en plus grand et même indéfiniment

voisin de 90 degrés, mais, les points ne pouvant pas être à
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rinfmi sur la droite, jamais l'oblique ne deviendra ainsi la parallèle.

Ce qui arrive la n'est pas un fait accidentel, mais une règle
générale : toute construction géométrique permet d'atteindre
rindéfiniment petit ou l'indéfiniment grand, mais jamais zéro ni
l'infini; par conséquent, toute limite dont la définition renferme

implicitement toute l'idée de l'infini ou de zéro, — et c'est ici le

cas —,échappe à la possibilité d'être atteinte par une opération
géométrique exécutée sur la variable.

Au contraire, si l'on a recours à un mouvement de rotation, la

limite est atteinte à la suite des valeurs indéfiniment croissantes
delà variable, absolument comme l'une quelconque d'entre elles
succède à la précédente.

A quoi cela tient-il Les résultats dus a une construction
géométrique sont nécessairement discontinus et par suite ne
représentent qu'un certain nombre des valeurs possibles de la variable,
tandis que le mouvement de rotation, étant continu, nous les

donne toutes, sans exception. Il nous donne non seulement les

valeurs de Invariable qui sont fournies par l'opération graphique
ou fictive, mais encore toutes les valeurs intermédiaires dont cette

opération ne laisse aucune trace. En outre, quand la rotation a

permis d'amener la droite mobile sur la valeur extrême que peut
atteindre la construction géométrique, rien n'empêche de continuer

le mouvement de la droite qui a été utilisé jusque là et de

franchir la limite que la construction est impuissante à dépasser.
C'est ainsi que, dans le premier cas considéré, le second point
de la sécante mobile vient se confondre avec le premier et la
limite zéro se trouve atteinte à la suite de rindéfiniment petit ;

dans le second cas, à la suite d'obliques indéfiniment longues,
l'infini se présente nécessairement, au moment où l'angle que
font ces obliques avec la perpendiculaire devient droit.

Appliquons cette remarque à d'autres exemples classiques.
La circonférence d'un cercle est la limite du périmètre d'un

polygone régulier inscrit au cercle et dont le nombre des côtés

augmente indéfiniment.
Supposons qu'on parte du carré inscrit, et, qu'en divisant en

deux unités l'arc sous-tendu par son côté, on ait inscrit l'octogone
régulier, puis le polygone régulier de 16, 02 côtés; on par-
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viendra ainsi, au moins mentalement, à un polygone régulier
dont les eôtés seront indéfiniment petits. Mais il est clair que
l'opération, même poussée par la pensée aussi loin qu'on voudra,
ne peut pas nous donner un côté de longueur nulle, autrement
dit, la construction géométrique ne permet pas d'atteindre la

limite zéro. Si, au contraire, on fait tourner autour du centre de

la circonférence un des deux rayons qui aboutissent aux extrémités

d'un côté du carré, de manière à ce qu'il se rapproche de

l'autre supposé fixe, on voit immédiatement que l'extrémité du

rayon mobile passera, d'une part, par le milieu de tous les arcs
intermédiaires a ceux-là, que l'opération graphique ou fictive n'a

pas envisagés. En outre, quand la rotation aura amené le rayon
mobile à passer par l'extrémité du plus petit côté que puisse
atteindre la construction géométrique, rien ne s'oppose à ce que
le mouvement qui a été utilisé jusque-là, soit continué, de
manière à réduire ce côté extrême et l'arc qu'il sous-tend à égaler
la limite zéro.

L'asymptote à une branche d'hyperbole peut être regardée
comme la limite des sécantes menées par le centre et dont le

point d'intersection s'éloigne à l'infini. Mais il est clair qu'une
détermination géométrique de pareilles sécantes, ne peut donner,
comme dans les exemples précédents, que des sécantes
indéfiniment grandes, tandis que, en faisant tourner une droite autour
du centre de l'hyperbole, 011 a la certitude d'obtenir successivement

toutes les sécantes possibles, et même, au delà de la sécante

indéfinie la plus grande que puisse fournir la construction
géométrique, l'asymptote qui en est la limite.

Le mouvement de rotation dont nous venons de signaler l'utilité

dans le plan, n'est pas moins précieux dans l'espace.
Considérons, en effet, un cône droit circulaire; coupons-le

par un plan qui passe par deux génératrices opposées ; puis,

par un Tpoint quelconque pris sur l'une des génératrices,
menons une droite qui soit perpendiculaire à leur plan et une

autre qui soit parallèle à la génératrice opposée. Le plan que
déterminent la parallèle et la perpendiculaire est, comme 011

le sait, parallèle à la génératrice opposée : la section faite dans

le cône par ce plan est donc une parabole. Si l'on fait maintenant
tourner ce plan autour de la perpendiculaire comme axe et vers le
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sommet du cône, la section obtenue devient une ellipse, pins un

cercle, puis encore une ellipse, et enfin une droite limitée \ si on

fait tourner ce même planen sens contraire, la section obtenue

devient une hyperbole, puis une droite illimitée. Le cercle peut
donc être considéré comme la limite d'une ellipse, et la parabole

comme la limite soit d'une ellipse, soit d'une hyperbole. Or la

limite est ici atteinte effectivement, 011 le voit, parle mouvement

de rotation d'un plan, en raison même de la continuité de ce

mouvement, comme toutes les circonstances précédemment

signalées.
Mais si l'on cherche, en dehors de tout mouvement et en partant

d'une propriété géométrique, à établir que le cercle ou la

parabole est une limite de l'ellipse, ou encore que l'hyperbole a

pour limite soit une parabole soit une droite illimitée, le résultat

est tout différent.
Vous pouvez doubler, tripler quadrupler, etc. la distance des

deux foyers d'une ellipse, par exemple en fixant Tun d'eux et le

sommet voisin, vous obtiendrez ainsi des ellipses s'allongeant et

s'approchant indéfiniment de la forme parabolique, mais jamais
le second foyer ne pourra être transporté à l'infini, et, par suite,

jamais l'ellipse ne sera transformée en parabole. De même, si

vous réduisez la distance focale à sa moitié, son tiers, son quart,
elle n'égalera jamais zéro, et, par suite, l'ellipse ne deviendra

jamais un cercle. Même chose pour l'hyperbole.
En résumé, ce qui précède nous montre qu'une figure variable

susceptible de s'approcher indéfiniment d'une limite, l'atteint
régulièrement, si le rapprochement résulte d'un mouvement continu

de rotation, qui est toujours possible, et qu'au contraire elle

ne l'atteint jamais, si le rapprochement résulte d'une construction

géométrique. Nous sommes donc en droit de conclure, ainsi que
nous l'avons dit en commençant, que cette condition imposée a

une limite, de ne pas pouvoir être atteinte par la variable, est

trop absolue, et qu'il sera permis, à un aussi juste titre, de

remplacer dans la définition les quatre derniers mots « sans jamais
pouvoir l'atteindre », par ceux-ci : « au point de se confondre
avec elle », puisqu'une figure variable qui arrive à sa limite ne
doit en rien et en aucun cas se distinguer de cette limite.

Comment se fait-il que quelques savants aient cherché à trans-
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former en principe général cette prétendue impossibilité pour une
variable d'atteindre sa limite, et à l'expliquer, par l'existence,
dans la définition de l'une, d'un ou plusieurs éléments incompatibles

avec la définit ion de l'autre pas assez incompatibles
néanmoins pour les empêcher de se rapprocher l'une de l'autre, à ce

point que, si l'on prend la limite pour valeur de la variable, l'erreur

commise devienne rigoureusement nulle? Comment surtout
est-il venu a l'esprit d'un géomètre d'introduire dans la définition
d'une limite cette condition parfaitement inutile et démentie par
tous les exemples qu'on connaît il faut, pour en découvrir
l'origine, se reporter a la pratique initiale du Calcul différentiel.

Leibniz, l'inventeur de ce calcul, appelait limite d'un rapport
le rapport de l'accroissement infiniment petit dy d'une fonction
à l'accroissement infiniment petit dx de la variable. D'après

cette définition, le rapport est. égal à la dérivée f bh de la

fonction, et l'on a l'égalité =/'' .r d'où l'on tire pour la

valeur de la différentielle (diminutif de différence de la fonction

: dy=f '

(x) dx. Mais cette formule n'est pas absolument
exacte, attendu que la dérivée / 'x\ d'une fonction n'est pas

égale au rapportquand les termes de ce rapport sont très

petits, mais bien quand ils sont rigoureusement nuls.
Pour parer à l'inconvénient qui en pourrait résulter, quelques

géomètres ont imaginé de conserver dans cette formule les
o o
termes dy et dx en les regardant comme de purs symboles de

zéro. Grace a cette convention, la formule redevient exacte et

peut être introduite dans le Calcul différentiel. D'autres
géomètres ont procédé d'une manière toute différente. Puisque

y y r r tf 'x) est égal a lim ~ on peut poser ^ — f x -f- a, et, par

suite, Ay f G*) A.r-|-a A.c. a étant une quantité qui s'évanouit

eu même temps que A.r devient nul. Cette formule nous montre

que l'accroissement d'une fonction correspondant a un accroissement

quelconque de la variable est composé de deux parties :

la seconde tend vers zéro en même temps que Ix ; la première
est ce qu'on nommera la différentielle de la fonction et qu'on

représentera par dy. Comme d'ailleurs la différentielle de la

variable, ou dx, ne se distingue pas de son accroissement A.r. on
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pourra écrire la relation suivante dij — / (x) dx, dire qu'elle est

vraie pour toute valeur finie ou indéfiniment petite de l'accroissement

de la variable, et lui appliquer toutes les règles du Calcul

différentiel.
Toutefois il y a une valeur pour laquelle cette formule est en

défaut ; c'est la valeur limite dx o, qui est nécessaire pour la

définition de la dérivée et de toutes les dérivées, et qu'il est impossible

de 11e pas introduire finalement dans les formules, quand on

voudra passer aux limites. La rigueur de ce procédé resterait
donc, en définitive, plus apparente que réelle si ceux qui Tout

imaginé s'en étaient tenus là. Ils ont alors inventé, pour échapper
à ce défaut de rigueur, d'imposer à la définition d'une limite cette
condition bizarre qu'une variable 11e peut jamais atteindre sa

limite. Grâce à ce subterfuge, on n'a plus à s'inquiéter de ce qui
se passe à la limite dans le Calcul infinitésimal; les infiniment
petits sont toujours décroissants et ne s'évanouissent jamais,
quoique pouvant approcher d'aussi près qu'on le veut de zéro.

Nous avons vu, sur de nombreux exemples géométriques, que
cette condition est faussement imposée à la limite des grandeurs
variables. Elle n'est pas davantage acceptable, lorsqu'il s'agit de

la définition d'une dérivée ou d'une différentielle de fonction ;

on s'en assure, comme nous l'avons fait pour la définition d'une

tangente. Ce qui importe, c'est de faire voir comment, avec

l'atome, peuvent se résoudre toutes les difficultés ; nous allons
brièvement l'indiquer.

D'après la théorie de l'atome, il y a toujours un accroissement
s de la variable indépendante, qui est le plus petit auquel puisse

correspondre un accroissement r, de la fonction ; le rapport—1~

est, par définition, la dérivée de la fonction, de telle sorte qu'on
a l'égalité vraie 5-= f (ér). Dans cette relation, les deux

termes ri et £ ne sont pas des symboles de zéro, ni des quantités
indéterminées, mais des atomes correspondants, c'est-à-dire des
réalités concrètes et déterminées, qui, en raison de leur état
atomique, semblent mieux appropriées que toute autre à l'idée
qu'on doit se faire du mode de génération d'une courbe ; dans

la génération d'une courbe, ce rapport représenterait l'atome
de direction.
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De cette définition on déduit immédiatement les propriétés
générales des dérivées, celle des fonctions inverses, celle d'une
fonction dont la dérivée est constante, celle des fonctions qui ont
la même dérivée, celle du maximum et du minimum d'une
fonction ; etc. Si, après cela, on veut bien avoir présente à

l'esprit cette vérité que, dans le calcul, ce qui est plus petit que
l'atome £ est nul ou de nul effet pour l'accroissement de la fonction,

on trouvera sans peine la dernière valeur de s, qui est

(i + £) la dérivée de £cm, de la fonction exponentielle et

logarithmique, des fonctions trigonom étriqués directes et
inverses, enfin de toutes celles qu'on est convenu de désigner
sous le nom de fonctions simples.

Voici en outre une conséquence très importante de cette
définition de la dérivée par les atomes, définition qui est identique

au fond à celle de Leibniz : si l'on a formé une équation
entre des indéfiniment petits de différents ordres, et qu'on
veuille en dégager la relation propre à ceux qui sont de l'ordre
le moins élevé, il subira cle supprimer tous les termes où

figurent les autres, comme étant nuls ou de nul effet ; en d'autres

termes, il est permis, dans un calcul d'indéfiniment petits d un
certain ordre, de négliger a volonté tous les indéfiniment
petits d'un ordre supérieur. On voit, d'après cela, quels avantages

sont attachés à la substitution de l'atome à la place de

zéro dans toutes les questions de limite, comme a la substitution
de l'indéfini à la place de l'infini : toutes les contradictions

que nous avons signalées, toutes les difficultés qu'on rencontre
a se mettre en face de zéro et de l'infini ou à vouloir les éviter,
disparaissent avec l'atome et son inverse qui est l'indéfiniment
grand.

J.-F. Boxxel (Lvon).
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