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suffisant, sous lequel il s'enfoncera, avec une vitesse progressivement

retardée, à mesure que la densité et la température du

gaz augmenteront. Dans ce cas, la chaleur développée sera
évidemment due a une pression statique, équivalente
mécaniquement au travail dépensé pour mouvoir le piston.

Il paraît donc possible de déterminer expérimentalement
l'équivalent statique du kilogrammètre mécanique.

Ainsi un poids de un kilogramme tombant d'un mètre sur le

plateau d'un dynamomètre fait dévier l'aiguille d'un certain
angle. Il est facile de chercher quel poids placé, sans vitesse,
sur ce même plateau fait dévier l'aiguille du même nombre de

degrés.
Ce sera l'équivalent cherché. Multipliée par 4^5, cette pression

devra produire une calorie dans un temps donné, qui reste à

déterminer.
Voilà, Monsieur, ma défense aussi abrégée que possible, car

j'aurais encore bien des arguments en réserve; mais je ne veux
pas abuser de votre bienveillance dont je vous remercie
cordialement.

Clémence Royer.

LES EXTENSIONS DE LA NOTION DE NOMBRE

DANS LEUR DÉVELOPPEMENT LOGIQUE ET HISTORIQUE

Dans un récent article (*) nous avons attiré l'attention des

professeurs sur l'importance des leçons destinées, soit à esquisser

rapidement Tobjet de la théorie que l'on aborde, soit à

coordonner les notions acquises et à faire ressortir l'enchaînement
des idées et les liens qui rattachent la branche étudiée à d'au-

[f) Les leçons d'introduction et les leçons de revision dans Venseignemei%t secon~
daire supérieur* L'Ens. math., 3e.année, n° 5, p. 317-321,1901.
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très branches de la science, soit encore à donner un court aperçu
historique de la théorie.

A titre d'exemple, nous examinerons le développement de la

notion de nombre. Cette notion joue un rôle fondamental dans

les divers degrés de l'enseignement des mathématiques, et, a ce

titre, est tout particulièrement désignée pour faire l'objet d'une

ou de plusieurs leçons générales a la fin de l'enseignement secon_

daire supérieur ou au début d'un premier cours d'Algèbre
supérieur. Elle permet aisément de jeter un coup d'œil sur le chemin

parcouru depuis les premières leçons sur la numération et de

Conduire l'élève au seuil des mathématiques supérieures. Il est

certain que l'étudiant poursuivra avec beaucoup d'intérêt les

diverses étapes franchies depuis la notion de nombre entier jusqu'à
celle de nombre algébrique envisagée dans son sens le plus
général ; d'autre part, il se rendra aisément compte que l'Algèbre
n'est pas limitée aux quelques théories élémentaires inscrites
aux programmes des gymnases.

En procédant de la même manière pour les diverses notions
fondamentales des mathématiques élémentaires, le maître
parviendra à donner aux élèves un tableau très net de l'ensemble des

notions acquises et contribuera à développer chez eux la pensée
mathématique.

Bien que cette petite note n'apporte aux mathématiciens aucun
fait nouveau, nous croyons que les professeurs directement
intéressés examineront avec intérêt un exemple d'une leçon de revision

envisagée sous la forme la plus large possible. Suivant les
connaissances de leurs élèves, ils pourront donner plus de

développement à certaines questions, ou laisser de côté les considérations

d'un caractère trop élevé.

A. — Les extensions de la notion de nombre ;

LEUR DÉVELOPPEMENT LOGIQUE."

i. — Nous partons de l'idée de nombre entier résultant de
l'idée de collection d'objets distincts, et nous passerons en revue
les diverses extensions auxquelles on est conduit si l'on soumet
les nombres entiers aux opérations arithmétiques, c'est-à-dire si
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Ton combine, d'après les règles établies en Arithmétique, deux

ou plusieurs de ces nombres pour en former un seul.
Ces opérations peuvent être réparties en deux catégories. La

première comprend les trois opérations directes : addition,
multiplication et élévation à une puissance. Appliquées à deux nombres

entiers a et b elles donnent encore un nombre entier, qui
porte le nom de somme (a -f- b — c), de produit [ab c) ou de

puissance [ab 6').

Il est bon de rappeler ici les propriétés commutatives, associatives

et distributives de l'addition et de la multiplication, et
d'insister tout particulièrement sur ce que la propriété commutative
n'est plus applicable à l'élévation à une puissance.

Ces propriétés se trouvent résumées dans le tableau suivant :

Propriété commutative.

a-\-b—b-\-a a.b — b.a

Propriété associative.

a-\- [b c) — ax-\- b -f- c a.[b .c) ~ a.b .c

Propriété distributive.
a [b + c) m a. b + a. c.

2. — Si maintenant on se donne un nombre entier c défini

par les opérations directes

a -j- b— c, a.b—c, cib — c,

et si l'on se propose de déterminer l'un des nombres a ou &,

l'autre étant également connu, on parvient à une seconde

catégorie d'opérations. Elles portent le nom (Yopérations indirectes ;
ce sont : la soustraction, la division, Yextraction d'une racine et
la recherche d'un logarithme. Le résultat de l'opération porte le

nom de différence, de quotient, de racine ou de logarithme. La

loi commutative n'étant plus applicable à l'élévation à une

puissance, on se trouve conduit à deux opérations indirectes.
En résumé on a le tableau :

Opérations directes.

a + b ~ c

a.b ~c

Opérations indirectes.

a — c — b ou b—c — a
a — c :b ou b — c : a
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Ce sont les opérations indirectes qui nous fournissent les

diverses extensions de la notion de nombre. En effet, si Ton se

limite aux nombres entiers

c— b 11'a plus de sens si c< b,

c: b » » » c n'est pas un multiple de b,

\Jc » » » c n'est pas la bQ puissance d'un nombre entier,

loga c » » » c n'est pas une puissance de a.

Au lieu d'imposer des restrictions aux nombres entiers que
l'on soumet aux opérations indirectes, on étend le domaine des

nombres.
La soustraction donne lieu à une première extension. Pour être

applicable dans tous les cas, elle impose l'introduction des nombres

négatifs.
De la même manière, la division, pour être toujours possible,

exige l'introduction des nombres fractionnaires. C'est là une
seconde extension.

L'ensemble des nombres entiers et des nombres fractionnaires
constitue le domaine des nombres rationnels. Nous nous bornerons,

pour le moment, aux nombres positifs.
La notion de nombre irrationnel constitue une troisième extension.

Elle résulte des deux dernières opérations indirectes
lorsqu'on lève les restrictions indiquées plus haut.

Les idées de nombre négatif et de nombre fractionnaire sont,
en général, assez familières aux élèves. Mais il n'en est pas
toujours ainsi pour les nombres irrationnels ; pourtant, sans entrer
dans des développements théoriques qui seraient déplacés dans

un enseignement élémentaire, on peut aisément donner aux élèves

une idée très nette de ces nombres ; aussi nous paraît-il
indispensable de fournir quelques indications à leur sujet.

3. — Un nombre irrationnel est défini à l'aide de deux suites
illimitées de nombres rationnels. Nous montrerons d'abord, sur
un exemple simple, comment on peut envisager deux pareilles
classes de nombres rationnels.

Considérons, par exemple, la racine carrée de 5, ou, ce qui
revient au même, l'équation :
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Il n'existe aucun nombre rationnel vérifiant cette équation ;
mais si on envisage l'ensemble des nombres rationnels (positifs)
on peut les répartir en deux classes (a) et (ß) ; la classe (a)
renfermant ceux dont le carré est plus petit que 5, et la classe (ß)
renfermant ceux dont le carré est plus grand que 5. Les nombres
a et ß sont donc définis par les inégalités

a2 < 5, ß2>5.

On pourra, par exemple, former le tableau :

w m

i < x < 3

2,2 < x < 2,3

2,23 < X < 2, 24

2,236 < x < 2,237

2,236O <C x <C 3,236I

Les a forment une suite illimitée de nombres rationnels
croissants, tandis que les ß forment une suite illimitée de nombres
rationnels décroissants. La différence entre deux nombres
correspondant peut être rendue aussi petite que l'on veut.

Les a donnent une valeur approchée par défaut, les ß une
valeur approchée par excès.

D'une manière générale nous dirons qu'un nombre irrationnel
N est défini par deux suites illimitées de nombres rationnels (a)
et (ß), telles que l'on ait

(x1 < a2 < a3 <....< an <....< N

ßi>ß2>(33>....>ßn>....>N,

la différence ßn — an pouvant être rendue aussi petite que l'on
veut. Tout nombre [irrationnel décompose donc l'ensemble des

nombres rationnels en deux classes (a) et (ß) jouissant des propriétés

suivantes : 1) Tout nombre a est plus petit que tout nombre ß;
2) il n'y a, ni dans la première classe de nombre supérieur à tous
les autres, ni dans la seconde classe de nombre inférieur à tous
les autres.

4. — On se sert quelquefois, pour désigner un nombre irra-
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tionnel, de la dénomination de nombre incommensurable. Elle a

pris naissance dans la théorie de la mesure des longueurs. Etant
donnée une longueur L et une longueur-unité U, le nombre N

qui indique combien de fois U est contenu dans L est dit

incommensurable si, pour n aussi grand que Eon veut, la longueur —

n'est jam'ais comprise un nombre entier de fois dans L. Les

longueurs L et U sont dites incommensurables entre elles. La Géométrie

nous fournit des exemples de nombres irrationnels (ou

incommensurables) : le rapport de la diagonale du carré à son

côté, et le rapport de la circonférence de cercle à son diamètre.
Nous verrons plus loin qu'il s'agit là de deux irrationnalités de

natures différentes.

5. —Après chaque extension delà notion de nombre l'Arithmétique

montre comment les règles de calcul des opérations
élémentaires (addition, multiplication, soustraction et division)
peuvent être étendues aux nouveaux symboles. La soustraction
amène l'extension de la notion de nombre négatif aux nombres
fractionnaires et aux nombres irrationnels. On se trouve maintenant

en présence du domaine des nombres réels comprenant
l'ensemble des nombres rationnels ou irrationnels, positifs ou
négatifs. Ces nombres peuvent être soumis sans restriction aux
opérations élémentaires.

6. —1 II n'en est plus de même si l'on effectue sur les nombres
rationnels ou irrationnels les opérations inverses de l'élévation
à une puissance. De nouvelles restrictions s'imposent. En effet,
tandis que ah c conserve une signification précise quelles que
soient les valeurs attribuées à a et à b, les opérations inverses ne
sont pas toujours possibles. Nous nous bornerons au cas de

l'extraction d'une racine. Elle est impossible lorsqu'il s'agit
d'extraire une racine d'indice pair d'un nombre négatif. L'expression

y/—~N* n'a pas de sens, puisque tout nombre élevé à une
puissance paire donne un nombre positif.

Suivant la préparation des élèves, on s'arrêtera là en faisant
simplement constater la restriction qui s'impose. De la même
manière pour l'expression b logac, qui n'a de sens que si
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c est positif, puisque, par hypothèse la.base a est positive, et que
par ce fait a6 reste positif.

Si, par contre, on veut lever ces restrictions on est conduit à

une nouvelle extension de la notion de nombre. Cette quatrième
extension consiste à introduire les nombres imaginaires ou
complexes. Leur introduction a uniquement pour but de donner aux
énoncés à la fois pli\s de généralité et plus de simplicité. Il
s'agit de remplacer dans les calculs le symbole du nombre par
un symbole plus général contenant, comme cas particulier,
l'ensemble des nombres rationnels et irrationnels, c'est-à-dire des

nombres réels.
Cette extension se présente pour la première fois à l'occasion

de la résolution de l'équation du second degré. Si nous prenons
la forme générale ax2 -f- bx c o, les racines ne sont réelles

que si l'on a b2 — 4ac ^ o. Si, par contre, on a b2 — 4ac < o,
il n'existe aucun nombre réel vérifiant l'équation proposée et
l'on en déduit que le problème qui a conduit à cette équation est

impossible.
L'expression que Ton obtient pour les racines peut, dans ce

cas, être mise sous la forme

x pdtq\/— i

p et q étant des nombres réels.
Par opposition aux nombres réels, on dit que cette expression

représente un nombre imaginaire ou complexe. Si l'on introduit
le symbole i9 tel que

i2== —i,
les expressions

x~p -j-qi et x — p — qi

vérifieront l'équation proposée ; on dit alors que les racines de

cette équation sont imaginaires. -

On se trouve ainsi en présence d'un symbole nouveau renfermant

comme cas particulier (pour q o) les nombres réels. Il
s'agira de reprendre sur ces nouveaux nombres les définitions
de l'égalité et des opérations fondamentales. On montre en

Algèbre non seulement que les propriétés fondamentales
subsistent, mais encore que les nombres imaginaires soumis aux sept
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opérations n'exigent aucune nouvelle extension de la notion de

nombre.
Il y a lieu de justifier la dénomination de nombre complexe

employée dans le même sens par beaucoup de géomètres.
On appelle nombre complexe un ensemble de deux ou de

plusieurs nombres réels se rapportant à des unités particulières.
Un nombre imaginaire peut être envisagé comme l'ensemble de

deux nombres réels exprimant deux unités différentes, l'une
étant représentée par i, l'autre par le symbole i. Mais, tandis que

pour les nombres complexes employés dans la vie ordinaire les

unités ont entre elles des rapports numériques très simples, les

deux unités qui interviennent dans les nombres imaginaires sont
irréductibles entre elles.

y. — Le symbolep-\-qi ayant été introduit à l'occasion de la
résolution de l'équation du second degré, on peut se demander
si les équations d'un degré supérieur n'exigeront pas de nouveaux
symboles. La réponse appartient au domaine de l'Algèbre
supérieure ; on y démontre, comme principe fondamental de la théorie

des équations, que les racines d'une équation algébrique, à

coefficients réels ou imaginaires, sont de la forme p -j- qi.
Si maintenant l'on considère l'ensemble des nombres imaginaires

on peut les répartir en deux catégories : i° ceux qui vérifient

une équation algébrique entière a coefficients entiers; 2° ceux
qui ne vérifient pas une pareille équation. On est ainsi conduit
aux définitions suivantes : on appelle nombre algébrique (dans
le sens que Ton attribue à ce terme en mathématiques
supérieures (*)) toute racine d'une équation algébrique entière à coefficients

entiers. Tout nombre non algébrique est dit transcendant.
Si donc on se limite au domaine des nombres réels, il y a lieu

de faire une distinction entre les nombres irrationnels. Un
nombre irrationnel peut être algébrique ou transcendant. Ainsi,
la racine carrée de 5 est un nombre irrationnel algébrique; ce
nombre est solution de l'équation

x2 — 6 — o.

(*) En Algèbre élémentaire, certains auteurs emploient aussi ce terme dans le
sens de nombre réel positif ou négatif.
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Par contre les nombres que l'on désigne d'ordinaire par les
lettres tz (rapport de la circonférence au diamètre) et e (base des

logarithmes népériens) appartiennent à la catégorie des nombres
irrationnels transcendants.

En résumé c'est le symbole p + qi, par lequel on définit le
nombre imaginaire, qui constitue la forme la plus générale sous

laquelle on envisage la notion de nombre dans les mathématiques
supérieures. Suivant que le nombre réel q est nul ou différent de

zéro, ce symbole représente un nombre réel ou imaginaire.

B. — Aperçu historique

Après avoir examiné les diverses extensions de la notion de

nombre dans leur développement logique, il est intéressant de

jeter un coup d'œil rapide sur leur développement historique^).

8. Nombres négatifs. — Les anciens se bornaient dans leurs
calculs à l'emploi des nombres réels positifs. Au point de vue
historique les nombres négatifs viennent donc après les nombres
fractionnaires et irrationnels. Ils ont été pris en considération,

pour la première fois, croit-on, au xne siècle, par le mathématicien

hindou Bhaskara, puis par les Arabes, qui ont servi
d'intermédiaires entre les Grecs, les Indiens et les Occidentaux. Au
xvie siècle Cardan, en Italie, Stifel, en Allemagne, et Harriot,
en Angleterre, portent leur attention sur les nombres négatifs;
mais ce ne fut qu'avec Descartes (i 596-1650) que ces nombres
furent employés d'une façon systématique dans les calculs.

9. Nombres fractionnaires. — L'emploi des nombres fractionnaires

remonte à la plus haute antiquité. Les Egyptiens ramènent
les fractions à des fractions types dont le numérateur est l'unité ;

par exemple, ils remplacent ~ par la somme des fraction et

Les Babyloniens et les Grecs emploient de préférence

pour les fractions le système sexagésimal; ainsi Ptolémée (i5o ans

(*) Ces renseignements historiques sont empruntés, pour la plupart, aux
Vorlesungen über Geschichte der Mathematik de M. M. Gantor, et à YEncyklopaedie der
mathematischen Wissenchaften.
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après J.-C.) écrit le nombre «rc sous la forme 3.. 8.. 3o, ce qui
8 3d

signifie d'après la notation moderne 3 -f- -^7 + 3gQQ
•

Les Romains font surtout usage, pour les dénominateurs des

fractions, du système duodécimal.
La notation actuelle des fractions remonte au xine siècle ; elle

est due a Léonard de Pise connu aussi sous le nomde Fibonacci.
Les fractions décimales ont été introduites au xvie siècle ;

l'emploi de la virgule est due à Kepler (i57i-i63o).

10. Nombres irrationnels. —La notion de nombre irrationnel
a pris naissance en Géométrie. Pythagore (env. 5oo ans av. J.-C.)
a déjà reconnu que la diagonale du carré est incommensurable

avec son côté. Euclide (env. 3oo ans av. J.-C.) consacre un livre
entier de ses Eléments aux nombres irrationnels envisagés comme

rapports de deux longueurs incommensurables entre elles.
Apollonius (vers a5o à 200 ans av. J.-C.) et Archimède(287-212 av. J.-C.)
s'occupèrent également des nombres irrationnels. Ce dernier y
fut conduit par ses importants travaux dans le domaine de la
Géométrie métrique. Il envisage déjà pour un nombre irrationnel les

valeurs approchées par défaut ou par excès; ainsi il connut

pour tu les limites 3 10/17 et 3 1/7, et pour y/3" les limites -770- et
i35i 1

780

Bhaskara s'occupa des opérations élémentaires effectuées sur
les racines carrées de nombres entiers ; il sut rendre rationnel
le dénominateur d'une fraction. C'est à lui que remonte la

transformation de \Ja -tV* en une somme de deux racines carrées.
Mais ce ne fut qu'au xvi° siècle que les nombres irrationnels furent
classés dans la suite naturelle des nombres au même titre que les
nombres rationnels (Michael Stifel, Arithmetica intégra, 1544)-

La théorie moderne des nombres irrationnels n'a été développée

que pendant la seconde moitié du xixe siècle ; ses fondements
ont été établis par les travaux de G. Cantor, Dedekind, Méray,
Weierstrass, Kronecker.

11. Nombres imaginaires.^1) —Les premiers mathématiciens

(*) Yoir Beman, Un chapitre de l'histoire des mathématiques, I'Ens. math.,
ir0 année, 1899, p. 162-184.
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qui conservèrent dans les calculs les racines carrées de nombres

négatifs, furent les algébristes italiens du xvie siècle, entre autres
Cardan. Au siècle suivant, Girard, Descartes et Wallis prêtent
quelque attention aux nombres imaginaires; Descartes fait la
distinction entre les racines réelles et les racines imaginaires d'une

équation. Plus tard vinrent les travaux de De Moivre qui publia^),
en 1730, la formule qui porte son nom, et de L. Euler auquel
revient le mérite d'avoir découvert (1748) relation entre les

fonctions trigonométriques et la fonction exponentielle, à savoir
la relation

eio — cos a —j— i sin a.

En 1797, Wessel présenta à l'Académie royale des sciences et des

lettres de Danemark un mémoire « sur la représentation analytique
des quantités », dans lequel il étudie la représentation géométrique

des nombres imaginaires ; mais son mémoire resta dans

l'oubli pendant près d'un siècle. Argand, qui traita la même question,

sans avoir eu connaissance du travail de Wessel, fut plus
heureux. Son mémoire, intitulé : Essai sur une manière de

représenter les quantités imaginaires dans les constructions géométriques

(Paris, 1806) servit de point de départ à une série de recherches

dans ce domaine.
La théorie des nombres complexes ne fut établie d'une façon

définitive que pendant la première moitié du xixe siècle par les

travaux fondamentaux de Gauss, en Allemagne, et de Cauchy en

France. Malgré les objections qu'elle souleva au début, elle ne
tarda pas à exercer une influence considérable sur l'ensemble des

mathématiques supérieures.

12. Nombres algébriques et transcendants. — Cette distinction
des nombres en deux classes a été introduite à la suite des recherches

sur la nature de l'irrationnalité des nombres tc et e.

En 1770, Lambert examine l'irrationalité de tz à l'occasion du

problème de la quadrature du cercle; puis, en 1794s Legendre
démontre que tz (2) est un nombre irrationnel.

(*) D'après M. A. von Braunmühl (Bibl. Mathematica, série III, t. II, p. 97-102,
1901), De Moivre dut connaître cette formule déjà en 1707.

(2) Yoir le court aperçu qu'en donne M. F. Klein, Vorträge über ausgewählte
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L'existence des nombres transcendants a été établie pour la

première fois par Liouville dans ses mémoires publiés en 1844

et en i85i. Leur théorie a été établie par G. Cantor, Hermite,
Lindemann, Weierstbass et Hilbert.

C'est Hermite qui, le premier, fournit un exemple effectif de

nombre transcendant. Dans un mémoire célèbre, publié en 1873,
il démontre que e 71est pas un nombre algèbjàque, c'est-à-dire,
qu'une équation de la forme

ci± en -j- ci.j- en 1 -j— ci^ en ~ ^ -j— cin — 1 e -J- ein o

les a étant entiers, est impossible.
Plus tard, en 1882, M. Lindemann généralise la méthode de

Hermite et parvient à démontrer que tc est transcendant. Son
mémoire est d'une importance considérable non seulement pour
la théorie des nombres transcendants, mais encore pour la
Géométrie élémentaire. Il apporte, en effet, la démonstration rigoureuse

de l'impossibilité de la résolution du problème de la
quadrature du cercle à l'aide de la règle et du compas.

H. Fehr.

L'ATOME DANS LA GÉOMÉTRIE (')

Convient-il d'introduire la considération de l'atome dans
l'enseignement de la Géométrie élémentaire Cette introduction nous
paraît à la fois utile et nécessaire.

Fragen der Elementargeometrie, ausgearbeitet von Tägert (Leipzig, 1895) ; rédaction

française par Griess, Paris, 1897. On y trouve un intéressant chapitre consacré
à la possibilité de la construction d'expressions algébriques.

0 En nous envoyant cet article, M. Bonnel se demande si nous ne le jugerons
pas trop long et d'un ton trop autoritaire. Il nous semble très naturel que chaque
auteur donne au développement de sa pensée l'étendue (compatible avec le cadre
de notre Revue), qu'il juge nécessaire, et qu'il défende ses idées de toute la force
de sa conviction. Aussi, fidèle au principe d'indépendance complète qu'elle s'est
toujours efforcée d'appliquer, la Rédaction accueille-t-eîle avec empressement la
présente étude ; elle en fera de même pour celles qiie M. Bonnel compte consacrer
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