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16 i : .. H. FEHR

suffisant, sous lequel il s'enfoncera, avec une vitesse progressi-
vement retardée, a mesure que la densité et la température-du
gaz augmenteront. Dans ce cas, la chaleur développée sera évi-
demment due & une pression statique, équiva“lenté mécani-
quement au travail dépensé pour mouvoirle piston. .

-1l parait donc possible de déterminer expérimentalement,
I’équivalent statique du kilogrammetre mécanique.

Ainsi un poids de un kilogramme tombant d'un metre sur le
plateau d’un dynamomeétre fait dévier l'aiguille d’un certain
angle. Il est facile de chercher quel poids placé, sans vitesse,
sur ce méme plateau fait dévier l'aiguille du méme nombre de
degrés. » , |

Ce sera I’équivalent cherchs. Multipliée par 425, cette pression
devra produire une calorie dans un temps donné, qui reste a
déterminer. . .

Voila, Monsieur, ma défense aussi abrégée que possible, car
j'aurais encore bien des arguments en réserve; mais je ne veux
pas abuser de votre bienveillance dont je vous remercie cor-

dialement.
CLEMENCE RoYER.

'LES EXTENSIONS DE LA NOTION DE NOMBRE

DANS LEUR DEVELOPPEMENT LOGIQUE ET HISTORIQUE

‘Dans un récent article (*) nous avons attiré P'attention des
professeurs sur 'importance des lecons destinées, soit a eéquis-
ser rapidement 1’objet de la théorie que 'on aborde, soit a coor-
donner les notions acquises et a faire ressortir I’enchainement
des idées et les liens qui rattachent la branche étudiée a d’au-

(*) Les legons d’introduction et les legons de revision dans Uenseignement secon-
daire superieur. L'ENs. MATH., 3° année, n° 5, p. 317-321, 1901. .
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tres branches de la science, soit encore a donner un court apercu
historique de la théorie. . ‘

A titre d’exemple, nous examinerons le développement de la
notion de nombre. Cette notion joue un roéle fondamental dans
les divers degrés de I'’enseignement des mathématiques, et, a ce
titre, est tout particulierement désignée pour faire 'objet d’une
ou de plusieurs lecons générales alafin de 'enseignement secon.
daire supérieur ou au début d’'un premier cours d’Algebre supé-
rieur. Elle permet aisément de jeter un coup d’ceil sur le chemin
parcouru depuis les premieres lecons sur la numération et de
conduire ’éleve au seuil. des mathématiques supérieures. Il est
certain que l’étudiant poursuivra avec beaucoup d’intérét les
diverses étapes franchies depuis la notion de nombre entier jusqu’a
celle de nombre algébrique envisagée dans son sens le plus
général ; d’autre part, il se rendraaisément compte que 'Algébre
n’est pas limitée aux quelques théories élémentaires inscrites
aux programmes des gymnases.

En procédant de la méme maniére pour les diverses notions
fondamentales des mathématiques élémentaires, le maitre par-
viendra a donner aux éleves un tableau trés net de 'ensemble des
notions acquises et contribuera a développer chez eux la pensée
mathématique.

Bien que cette petite note n’apporte aux mathématiciens aucun
fait nouveau, nous croyons que les professeurs directement inté-
ressés examineront avec intérét un exemple d’une lecon de revi-
sion envisagée sous la forme la plus large possible. Suivant les
connaissances de leurs éléves, ils pourront donner plus de déve-
loppement a certaines questions, ou laisser de c¢oté les considéra-
tions d’un caractere trop élevé.

A. — LES EXTENSIONS DE LA NOTION DE NOMBRE ;

LEUR DEVELOPPEMENT LOGIQUE,>

1. — Nous partons de 1'idée de nombre entier résultant de
lidée de collection d’objets distincts, et nous passerons en revue
les diverses extensions auxquelles on est conduit si ’on soumet
les nombres entiers aux opérations arithmétiques, c'est-a-dire si
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I'on combine, d’aprés les régles établies en Arithmétique, deux |

ou plusieurs de ces nombres pour en former un seul.

Ces opérations peuvent é&tre réparties en deux catégories. La
premiére comprend les trois opérations directes : addition, multi-
plication et élépation & une puissance. Appliquées 2 deux nom-
bres entiers a et b elles donnent encore un nombre entier, qui
_porte le nom de somme (a + b = ¢), de produit (ab = c) ou de
puissance (a® = ¢).

I1 est bon de rappeler ici les propriétés commutatives, associa-
tives et distributives de I'addition et de la multiplication, et d'in-
sister tout particulierement sur ce que la propriété commutative
n’est plus applicable a 1'élévation a une puissance.

Ces propriétés se trouvent résumées dans le tableau suivant :

Propriété commutative.
a+b=0b-+a a.b=b.a
Propriété associative.
at+b+c)=a+b+tc a.(b.c)y=a.b.c

Propriété distributive.

alb+4c¢)=a.b-ta.c.

9, — Si maintenant on se donne un nombre entier ¢ défini
par les opérations directes

a-tb—c, a.b=c, ab =,

et si 'on se propose de déterminer 'un des nombres a ou b,
PVautre étant également connu, on parvient a une seconde caté-
gorie d’opérations. Elles portent le nom d’opérations indirectes;

~ce sont : la soustraction, la division, Vextraction d’'une racine et .

la recherche d’un logarithme. Le résultat de 1'opération porte le
nom de différence, de quotient, de racine ou de logarithme. La
loi commutative n’étant plus applicable a I’élévation a une puis-
sance, on se trouve conduit a deux opérations indirectes.

En résumé on ale tableau :

Opérations directes. Opérations indirectes.
at+b=c a=c—b ou b—=c—a
a.b=c - a=c:b ou b—=c:a
b/~
a=yc
"ol = ¢ v

b =loggc
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Ce sont les opérations indirectes qui nous fournissent les
‘diverses extensions de la notion de nombre, En effet, si. lon se
limite aux nombres entiers.

¢ —b n’a plus de sens si ¢ b;

c:b »  » » ¢ n’est pas un multiple de b,

b/— ; . .
‘/c » » » ¢ n’est pas la b° puissance d'un nombre entier,
logac » » » ¢ n'est pas une puissance de a.

Au lieu d’imposer des restrictions aux nombres entiers que
I'on soumet aux opérations 1nd1rectes on étend le domaine des
nombres. ,

La soustraction donne lieu a une premiére extension. Pour étre
applicable dans tous les cas, elle impose l'introduction des nom-
bres négatifs. 4

De laméme maniére, la division, pour étre toujours possible,
exige l'introduction des nombres ﬁactzonnazres C’est la une
seconde extension.

L’ensemble des nombres entiers et des nombres fractionnaires
constitue le domaine des nombres rationnels. Nous nous borne-
rons, pour le moment, aux nombres positifs,

La notion de nombre irrationnel constitue une troisiéme exten-
sion. Elle résulte des deux dernieres opérations indirectes 101‘8-
qu’on leve les restrictions indiquées plus haut.

Les idées de nombre négatif et de nombre fractlonnalre sont,
en général, assez familieres aux éleves. Mais il n’en est pas tou-
jours ainsi pour les nombres irrationnels ; pourtant, sans entrer
dans des développements théoriques qui seraient déplacés dans
un enseignement élémentaire, on peut aisément donner aux éleves
une idée trés nette de ces nombres; aussi nous parait-il indis-
pensable de fournir quelques indications a leur sujet.

3. — Un nombre irrationnel est défini a 1'aide de deux suites
1llimitées de nombres rationnels. Nous montrerons d’abord, sur
un exemple simple, comment on’ peut env1sager deux parellles
classes de nombres rationnels.

Considérons, par exemple, la racine carrée de 5, ou, ce qui
revient au méme, l’équation : o

x%2 —5 =0,
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Il n’existe aucun nombre rationnel vérifiant cette équation ;
mais si on envisage ’ensemble des nombres rationnels (positifs)
on peut les répartir en deux classés (a) et (8); la classe (a) ren-
fermant ceux dont le carré est plus petit que 5, et la classe (3)
renfermant ceux dont le carré est plus grand que 5. Les nombres
a et 3 sont donc définis par les inégalités

a2 <5, Bg>‘5.
On pourra, par exemple, former le tableau :
(@) | (B)
2 < x <3
2,2 @ <x<a2,3
2,23 < x < 2,24
2,236 < x < 2,237
2,2360 << x < 3,2361

IR Y s s 0

Les o forment une suite illimitée de nombres rationnels crois-
sants, tandis que les 3 forment une suite illimitée de nombres
rationnels décroissants. La différence entre deux nombres cor-
respondant peut étre rendue aussi petite que 1’on veut.

Les o donnent une ¢aleur approchée par défaut, les {3 une
valeur approchée par exces.

D’une manieére générale nous dirons qu'un nombre irrationnel
N est défini par deux suites illimitées de nombres rationnels (o)
et (), telles que l'on ait |

o, <y << ... <an<....<N
B> Ba>B> ... >8> >N,

la différence 3, — a, pouvant étre rendue aussi petite que l'on
veut. Tout nombre [irrationnel décompose done I'ensemble des
nombres rationnels en deux classes («) et (3)jouissant des proprié-
tés suivantes : 1) Tout nombre o estplus petit que tout nombre §3;
2) il n’y a, ni dans la premiére classe de nombre supérieur a tous
les autres, ni dans la seconde classe de nombre inférieur a tous
les autres. -

4. — On se sert quelquefois, pour désigner un nombre irra-
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tionnel, de la dénomination de nombre incommensurable. Elle a
pris naissance dans la théorie de la mesure des longueurs. Etant
donnée une longueur L et une longueur-unité U, le nombre N
qui indique combien de fois U est contenu dans L est dit incom-

, , U
, . . , . N
mensurable si, pour n aussi grand que on veut, la longueur N

n’est jamais comprisé un nombre entier de fois dans L. Les lon-
gueurs L et U sont dites incommensurables entre elles. La-Géomé-
trie nous fournit des exemples de nombres irrationnels (ou
inéommensurables) : le rapport de la diagonale du carré a son
coté, et le rapport de la circonférence de cercle a son diametre.
Nous verrons plus loin qu’il s aglt la de deux 1rrat10nnf1htes de
natures différentes.

5.— Aprés chaque extension dela notion de nombre I’ Arithmé-
tique’ montre comment les regles de calcul des opérations élé-
- mentaires (addition, multiplication, soustraction et division)
peuvent dtre étendues aux nouveaux symboles. La soustraction
améne l'extension de la notion de nombre négatif aux nombres
fractionnaires et aux nombres irrationnels. On se trouve mainte-
nant en présence du domaine des nombres réels comprenant
Pensemble des nombres rationnels ou irrationnels, positifs ou
négatifs. Ces nombres peuvent étre soumis sans restriction aux
opérations élémentaires.

6. — Il n’en est plus de méme sil’on effectue sur les nombres
rationnels ou irrationnels les opérations inverses de 1’élévation
a une puissance. De nouvelles restrictions s’imposent. En effet,
tandis que @’ ==c conserve une signification précise quelles que
soient les valeurs attribuées & @ et a b, les opérations inverses ne
sont pas toujours possibles. Nous nous bornerons au cas de
'extraction d’une 'racine. Elle est impossible lorsqu’il s’agit
d’extraire une racine d’ 1ndlce palr d’un nombre négatif. L’expres-

sion \/—— N? n’a pas de sens, puisque tout nombre élevé 4 une
puissance paire donne un nombre positif.

Suivant la préparation des éleves, on s’arrétera la en faisant
simplement constater la restriction qui s’impose. De la méme
maniére pour l'expression b = logaé, qui n’a de sens quesi
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c est positif, puisque, par hypothése la base a est positive, et que
par ce fait a® reste positif. |

S1, par contre, on veut lever ces restrictions on est conduit &
une nouvelle extension de la notion de nombre. Cette quatrieme
extension consiste a introduire les nombres imaginaires ou com-
plexes. Leur introduction a uniquement pour but de donner aux
énoncés a la fois plus de généralité et plus de simplicité. Il
s’agit de remplacer dans les calculs le symbole du nombre par
un symbole plus général contenant, comme cas particulier, I'en-
semble des nombres rationnels et irrationnels, c’est-a-dire des
nombres réels.

Cette extension se présente pour la premiere fois a I'occasion
de la résolution de ’équation du second degré. Si nous prenons
la forme générale ax® 4 bx -+ ¢ =o, les racines ne sont réelles
que si 'on a 0® — 4ac¢ > o. Si, pil_r contre, on a b> — 4ac <o,
il n’existe aucun nombre réel vérifiant I'équation proposée et
I’on en déduit que le probleme qui a conduit a cette équation est
impossible. | '

L’expression que l'on obtient pour les racines peut, dans ce
cas, étre mise sous la forme '

x:piq‘/:—f

~ petg étant des nombres réels.

Par opposition aux nombres réels, on dit que cette expression
représente un nombre imaginaire ou complexe. Si 'on introduit
le symbole 7, tel que

les expressions
x=p-tqi et x:p— qi

vérifieront 1’équation proposée; on dit alors que les racines de
cette équation sont imaginaires. '

On se trouve ainsi en présence d’un symbole nouveau renfer-
mant comme cas particulier (pour ¢ = o) les nombres réels. Il
s’agira de reprendre sur ces nouveaux nombres les définitions
de 1,’égalité' et des opérations fondamentales. On montre en
Algebre non seulement que les propriétés fondamentales sub-
:-sistent, mais encore que les nombres imaginaires soumis aux sept
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- opérations n’exigent aucune nouvelle extension -de la notion de
nombre. o . |
Il y a lien de justifier la dénomination de nombre complexe
employée dans le méme sens par beaucoup de géometres. ‘
On appelle nombre complexe un ensemble de deux ou de plu-
sieurs nombres réels se rapportant a des unités particulieres.
‘Un nombre imaginaire peut &tre envisagé comme l’ensemble de
deux nombres réels exprimant deux unités différentes, l'une
étant représentée par 1, 'autre par le symbole . Mais, tandis que
pour les nombres complexes employés dans la vie ordinaire les
unités ont entre elles des rapports numériques tres simples, les
deux unités qui interviennent dans les nombres imaginaires sont
irréductibles entre elles.

rj. — Le symbole p -+ ¢i ayant été introduit a 'occasion de la
résolution de I'équation du second degré, on peut se demander
siles équations d’un degré supérieur n’exigeront pas de nouveaux

“symboles. La réponse appartient au domaine de I'Algébre supé-

rieure; on y démontre, comme principe fondamental de la théo-
rie des équations, que les racines d’une équation algébrique, a
coefficients réels ou imaginaires, sont de la forme p + ¢i.

S1 maintenant 'on considére 1’ensemble des nombres imagi-
naires on peut les répartir en deux catégories : 1° ceux qui véri-
fientune équation algébrique entiére a coefficients entiers; 2° ceux
qui ne vérifient pas une pareille équation. On est ainsi conduit
aux définitions suivantes : on appelle nombre algébrique (dans
le sens que l'on attribue a ce terme en mathématiques supé- .
rieures (')) toute racine d’une équation algébrique entiere a coeffi-
cients entiers. Tout nombre nonalgébrique est dit iranscendant.

Si donc on se limite au domaine des nombres réels, il y a lieu
~de faire une distinction entre les nombres irrationnels. Un
nombre irrationnel peut &tre algébrique ou transcendant. Ainsi,
la racine carrée de 5 est un nombre irrationnel algébrique; ce
nombre est solution de I'équation

(") En Algébre élémentaire, certains auteurs emploient aussi ce terme dans le
sens de nombre réel positif ou négatif.
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Par contre les nombres que 'on désigne d’ordinaire par les
lettres = (rapport de la circonférence au diametre) et e (base des
logarithmes népériens) appartiennent a la catégorie des nombres
irrationnels transcendants.

“En résumé c’est le symbole p - ¢i, par lequel on définit le
“nombre imaginaire, qui constitue la forme la plus générale sous
laquelle on envisage la notion de nombre dans les mathématiques
supérieures. Suivant que le nombre réel ¢ est nul ou différent de
zéro, ce symbole représente un nombre réel ou imaginaire.

B, — APERGCU HISTORIQUE

Apres avoir examiné les diverses extensions de la notion de
nombre dans leur développement logique, il est intéressant de
jeter un coup d’ceil rapide sur leur développement historique (*).

. 8. Nombres négatifs. — Les anciens se bornaient dans leurs
calculs a 'emploi des nombres réels positifs. Au point de vue
historique les nombres négatifs viennent donc aprés les nombres
fractionnaires et irrationnels. Ils ont été pris en considération,
pour la premiere fois, croit-on, au xii® siecle, par le mathémati-
cien hindou Buaskara, puis par les Arabes, qui ont servi d’inter-
médiaires entre les Grecs, les Indiens et les Occidentaux. Au
xvi® sidcle Carpawn, en Italie, Stirer, en Allemagne, et Harrior,
en Angleterre, portent leur attention sur les nombres négatifs;
mais ce ne fut qu’'avec DescarTEs (1596-1650) que ces nombres
furent employés d’une facon systématique dans les calculs.

9. Nombres fractionnaires. — L’emploi des nombres fraction-
naires remonte a la plus haule antiquité. Les Egyptiens raménent

les fractions a des fractions types dont le numérateur est I'unité;
par exemple, ils remplacent %_par la somme des fraction —é— et
11—8 . Les Babyloniens et les Grecs emploient de préférence
pour les fractions le sysiéme sexagésimal; ainsi ProLEMEE (150 ans

(*) Ces renseignements historiques sont empruntés, pour la plupart, aux Vorle-
sungen iiber Geschichte der Mathematik de M. M. CANTOR, et & 'Encyklopaedie der
mathematischen Wissenchaften. ' ’
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apres J.-C.) écrit le nombre = sous la forme 3.. 8 30, ce ‘qui

signifie d’aprés la notation moderne 3 + —~ —+ 3600 ‘

~ Les Romains font surtout usage, pour 1es dénominateurs des
fractions, du systeme duodécimal.
La notation actuelle des fractions remonte au xi® siecle; elle
est due d Lfonarp pE Pisg connuaussi sous le nomde Fisonaccr.
Les fractions décimales ont été introduites au xvi® siecle;

Iemplo1 de la virgule est due a KepLer (1571-1630).

10. NNombres irrationnels. — La notion de nombre irrationnel
a pris naissance en Géométrie. Pyruacore (env. 500 ansav. J.-C.)
a déja reconnu que la diagonale du carré est incommensurable
avec son coté. Evcripe (env. 300 ans av. J.-C.) consacre un livre
entier de ses Eléments aux nombres irrationnels envisagés comme
rapports de deux longueurs incommensurables entre elles. Apor-
LoNtus (vers 250 a 200 ansav. J.-C,) et ArcriMEDE(287-212av.J.-C.)
s’occuperent également des nombres irrationnels. Ce dernier y
fut conduit par ses importants travaux dans le domaine de la Géo-
métrie métrique. Il envisage déja pour un nombre irrationnel les

valeurs approchées par défaut ou par exces; ainsi il connut

pour = les limites 3 10/17 et 3 1/7, et pour \/5 les limites il et

1351 , Lk
780

Braskara s’occupa des operatlons élémentaires effectuées sur
les racines carrées de nombres entiers; il sut rendre rationnel

le dénominateur d’une fraction. Cest a lui que remonte la trans-

formation de \/a—{—\/z en une somme de deux racines carrées.
Mais ce ne fut qu’au xvi° siecle que les nombres irrationnels furent
classés dans la suite naturelle des nombres au méme titre que les
nombres rationnels (MicnAEr StireL, Arithmetica integra, 1544).

La théorie moderne des nombres irrationnels n’a été dévelop-
pée que pendant la seconde moitié du xix° siecle; ses fondements
ont été établis par les travaux de G. Cantor, DEpEKIND, MERAY,
WEIERSTRASS, 'KRONECKER.

. Nombres zmabmazres (*) — Les premiers mathématiciens

(*) Yoir BeEmaN, Un . ckapztre de Uhistoire des mathematzques I'ENS. :MATH.,
1" année, 1899, p. 162-184.
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qui conserverent dans les calculs les racines carrées de nombres
négatifs, furent les algébristes italiens du xvi° siecle, entre autres
Carpan. Au siécle suivant, Girarp, DiscarteEs et WaLLIs prétent
‘quelque attention aux nombres imaginaires; Descartes fait la dis-
tinction entre les racines réelles et les racines imaginaires d’une
équation. Plus tard vinrent les travaux de D Morvre qui publia(*),
en 1730, la formule qui porte son nom, et de L. EvLeEr auquel
revient le mérite d’avoir découvert (i748) la relation entre les
fonctions trigonométriques et la fonction exponentielle, a savoir
la relation

ele=—=cos o -} 1 sin a,

En 1797, WEssEL présenta al’Académie royale des sciences et des
lettres de Danemark un mémoire « sur la représentation analytique
des quantités », dans lequel il étudie la représentation géomé-
trique des nombres imaginaires; mais son mémoire resta dans
I'oubli pendant prées d’un siecle. Arcanp, qui traita la méme ques-
tion, sans avoir eu connaissance du travail de Wessel, fut plus
heureux. Son mémoire, intitulé : Essai sur une manieére de repré-
senter les quantités imaginaires dans les constructions géométri-
ques (Paris, 1806) servit de point de départ a une série de recher-
ches dans ce domaine.

La théorie des nombres complexes ne fut établie d’'une facon
définitive que pendant la premiére moitié du xix° siecle par les
travaux fondamentaux de Gauss, en Allemagne, et de Caucuy en
France. Malgré les objections qu’elle souleva au début, elle ne
tarda pas & exercer une influence considérable sur ’ensemble des
mathématiques supérieures,

12, Nombres algébriques et transcendants. — Cette distinction
des nombres en deux classes a été introduite a la suite des recher-
ches sur la nature de l'irrationnalité des nombres « et e.

En 1770, LAMBERT examine l’irrationalité de = a 1'occasion du
probleme de la quadrature du cercle; puis, en 1794, LEGENDRE
démontre que = (*) est un nombre irrationnel. |

(*) D’aprés M. A. von BrAuNMUHL (Bibl. Mathematica, série IllI, t. II, p. 97-102,
1go1), De Moivre dut connaitre cette formule déja en 1707.

(¥ Voir le court aper¢u qu'en donne M. F. KLEIN, Voririge iiber ausgewdhlte
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I’existence des nombres transcendants a été établie pour la
premiére fois par LiouviLLe dans ses mémoires publiés en 1844
et en 1851. Leur théorie a été établie par G. Caxtor, HerMmITE,
LinpEmany, WEeiersTrASs et HivLBErT. , '

C’est Hermite qui, le premier, fournit un exemple eﬂcei:tif de
nombre transcendant. Dans un mémoire célebre, publié en 1873,
il démontre que e n’est pas un nombre algébrique, ¢’est-a-dire,
qu’une équation de la forme

aie”—{—aié”—i-{—a,ze"‘?*—l—.... +a,1_1e+an;—:o

les a étant entiers, est impossible.

Plus tard, en 1882, M. Lixpemanx généralise la méthode de
Hermite et parvient a démontrer que = est transcendani. Son
mémoire est d’'une importance considérable non seulement pour
la théorie des nombres transcendants, mais encore pour la Géo-
métrie.élémentaire. Il apporte, en effet, la démonstration rigou-
reuse de l'impossibilité de la résolution du probléeme de la qua-
drature du cercle a 'aide de la réegle et du compas,

H. Fenr.

I’ATOME DANS LA GEOMETRIE (!)

Convient-il d’introduire la considération de I'atome dans 1'en-
seignement de la Géométrie élémentaire ? Cette introduction nous
parait a la fois-utile et nécessaire,

Fragen der Elementargeometrie, ausgearbeitet von Tagert (Leipzig, 1895) ; rédac-
tion frangaise par Griess, Paris, 1897. On y trouve un intéressant chapitre consacré
a la possibilité de la construction d’expressions algébriques. "

(') En nous envoyant cet article, M. Bonnel se demande si nous ne le jugerons
pas trop long et d’un ton trop autoritaire. Il nous semble trés naturel que chaque °
.auteur donne au-développement de'sa penséé I'étendue (compatible avec le cadre
de notre Revue), qu'il juge nécessaire, et qu’il défende ses idées de toute la force
de-§a conviction. ‘Aussi, fidéle au principe d’indépendance compléte qu’elle s’est
toujours efforcée d’appliquer, la Rédaction accueille-t-elle avec ‘empressement la
présente étude; elle en fera de méme pour celles que M. Bonnel compte consacrer
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