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SUR. LA. SOMME DES PUISSANCES SEMBLABLES

DES RACINES D'UNE ÉQUATION ALGÉBRIQUE

I# — L'évaluation de la somme dont il s'agit est de la plus
grande importance pour le calcul des fonctions symétriques.
Aussi, ce problème est-il devenu classique. Il est résolu dans la

plupart des Traités d'Algèbre et figure dans les programmes de

nombreux concours.
Invariablement, croyons-nous, le calcul de la somme des

puissances semblables, pour des exposants entiers, se fait au moyen
des formules de Newton, qui permettent d'obtenir les sommes
successives par récurrence. Le moyen n'est assurément pas mauvais,

mais il n'en serait pas moins intéressant de donner directement

une expression analytique de chacune des sommes
cherchées, sans faire intervenir les autres, et de pouvoir indiquer
également un procédé de calcul direct. C'est ce qu'il est facile de

faire, et ce qui a été fait (car nous ne prétendons pas apporter
ici rien de" nouveau) ; mais, en dépit de la simplicité de la
méthode, elle semble, du moins en France, n'avoir pas pénétré
dans l'enseignement; et c'est ce qui nous engage à publier la
présente note; nous avons l'espoir qu'elle pourra intéresser quelques

professeurs de Mathématiques spéciales.

2. — Soitf[x)=o une équation algébrique de degré t?z, dont
les racines sont ai2,... am. Appelons en général Sp la somme
i m

S a% l'exposant p pouvant prendre une valeur entière quel-
i 1

" 1

conque, positive ou négative.

Formons la dérivée logarithmique =—cp (.%•) du premier
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membre de l'équation. Nous avons l'identité

—?(*)=Y——
j x—ai

Par dérivations successives, nous en déduisons

-ï'W=-S-?=Ïr

- <?tP) W (- ïfp •'V- I-^rr'Lmà (X Clxy ^

Si, dans ces identités, nous venons à faire x o, il s'ensuit

que nous avons d'une façon générale, pour toute valeur entière
positive de p,

<PW (o)=j>/^ =p!S 1)<

OU

S-(p + d
?(P)(o)

P-'

ou encore

(0
(p — 1)'-

Considérons maintenant l'équation aux inverses des racines,
(#) o ; sa dérivée logarithmique estb

g? (x)
T ix)—

at
2x__l

et de la, en répétant textuellement ce que nous venons de dire
plus haut, nous déduirons

' s _ (o)

P~lp- i)!
"

Les formules (i) et (2) résolvent la question proposée. En outre,
nous avons S1 —y (o), S_1=cp(o).
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On peut rappeler que la fonction g {oc), n'est autre que

flL
xmf' (T) ' de sorteque T ^ ~k77"7 •

'7)
3. — Si nous développons les fonctions cp (x)9 j{oc) suivant la

série de Maclaurin, nous avons f
cp" (o çp(r) fo)

v(x) o(o) + x<?' (o)+a:2 A1A— + + a;? ' +
2 [J

y" fo) (o)
Y (*) Y (o) + atf (o) + h • • • +^ -^7 h • • • >

c'est-à-dire, en vertu de ce qui précède,

Cp (x) zz: S_ i -{- S_ 2 x -f- S_ 3 X^ -f- -f- S_ (p _|_ 1) XP -j-
Y M — Sj + S2o? -f- S3x2 -f- • •• -J- Sp + i xP -f-...,

Or, ces développements s'obtiennent simplement par division,
en ordonnant les polynômes suivant les puissances croissantes
de la variable. Par conséquent, la division de —f {oc) par f (ce)

en ordonnant le quotient suivant les puissances croissantes,
donnera, comme coefficients de ce quotient, toutes les sommes S_p;
et pareillement, la division de — gf(x) Par g donnera les

sommes Sp.

4. — En partant de là, on peut très simplement retrouver les
formules de Newton.

Soit en effet

f (x) — A0xm + A^m 1 + -f Am Amj

d'où

g (.x) — A0 Aj,# -f- -f- Am _ iXm
1

-f- Amxm,

Pour obtenir les Sp successives, il faut faire la division de

— g'(x) Par b(4 Par Ie mécanisme même de l'opération, il
est visible que le premier terme du quotient ne peut dépendre
que de A0 et ; le deuxième, que de A0, A1? A2; et, en général,
le P°, de A0> Ai;... Ap.

Par conséquent, pour le calcul de la somme Sp, on peut
substituer à l'équation f{x)— 0 toute autre qui aurait les mêmes
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coefficients A0, A1? À2,... Ap, En particulier, par exemple, pour
le calcul respectif de S1? S2,... Sp, on pourra considérer les

équations
\qX —f— A^ zzz o,
A0#2 A±x + A2 =r o,

A0#^-f-A.^-^ -|- -f- Ap — o,

et les résultats seront les mêmes.

Or, la substitution des racines, dans les équations
précédentes, suivie de l'addition des premiers membres, donne
immédiatement les identités

AoV-f Ai o,

A0S2 -f- A1SI + sA2 o,

A0Sp+AiSp _!+••• +PAV — °>

c'est-à-dire précisément les formules récurrentes de Newton.
Nous supposons, naturellement, que/? ne surpasse pas m,

On a évidemment aussi

A^S_1 + Aw_1 O,

AS 9 + A S + aA
0 o,

-

m — 2 1 m — l — 1 1 m — 2 '

A "
S 4-A ,S „ + ...+pA — o,m — p

1 m — 1 — (p — 1) 1 Jr m — p

G.-A. Laisant.
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