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SUR LA SOMME DES PUISSANCES SEMBLABLES

DES RACINES D’UNE EQUATION ALGEBRIQUE

1. — L’évaluation de la somme dont il s’agit est de la plus
grande imporﬂtan‘ce pour le-calcul des fonctions symétriques.
Aussi, ce probleme est-il devenu classique. Il est résolu dans la
plupart des Traités d’Algebre et figure dans les programmes de
nombreux concours. '

Invariablement, croyons-nous, le calcul de la somme des puis-
sances semblables, pour des exposants entiers, se fait au moyen
des formules de Newton, qui permettent d’obtenir les sommies
successives par récurrence. Le moyen n’est assurément pas mau-
vals, mais il n’en serait pas moins intéressant de donner directe-
ment une expression analytique de chacune des sommes cher-
chées, sans faire intervenir les autres, et de pouvoir indiquer.
également un procédé de calcul direct. C'est ce qu’il est facile de
faire, et ce qui @ été fait (car nous ne prétendons pas apporter
ici rien de nouveau); mais, en dépit de la simplicité de la
méthode, elle semble, du moins en France, n’avoir pas pénétré
dans I'enseignement; et c’est ce qui nous engage a publier la
présente note; nous avons 'espoir qu’elle pourra intéresser quel-
ques professeurs de Mathéma"siques spéciales.

2. — Soit f{#) =0 une équation algébrique de degré m, dont
les racines sont «,, a,,... a,. Appelons en général S, la somme
i=—1m : .

¥ af, I'exposant p pouvant prendre une valeur entiere ‘quel-

=1

conque, positive ou négative.

Formons la dérivée logarithmique [ __ (#) du premier

f@ — ¢
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inembre de 1’équation. Nous avons I'identité

I
e —Z‘x—_'z;

Par dérivations-suecessives, nous en déduisons

—¢ (x) = (x—I a,)?
__(?ll (x): ZZ (.%——I-a)3 5
— ¢ (@) = (— 1)p! :

Si, dans ces identités, nous venons a faire z =o,. .1l s’ensuit

que nous avons d’une facon générale, pour toute valeur entiére

positive de p,
, . |
(P(P) (o) :PJZW :pfls—“’ "y

ou
(p)
o (o)
S—tp+1)=— ;
" p .l
" ou encore
(1)

(p—1)
. 9 (o)
b.....p —_— —Z—F——I)!—.

Considérons maintenant 'équation aux inverses des racines,
g (z)==0; sa dérivée logarithmique est

()

=) =Y —,
(%) . X

a;

Gq

e

et de la, en répétant textuellement ce que nous venons de dire
plus haut, nous déduirons

(2) 8, =270 (0)

(p—0t

Les formules (1) et (2) résolvent la question proposée. En outre,
nous avons S,=v (o), S_, =v(o).
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On peut rappeler que la. fonction g (z) n’est autre que
[ I I (x) m
" f (7) , de sorte que ¥ () = o P =
(@) "

3. — Si nous développons les fonctions o (), v () suivant la
série de Maclaurin, nous avons f
y z ol2)
o(e)=s(o)tag (o)+ar LI g 2L
. ' o) L w2 Y"( ) (”)( ) ‘
Y (®) =17 (0) 4 xY'(0) -2 +- —l—xP IE + -

c¢’est-a-dire, en vertu de ce qui précede,

© () =S_1+S_ax +S_sx?+ ... +S_pyyaf -+ ...,
Y(x) =5, +Sqx 4 Sgx2 4 ... + S, L 122+ ...,

®

Or, ces développements s’obtiennent simplerhent par division,
en ordonnant les polyndmes suivant les puissances croissantes
de la variable. Par conséquent, la division de — /' (z) par f ()
en ordonnant le quotient suivant les puissances croissantes, don-
nera, comme coefficients de ce quotient, toutes les sommes S_,;
et pareillement, la division de — g’(x) par g (x) donnera les
sommes S,. '

4. — En partant de la, on peut trés simplement retrouver les
formules de Newton.
Soit en effet

fle) =A@ A" T A A
Lot |

g(x):AO+A1x+ ''''' +Am—ix +Amx

Pour obtenir les S, successives, il faut faire la division de
— &' (z) par g («). Or, par le mécanisme méme de Vopération, il
est visible que le premier terme du quotient ne peut. dépendre
que de A, et A, ; le deuxieme, que de A, A, A,; et, en général,
le p°, de A, A,,... A,.

Par conséquent, pour le calcul de la somme S,, on peut
substituer a I'équation f(z)==o0 toute autre qui aurait les mémes
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coefficients Ao; A,, A,,... A,, En particulier, par exemple, pour |
le calcul respectif de S,, S,,... S,, on pourra considérer les |
équations R | '
A+ A, —=o,

Ajx? + Ajx + A, —o,

p p—t _
Apx® + Az —|- + A, =o,
et les résultats seront les mémes.
Or, la substitution des racines, dans les. équations précé-
dentes, suivie de ’addition des premiers membres, donne immé-
diatement les 1dentités

AS,+A —o, . ‘ | b
AOSQ -+ A5, + 24, — o, '

AS,+AS, _ + .. +pA =o,
¢’est-a-dire précisément les formules récurrentes de Newton.

Nous supposons, naturellement, que p ne surpasse pas m,
On a évidemment aussi

Ams—~ 1 + Am——i — O)
AmS—— 2,+ Am — 18—— 1 + 2Am-—i’. — 0 -
ALS_ AL S .. HpA =o.

C.-A. LAIsanT.
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