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KQUIVALENCE DES ROTATIONS

AUTOUR‘ D’AXES PARALLELES ET DES TRANSLATIONS
D°’UN SYSTEME INVARIABLE

§ 1. Nous imaginons un systéme % invariable, matériel ou
géométrique ayant pour éléments des points. Nous allons cons1—
dérer le mouvement de X quand il passe d’une position %, a une
autre p051t10n %, sans avolr egald a sa cause. Nous nous occupe-
rons seulement de son changement de position, de la vitesse et
des accélérations de ses points, lesquels gardent, puisque % est
censé invariable, une distance invariable entre eux pendant son
mouvement. Le systeme X et ses positions 2; et ¥, forment de cette
maniére trois systémes congruents. Le systéme X est dans la
position 3,, quand des éléments homologues des deux systemes
coincident; X est passé de la position ¥, a la position %,, quand
les éléments homologues de % et 3, coincident, apres que tous les
points homologues de X et de I, ont coincidé. Si nous nommons
A un élément de X, alors A, et A, représenteront les éléments
correspondants de X, et de Z,.

Si le systeme % passe d’une position ¥, & une autre position
%,, la nature du mouvement de ¥ est donnée ou elle est incon-
nue. Nous allons ici supposer le premier cas et nous allons regar-
der le mouvement de = quand il sera transporté, moyennant des
rotations autour d’axes paralléles et des translations d’une posi-
tion ¥, dans une autre position I,.

La methode de recherches de laquelle nous nous servirons est
fondée sur le caleul géométrique. Le lecteur trouvera, ce qui est
nécessaire de savoir, dans le traité : « Application de la méthode
vectorielle de Grassmann a la géométrie infinitésimale », par

Henri Fehr (Paris, Carré et Naud, 1899).
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§ 2. Rotation d'un angle w du systéme invariable T autour d'un

axe fixe a.

Quand un systeme invariable £ tourne autour d’un axe fixe
o, chaque point du systeme décrit un arc circulaire. Le plan de
la trajectoire dont le centre est situé sur l'axe est perpendicu-
laire audit axe de rotation.

Soit (fig. 1) OA l'axe de rotation, O un point fixe quelconque
sur cet axe, ¢ son vecteur d’unité, w I’angle
duquel X tourne autour de 'axe, OM;=po,

L Yuews S, le radius vector d’un point quelconque du

w0 systeme, M, ou M, = O - p, un point

S)'n UI 73 50'}

quelconque du systeme avant le commen-
ST cement du mouvement (de X a la po‘si—
g A tion X,), M = O - p la position de ce
7 S point apres que la rotation a eu lieu (le
1178 | point homologue dans ¥,), de sorte que M,
et M se trouvent dans un plan perpendi-
culaire a 'axe, et que les perpendiculaires
de M, et M qui tombent sur l'axe s’y coupent en un. point N
de T’'axe. On a N_l\_/fogzN—Mf‘l. Mettons NM, = 3, NM — 3, faisons
attention que OM ==ON - NM. Prenons le vecteur unité ¢, de
telle maniére que la rotation, regardée de son élément final, se
fasse comme le mouvement d’une aiguille de montre, rotation

Fig. 1.

que nous fixons comme positive. Alors subsistent, puisque M,NM
= w (fig. 1) les équations

o= (o)) s 3, 8= cos wd, - sinw] (£3,),
mais puisque.
3 — oo —(Elpg) & (€8g) =T(epy),
il vient aussi | |
o = (g|py) & — cos w [(e|pg) € — po] + sin W] (epy),
ou ” . o '

i (1__ cos w) (elpo) e+ cos w:éo + sin w| (e"po) .
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1l s ensuit’ de 1 equatlon pour ) 0 si nous rappelons que nous
avons 8 “i — 82, : a

32.: [po— (elpo) €%
ou N ‘

8_2 = (epy)? =.r? sin? (E,po-),, ‘/5-%‘ =r sin (5;9)’:

si r représente la longueur du radius vector p, qui.est constante
pour le point M, pour I'équation de Ia traJectmre du cercle de ce
point du systeme. |

Pour un point du systeme qui se trouve sur 'axe de rotation,
on a M,=N, (¢lp,) ¢ =p,, (¢p,) = 0, de manidre que p = p,.
Cela veut dile que les points du systeme qui coincident avec 'axe
de rotatlon ne changent Ppas de place pendant le mouvemenl:

-~ de X. |

-La vitesse du point M du systeme esi; la ‘dérivée de son radius
vector p par rapport au temps 7. ' -

En différentiant 'équation relative a p _par rapport a ¢t quand
nous demgnons la vitesse du pomt Mpar v,

do  dw 0

V=g = ) sinw [(?]Po) e — 0] + cos w| »(590’)’;5:’3; AR
ou, quand nous mettons (dw : dt)’ = W, represente la vitesse
angulaire du systéme X autour de l'axe o, TS AT S—

5 =w | cos @l (sg,) - sin'w[(sloe)e—pg) > -
mais nous obtenons, en mult1pl1ant I’ equatlon en p par
(2] = cosw (890) + sin w ¢} (cp,)]
= cosw(epg) + sin w [{elpg) e—tpgh on n
par conséquent on a aussi o i e R I SR
. w | (e0) = w| (e8)

La quadrature 1nterleure des membles "de cette equatlon
donne

:3 1

et 1l vient, avec 6% == A’

- b:‘wrsiin\(s,p)': wk s
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- La vitesse v du point M est perpendiculaire au plan déterminé
par I'axe de rotation et le point M. Sa grandeur est égale au pro-
duit de la vitesse angulaire du systtme au méme temps par la
distance de ce point a 'axe.

§ 2/, Si le systeme X fait une rotation infiniment petite autour
de I’axe o de 'angle dw, alors nous avons, a cause de cos dw =1,
sin dw = dw. |

"o =10, + dwl (epg).
dp = p — po = dw| (epo),

1 résulte de la derniere équation, pour la vitesse ?—)—, sl nous la
différentions par rapport au temps ¢, aceélération ¢ du point M
du systeme au temps ¢, savoir

- dv o A dp\, dw
=G T de T WI(S di )+ o o),

d dw . 5 o .
ou, avec la valeur de == —= et — =w, qui est]’accélération angu-

laire du systéme X,
 p=wllewl(ep)] 4wl (63),
ce qui peut s’écrire

o=-—w lp—Clp)ef+w (), gle=o,
ou
o= — W w | (&),
D’aprés ce qui précede, l’accélération?coparait étre la somme

de deux composantes ¢, et ¢, savolr

Gn =—w (sp) | = — Wi},
=) =wl68) = v

la premiere, f?,:, est normale a la trajectoire du point du systeme,
sa direction tend vers ’axe, sa grandeur est égale au carré de la
vitesse angulan‘e multlpllee par la distance du point du systeme
a l'axe; la seconde va directement du coté de la vitesse v; o,
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et '—cn;t sont appelés & cause -de cela la composant‘e’ normale et la
composante tangentlelle de D'accélératio™ 0, qul est, a cause de

ole = o, perpendiculaire & I'axe. |

Pour Pangle d’inclinaison b, de © vers & nous obtenons

e

_‘?___ —_
GJ
i

tang by =

OJ

de sorte que les accélérations de tous les points du systéme avec
les normales de leurs trajectoires renferment le méme angle

En élevant les cotés de I'équation ¢ oala quadrature 1nter1eure
nous obtenons pour la: grandeur de l’accelerauon ' :

(W’*—}—W) 02, co—-h\/w’*—}—w

. La différentiation successive de lequatlon du radius vector 0
du pomt M a I’égard du temps nous conduit 4 des vitesses et
aussi a des accélérations d’ordres supérieurs de ce point de sys-
teme. ,

I1 suit de 'équation

par différentiation par rapporta ¢

(3) ’ -—(2) . d3p

v =g = =~ aww' (p) | & = w2 (ep) | &
- W ep) 4wl (0,
et, en remarquant que o' = w]| (cp), il résulte |

() ::::.9_(2) = —3ww’ (ep) |e— (wd —w") | (ep) .
=—3ww'd — (w® —w") | (c9), —ép(ej le =o.

Aussi cette vitesse parait composée d’'une composante normale
et d’'une composante tangentielle, elle se trouve de méme dans le
plan de la trajectoire du point M.

Pour I'angle d’inclination &; de la troisieme vﬂ:esse vers la nor=
" male de Ia trajectoire (M) nous obtenons
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al est le - méme pour tous les pmnts de systéme. De pIus nous
obtenons pour la grandeur de cette vitesse - | |

(¢ )ﬁi:h?-{:wzvi’?—k <W~,—AW'>’2}-

11 est évident qu’on peut aller plus loin.
En général on a, comme nous voyons

™ :f;(”fl): an (ep).ls—{fbn[(sp), .5(""!8:0.
| =@+ ba|(E8). o

-I;"équatibn générale du radius vector de la ligﬁe droite qui
passe par les points'A' = O -+ -p-;, y =0 - py du systeme )

dans la position 3, ou, de 2 au temps Z est

P~mm +n99, m+n-—1

Les v1tesses successwes d un, pomt quelconque de cette llgne
Sont I

7 P D T
r-.,: P # vome Fea s oL e

- . ou

Tr=mgt
(@i mp'y - nply
et :
" = mp," n@a”, m-+fn=r1i,
AN R I E A :
e ] B mo, ™ — o,
Posons

X_k = pk‘}-Pk (),

alors nous obten'ons encore

4

X~mX1+an’ m—{r—n‘: I.

-

| 'NAvec [ p_}’, . p™ et K. comme' radius vector toutes ces équa_
tions sont celles de hgnes drmtes ce qu1 fait que nous arrlvons |
au théoréme suivang : ,

L hodograpke des szesses de tout ordre des pomts d’une drozte |
du systeme  est une ligne droite. Les éléments terminaux des
vitesses de tout ordre des points d une droite du systéeme se trou-
vent sur une lzgne droiie.

o 4
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Nous appelons I’ensemble des Vites_ses d’ordre 7~ des points du
systeme X son syst‘éme des vitesses d’ordre . L

Puisque v = W] (¢p); leq_uatlon de l’hodographe de vitesse de
la dr01te du systeme est '

o'=w[m| (sp) +nl (cpa)]-

I1 faut donc que pour une droite du systénie soit sans
vitesse ... . ‘ ,

n (ep1) + 7 (epa) = 0.
Cette équation existe seulement quand on a

| ' (spi1p2) = O,
ou

- " ‘ cpl:-..oe’cap)__o

Il faut donec qu’a- cause de la premiere de ces equatlons les
vecteurs ¢, p,- et p, solent paralleles a un plan, c’est-a-dire il faut
que la droite coupe ’axe de rotation; son intersection avec l’axe
n’a pas de vitesse. Le second résultat nous enseigne "qu’il faut
que o, et p, soient paralleles a ¢, de sorte qu'il faut que la droite
coincide avec 'axe de rotation, ¢’est-a-dire que tous les points
du systéme qui se trouvent sur Paxe de rotation sont sans
vitesse. ' '

Pour une droite du systeme, dont les points ont une méme
vitesse, il faut que 'on ait

v =w|(ep) = w|(spy) = w.(cpy)

ou
d’ou s’ensuit -

¢’est-a- dlre il faut que la droite soit parallele a laxe de rota-
tion. ‘ B f _

Les points d’une droite du systeme paralléle‘h Paxe de rotation
possedent la méme vitesse. Par conééquent toutes les 'secti()n.s;
planes du systéme X perpendiculaires a I'axe de rotation ont le
méme mouvement ou des mouvements congruents.
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§ 3. Le systeme invariable % tourne successivement autour des

axes o et, qui sont paralleles Uun a Uautre, des angles w, et w,,

Soit ¢ le vecteur unité des axes, OL =) la distance de I'un a
Pautre, ona (e | A) = o, puisque OL est perpendiculaire & « et P
(fig. 2). Avant le commencement
du mouvement, soit M\, =0 - p,
un point quelconque du systeme.

Par suite de la rotation autour
de Taxe o d’un angle w, le point
de systeme M, vient en M, = O
—+ p,, le point L =0 4 A du
second axe B en L, = O - X, et
'axe P dans la position §,.

I1 vient done selon le § 2 :

p; = (1—cos w,) (¢] py) € + cosw,p,

, + sinw, | (ep,),
Ay = cos w,A sin w, | (e}),

Fig. 2.

N PEET I
= (1—cos w,) (¢ | py) € - cos w, (py—A) 4 sin wy|[¢ (p— N)].
L'équation de I'axe P est |
pe =X + ue,
celle de I'axe B
per = Ay - ue,
ou

2 = cos w,A + sinw, | (eX) -} ue.

~ Alors le systéme I tourne autour de I'axe P; de Pangle w,. Par
cela méme le point de systeme M, vient ala position M = L, -} p,,
et on a

ps = (1 — cos ‘Vz).(sl P2) €+ cOSWyp, + sinw, | (epy).

Prenons maintenant M =0 + p =0 + A, —+ p,, alors nous
obtenons, en posant p, = p — A, p, = p, — by,

p = (1 — coswy) (el p,) -+ coswy (p; —A,) +sinw, |[e (py — A)) ]+ Ay
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la substitution des valeurs m—dessus de o, et ), dans’cette équa-
tion donne o

p=(1— coswy) | (1—cosw) (¢ p) +cosw (c| o) |
‘“@WQ@—4%%Hﬂm8+wwﬁm*JHﬂm%W@VJN}
+ sin wy | { cos wye (pg— X) + sim e | [< (0 — X)] }
1 cos w,) - sin w, | (eN),

et, sl nous réduisons, en faisant attention que

lele (oo — N1 =—[e oy — NIle=—{ (=N — 1 po) e},
nous trouvons |
o = cos w,) - simw, | (1) + § 1 —cos (w, +w)) } (¢] o) €
~+ cos (wy =~ wy) (pg — M) + sin (wy —-wy) [ [e (0, — A)],
ou, sl nous posons

wil—{— Wy =W, -

p = (cos w; —cos w) A -+ (sin w, — sin w) | (e})
+ (1 —cosw) (e] py) € -+ cos we, -+ sin w | (ep,) .
Cette équation représente le radius vector d’un point du sys-
teme quelconque, les rotations autour les axes o et 3 ayant lieu.

Pendant la seconde rotation axe B, ne change pas de place, il
résulte de la derniére équation et de pj = ). - ue,

o8, = cos W, 4 sinw, | (eN) -+ ue,
| comme plus haut, mais 'axe o passant a la position «,, nous obte-
nons, avec p, = us,
Ouy = (cOSw, — cosw) A 4 (sin w, — sin w) | (eA) + ue
comme équation de cet axe apres les deux rotations.

- Par ces deux rotations le vecteur )\ — OL vient dans la pos1-

tion L,L,; on a

oL, = (cos wy — cos w) A -~ (sinw, — sinw)| (ed),

et comme
A = cosw,;\; — sinw, | (e},),

nous trouvons

o2 = 7\1—{ cos wyly ~} sinw, | (eA,) §
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de sorte qu’il vient -

L,L, = PLz—-—- M= —_—{'cos Wyl + sin—w2| (e\,) }

Sinous prenons le pomt L comme péle des coordonnées, il s’en-
suit pour P’axe °‘-, pulsque maintenant - Py = — ) —]— u- est
- I’équation de a, : .

Plag = (1 — coswy) [e] (ue — W] e 4 cos wy (ue'— X))
+ sinw, | [e (e —-A)], -
ou o - | .
plag = — { cos Wk, - sin w,| (ehy) § U4 e,

SiM, == 0 -+ p,, N,=0 + v, sont deux points du systéme avant
le commencement des ro’gatlons, M=0+4u, N=0 -4 v les
‘positions de ces points apreés, on a :

(v —p) = (1 —cos w) [e] (v — )] & + cosw (vo — )

- sinw|[e (v - Po)ls ‘

ou r : »
MN = (1 — cosw) [¢]| M_N,] ¢ + cdswm +-.sinw | [eMyN,].

.- Chaque vecteur du systéme et par conséquent aussi chaqué
drolte du systéme tourne, a cause des deux rotations du’ systéme 3
autour les axes a et § de l'angle w == (w, 4 w,). Les axes a et P
font seuls une exceptlon, le premier tournant de I'angle w,, le
dernier de 1’ Tangle w,, ce qui est clair d’apres les équations don-
néespoura et f,. B T o

Maintenant nous allons examiner si le systéme invariable T a
des points qui ne changent pas de positions, malgré les deux

rotations. ‘ , )
Si U = 0"+ p, est un tel point, il faut donc que la condition
== Po e, existe pour lui et par conséquent, a cause de I’ équa-

t1on pour Qs cette condition devient

o — . (cos w, — cosw) A (smw1 — sinw)|(e})
+ (x ——cpsw) (elec) € —}—coswec—|— sinw | (epc),
ou, en réduisaht,
(cosw, — cos w) h 4 (sinwy — sinw) | (eA) — (r — cos w) [(epe) |€)

+ sinw] (epg) = 0.
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Alors le radius vector p, peut touJours étre decompose numé-
riquement en trms vecteurs non coplanalres nous posons donc
pc = ule -+ u@l -{— usl(el) |

De cette equatlon su1t P - .

(spc) = u, ©) + “3€I (81)" (epe) = | () — 1y (M) e

(epale = uh + 1| (€)). ‘ |
La substitution de ces valeurs a l'équation de condition
pour 5, donne

f. coSw; — COSW + U, (I — COSW) — Uy sinw } A

+ { sinw, — sinw -}~ u, singw — ug (1 — cosw) % |(e)) =

Cette équation ne saurait étre remplie; c’est

cosw,. — cosw -} u, (1 — cosw) - ug sinw = o,

sinw, — sinw —+ u, sinw — w4 (1 — cosw) = o,

qui donnent des relations

R LI
- sin — w, o osin — w,
9 I . 2 2 ¢
Uy =~ COS —— W Uy— ——— e SN — W
% .1 9 L . LI T P
sin — w sin — w .
2 ‘ 2

Le coefficient u,, au contraire, reste indéfini.

Si nous formons avec ces valeurs la derniére équation
pour p,, il résulte alors, comme equatlon de radius vecteur du
dlicu des points sans deplacement

. I
sip — W2
2
pc e -
. I
SIN —— W
¥ 2

g cos ——3— W, A + sin -—Z— w|(EN) ¢ 4+ ue,

d’olt il suit : |
L’endroit des points de systeme, qui ne changent pas de situa-
tion par les deux rotations, est une Zzgne droite parallele aux
deux axes de rotation. | ‘ -
Plagons maintenant le point de rot'atio‘n en un pOint quel—
conque de cette l1gne singuliére.. D’aprés la premwre equatlon
pour p,, il v1endra, sl nous mettons (p—rpe) =1

1= (x— cosw) f el (g — o) } & + cosv? (po — o) + sinw | { & (9 — pd) },
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ouw, en prenant (p, — p) = Y0s
| X = (1 — cosw) (e} )(0) e + cdswxo+ sinw] (ex,)-

Le systeme 3 tourne donc, par suite des deux rotations autour
des axes a et [, autour d’un axe ¥, qui_ est parallele 4 « et B, de

Iangle w=(w, +w,). |

Les trois axes o, [ et ? sont les arétes d’'un prisme, les
axes o, Ei et_:—{ ceux d’un second prisme, les deux prismes ont les
arétes o et v en commun, ils sont symétriquement Congruents.

Pour Vintersection C de 'axe y et du plan passant par A et
perpendiculaire a e, on trouve, avec C=0—-p, =L of,, les
équations

LI
sin — w, .
L 2 1 ) .1 )\
Qo = —————— J COS — W, +s1n-2— wi|(eA) ¢,
sin —— w ' :
2
.1 )
sin — w,
2 I I
= " !c0S — Wy — sin — w, | (eA
o= — ——— {eos -, Ll |,
sin —— w

2

car on a p;, = p,— A; de plus, nous avons

V (pe,)? 1 Y (hpley)2 r
2 17— {ano — LA W e i RS —_—
A ooy ang 5 Yo Mok, tang - Way
par conséquent, il vient
LOC = —;—- w, OLC=— — w,

2

N’ayant rien supposé de particulier a 'égard des angles w,
et w, et de leur maniére réciproque d’étre engendré, les
résultats sont généraux.

Le systeme invariable X tourne maintenant d’abord-autour de
Paxe B de 'angle w,, ensuite autour de l'axe o de I'angle w,.

Dans ces conditions, en choisissant le 'point L comme 1'ori-
gme des coordonnées, le calcul se fait ainsi, en mettant LM _a..o
LO=MN=—1, LM_*p , précisément comme avant, et si mous
echangeons dans les résultats tout a ’heure obtenus, w, avec w;,
~havec M, py Bvee or, nOUS obtenons immédiatement

I — (cos wy — cosw) A\l 4 (sinw, — sin w)](eAI)

+ (1 — cosw) (g] py) € -+ coswpl) + sinw] (epl)),
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de plus, avec M L-—[— fes pour le lieu des pomts sans dépla-
cement
. I . :
E,— iliz_f}l_ ( os — woll - sin —— A
ple = (cos e -—}—sm_2 w, | (e )g-&-ue.

. I
sip —— &

Prenons maintenant le point O comme péle des coordonnées,
alors il faut mettre Nl=—2X, pl=={(p,— ), p'=(p;—A), d'ou

il résulte

or = (1 — coswy) k- (sinw — sinwy)| (eA)

+ (1 — cosw) (g] po) & + coswp, + sinw][e (pg—A)] = p,

et 1’équati0n. de I’axe de rotation sera (en observant que p,, =
A pp)

. I
sin —— Wy
’ 2

Pop — )\ - - g cos ——;— wyh -+ sin _2— w, | (eA) ! —-]— us > o

sin — w 4 )
2
Mettons 'origine des coordonnées en n’importe quel point de
I'axe de la rotation résultante (p,), mettons (o)— 04)=="yT,
P | . : A °
(09— pa) =7, alors mnous trouvons de la méme maniere que
pour l'axe (p,) :

o1 = (1 — cosw) (exoh) & - cos wyl 4 sinw | (sx,h) -

Dans le second axe, les points du systeme ont donc, apres
les deux rotations, une position différente de celle du premier
cas; 'axe de la rotation résultante n’est pas le méme dans le
second que dans le premier cas, cependant les deux axes sont
paralleles aux axes de rotation donnés, et les amplitudes des
rotations résultantes sont égales entre elles. L'ordre de la suite
des rotations n’est pas a changer. :

« Sl un systéme invariable X tourne successivement autour des
axes o et B paralleles I'un a Vautre, des angles w, et w, respec-
tivement, alors son mouvement est équivalent a sa rotation
autour d’un troisiéme axe v, parallele aux axes donnés, de
l’angle w==(w,+ w,) et ordre de successions des rotations
n’est pas a changer. » ‘ ) o

Si les amplitudes des rotations w, et w, sont opposées ou
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egales‘ cest a-dire 8’1l s ag1t d’un couple ‘de rotatlon alors " w,

est censé pos1t1f et, le premler cas supposé, lamphtude de rota-
tlon résultante

-(.U;Wi'—:fwizo

le radlus vector d’un pomt du systeme quelconque apres les
rotations autour des axes o et 3

0= (cosw1 — I) A+ éinw“ ('e)\j - Po’

et si v désigne le déplacement total de ce point du systéme,
alors nous avons

T=p—pp= (coswy — 1) )\—-]— sinw, | (eA)

Mais I'expression pour t est la méme pour tous les points du
systeme a cause de cela, le systeme, par les rotations autour
les axes o, et @successwement dont les angles sont w, et —w,,
subit la translation . .

Il résulte de I’ equatlon pour t

T = )y,— ) tle = o,
de plus, I'équation de I’axe de rotation résultanty est A présent
' ' . o . ; ) ot
Pe== 0§ COS — w, A sin — Wil(d)} 4+ ue,
et on a ‘ »

Oy — N g cos —;— Wk -+ s'ip _;— ALCN g — o,
comme on voit aisément, quand on calcule le produit avec la
valeur de (A, — A) sur le membre gauche de cette équation.
‘Conséquemment, la translation v est perpendiculaire aux axes
- des rotations donnés et & la bissectrice de I'angle LOL,.
Pour la grandeur de la translation, nous  obtenons

a2 s (éds w, — 1) 2 4 sin?w, 2 = 2 (1 — cosw,) &2
= 4 sin'*’ —é— w 2.

Si le systtme % -d’abord tourne autour de Paxe B de
langle — w,; ensuite autour de ’axe « par ’angle w,; nous obte-
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nons pour le radius vector d’un point du systéeme quelconque,
avec L, comme pdle de coordonnées, apres les deux rotations

pl = (cos w:1 — 1) M — sinw, | (eAl) 4 ol;,
el

1

i

ol — ofy = (cosw; — 1) M — sinw, | (eAl).

et, avec le point O comme poéle, il résulte

,TI: P1— Py = — { (coswil—/— 1) 2 4 sinw, | (eA) } > T,

La translation du systeme n’est pas égale maintenant a celle
du cas précédent. : _

« La suite de deux rotations opposees egales autour d’axes paral-
leles est une translation équivalente et l'ordre de cette succes-
sion ne se peut intervertir ».

Si les axes o et B coincident, X =0, axe ;, coincide avec
eux; w=—=w, -+ w, et on peut changer 'ordre de la succession

des rotations; avec w,=——w,, on aura w=—o0. Des rotations

1?
opposées égales autour du méme axe s’annulent.

§ 3'. Si les rotations autour les axes o« et {3 sont infiniment
petites, si leurs angles sont dw, et dw,, nous obtenons 1mmé-
diatement, en vertu des résultats pour des rotations finies,

les équations doﬁt il s’agit maintenant, en mettant pour w, et w,

&

les 1mp11tudes infiniment petltes dw, et dw, resp., remarquons
qu’s qlors cos dw =1, sin dw=—=dw.
Sl successivement les rotations infiniment petites ont lieu

autour les axes o et 3, alors le radius vector d’un point M du
systeme quelconque, apres que les deux rotations sont achevées

p = — dw,|(eA) - py+ dw | (epy), dw = dw, + dw,;

les équations des axes o et ?), a2 la fin du mouvement du sys-
teme sont

Pay == dwy | (Ae) - ue = ue,
pay = A4 dw, | (e)) 4~ ue = X ue,

‘ces axes se déplacent infiniment peu perpendiculairement au
plan [eA], de sorte que, si des quantités infiniment petites sont
neghgees ils ne changent pas de situation dans’ espace,

Enseignement math, 3
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Pour 'axe de rotation résultant _Y— nous obtenons l’équation
__ dw, (
Pe = "dw {

- Pe = de ) —-I— ue,

A —}——}- dw | (s)\)g -+ ue,

- et s1 nous prenons le point L pour le péle des coordonnées et si
nous désignons le radius vector de I'axe v, pris en partant de
lui, par p,, ou alors p=0p, —2, on a

dw, )

0= 2% g h—dwy () § + ue,
dw

)= —— 1

{ - A 4 ue,

de sorte que 'axe '? est parallele aux axes @ et B, et situé dans le
- plan déterminé par eux, partageant le vecteur A en proportion
inverse aux angles des rotations dw, et dw,.

Si d’abord la rotation du systeme X a lieu autour de l'axe {3
de I'angle dw, et puis autour de I'axe « de I'angle dw,, on obtient
les mémes résultats, les axes de rotations résultants des deux
cas tombant sur la méme ligne droite. L’ordre de la succession
des rotations infiniment petites autour des axes paralleles peut
donc s’intervertir.

En choisissant maintenant un point de axe :}- pour pole des
radil vectores, le radius vector du point M sera alors

X =0 pc = (po — 2c) + dw|[e(pg— pc)]
ou

X = Yo+ aw](exo)

le systeme X tournant autour d’eux de l'angle dw =dw, + dw,.

Un systeme invariable £ tournant successivement autour de
deux axes paralleles différents d’angles infiniment petits; son
mouvement est équivalent a une rotation infiniment petite
autour d’'un troisitme axe parallele a ces axes et situé dans le
plan de ces axes; amplitude de la rotation autour de ce troi-
sieme axe est égale a la somme des amplitudes données et I’ordre
de la succession des rotations données est indifférent.
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Si les angles des rotations infiniment petites dw, et dw, sont
opposés et égaux, alors nous trouvons, avec dw, =— dw,,

p=po +dw| (), dv=p—py=dw](e}),
© e = ® A - ue, dw = o. -

« La suite de deux rotations infiniment petites, opposées égales
autour des axes paralléles est équivalente a une translation infi-
niment petite perpendiculaire au plan de ces axes, I'axe de la
rotation résultante est situé infiniment loin dans le plan des axes
donnés, 'angle de la rotation est nul, et 'ordre de la succession
des rotations peut é&tre interverti. » -

Par cela, la rotation du systéme I autour des axes @ et ,E, qui

- sont paralleles. 'un a 'autre, est ramenée a la'rotation autour
d’un troisieme axe parallele aux deux premiers. ‘

Si les amplitudes des rotations- données sont infiniment
petites, alors I’élément de la trajectoire d’'un point quelconque
du systeme est '

do = p — py = dwy|(%e) + dw] (epy);

par conséquent, la vitesse de ce point est

A do  dw dw :

ou
v =w,|(Ae) 4 w]|(e2,), W= w, —F\vg; ‘

10US 4vONs aussi
do=y —fo=dwl (et v =wl(exo).

Dans ce cas-ci, on peut écrire 'équation de 'axe de la rotation.
résultante

. -aZw2 . dw \
PC_(dt L >7\—{—us.
On a alors aussi

W, R
= 3% uz I g T | ue
Pe w + P - W +

Si les rotations infiniment petites autour des axes o et [ sont
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op;bogées et égales, la translation 'du systeme qui en résulte est
infiniment petite '
' dv = dw, | (N

et sa vitesse de translation_est

de

'1)0: —ZT ;Wi ' (5)\)..
On voit facilement d’apr’es' le § 2’ comment on arriverait aux

vitesses d’ordre supérieur.

§ 4. Le systéme invariable S posséde une rotation autour de
Uaze o de Uangle w et une translation T paralléle a cet axe.

Seit O un point fixe de 1'axe ;, son vecteur unité e, M, :"O—Jr— Co

. un point quelconque du systeme (fig. ‘3) avant

le commencement du mouvement. Par suite de
la rotation, le point M, vient dans la position

M=0 —+p,, et on a, d’apres le § 2,

o1 = (1 —cosw) (e]py) + coswp, + sinw| (epy);
par la translation du systeme, qui s’effectue
ainsi, le point du systémespassant de l'en-

droit M, a 'endroit M =M, +1t=0 —p, de

sorte que le radius vector d'un point du sys-

Fig. 3.

teme quelconque, aprés que les deux mouve-
ments ont eu lieu, est donné par 'équation

p=p;+7=_(1—cosw)(e|lp,) e+ cos wp, + sinw](epo)-}—":.

Cette équation nous enseigne que l'ordre de la suite de rota-
tion et de translation est arbitraire, et aussi que les deux mou-
vements peuvent se {aire en méme temps.

Chaque point du systeme se meut sur un cylindre circulaire
I'axe de celui-ci coincidant avec l'axe de rotation, la longueur -
‘du. demi-diametre de ce cylindre est £ ::\/@)—:—

§ 4'. Si I'angle de rotation et la translation sont infiniment

petits égaux a dw et a dv=due, alors le radius vector d'un point
quelconque du systéme, aprésles deux mouvements, est

P =po+ dw|(ep,) + due.
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L’ element de la: traject01re decr1te par cé pomt dans I element
du temps dt est o T T

dp = p——po = dwl (epo) + due;

sa vitesse est done

PRI
ou
v =w|(ep,) —}— ®ys, Uy = ‘—%Z;;,
et, a I'égard du § é’, | ' ' ‘ .

U =w| (ed,) + Ug.

Puisque alors (5 | 8)20, la vitesse de chaque point du sys-
teme est donc normale a la pefpendiculaire qui tombe de lui sur
I'axe de rotation.

On conclut de la méme equatlon

(v]e) = uy, (e] v) e = ue.
les projecﬁons des\vitesses des points du systéme sur la direc-
tion de l’axe de rotation o sont egales 'une a 'autre et egales
ala v1tesse de ‘translation parallele ao.,

De plus, nous avons

(ev) = w [e|(e8y)], ©  (ev)2 = w2 (e3,)2 = w2h2,

de sorte que nous obtenons. pour 1angle b, que forment la
Vltesse » avec la direction de 1 axe a, o
\/(6’0)—- ] “C_ h.'

tanéb:——-——-:

e|v u,

La grandeur dela vitesse v résulte de la méme equatlon par sa
quadrature intérieure '

0= %\v2k2 -+ u?,.
Il n’y a pas de point du systeme sans. vitesse, car la vitesse "2[0
est commune a tous les points du systeme,

De b'.__o résulte — U ==1Usg, tous les pomts de systeme sur
Iaxe o se meuvent donc avec Ll v1tesse u
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La différentiation successive de 1’équation de la vitesse par
rapport au temps conduit aux vitesses d’ordre supérieur du point.
du systeme, c’est son accélération a I'égard du § 2

- d2\o ' ’
=y = — w23, 4 w'[(eSy) + w'e.

 § 5. Le systeme 3 tourne autour d’un axe o de langle w et il
possede une translation © inclinée sur cet axe.

Soit le point O sur ’axe de rotation o le pole de coordonnées,
M,= O -+ g, un point de systeme quel-

. ‘ conque avant le commencement du

>l

mouvement. Par suite de la rotation et

‘ © dela translation, le point M, prend la
61 m\A\ \A_ position M=O0-}p(fig.4)dans'espace.

X~4 d ..
2, P On a évidemment

o 5’ 7 p={1—-cos w)»(s | o) €+ cos wp9+sin](epd)+c,

'ordre de la suite de rotation et de
translation est échangeable, les deux:
Fig. 4. mouvements peuvent avoir heu simul-
tanément.

Y, . . .
L équation d’une droite du systeme avant le commencement
du mouvement étant

Po = A = B, Ale =o,

son équation, aprés que la rotation et la translation ont eu lieu
s1 nous substituons cette valeur de p, pour p dans 1’équation, est
alors

p = % (1— cosw) (] B) e+ cosw (A + xB) -+ sin|[eX 4 % (eB)] + .

S’1l faut que le systeme X posséde une droite, dont les points
se déplacent autour du vecteur t,, alors il faut pour cette rangee
de points que l'on ait la condition.

% (1 —cosw) (e]B) e+ cosw (& -{-—xﬁ)—[—smw[[e)\ + % (e B)]
+T“)‘+XB+"70'
ou
% {(x —cos w). [( IB)e— Bl + smw] (8(3) + (cosw — 1) X
-+ sinw](ed) =1, —*. N o
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Parce que (t, — t) seulement peut étre un vecteur invariable; |

il faut done pour une telle droite du systeme
(= cosw) [(e1B) e — B + sinwl () = o,
+ (1 —cosw) A — sinw|()) + (5,— ) = o.
De la premiere de ces équati.ons résulte, s’il elle est éxagté;' ‘
Clge—B=o, (f=o,
et, pﬁisciue de la premiéré de ces relations résulte la seconde, 1l

faut que B soit parallele a e, soit la droite cherchée parallele a
I'axe «, de sorte que d’abord I’équation de cette droite est .

= A e, e]A =o.
De la seconde condition suit, par multiplication avec [,
(to—7)|e=o0,  Tyle =nx]e,
¢’est-a-dire la translation des points de cette droite est ég'lle a
la projection de la translatmn donnee sur sa dlrectlon c’est-a-
dire la direction de 1’axe o.
Mamten'mt il faut encore déterminer la distance du Vecteur

k= OO de la drmte a 'axe de rotation .
Prenons :

T— Ty == Ty, Ty [E == By
“alors il faut que
(1 — cosw) A — sin| (eA) = ¢, = (e7) [g,
la multiplication de cette équation avec ¢ donne
(1 — cosw) (eA) — sinwe| (ed) = (e7,) = (en),

de sorte que:

(1 — cosw)| () - sinwd = (ex),
on a donce
o) = L=t
ei par conséquenf
 sinw

(1—cosw) A —= [l (ev) — sin W] = (e7) (;-:,

I —COSw
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d’otu 1l suif

it otang )
A o= ok cotan.gv " w[(e"c) -+ (%) l€5a
et conséquemment I’équation de la droite du systeme qui autour
du vecteur T, S€ déplace en ellefméme est
1 ( I \
L= ( cotang ~ wl(et) + (em){e t + =e.

" Pour la distance de cette droite a I’axe nous obtenons

2= 2@.:—%—— % 1} cotangz"—v—z— w% (et) 2= —— (e7) 2,

. I
4 sIn= —— w
2~

t

~ Si nous faisons tourner maintenant le systéme X autour
de cette droite comme axe d’un angle w, et donnons en méme
temps au systéme la translation ¢, parallele audit axe, alors en
“posant M, = O, 4 p;, et désignant par M'= O, + ¢', en

appelant M* 'endroit de M, aprés les deux mouvements, on a

pt= (1 — cosw,) (e]p'y) € 4 cosw,pl,-|-sin Wi,[ (ee%) ‘.{‘V’CO’

et.avec O comme poéle des coordonnées il vient en mettant OM—=—

pr=p —X po =po— A,

pr = (1 —cosw)) [(e|py) € — A] -+ cosw,p, + sinw, | (e, —€A) -+ ;.

Si nous voulons que par. le- second mouvement le systeme
passe a la méme position comme par le premier mouvement,
-alors il faut que I'on ait M' = M, o, = p, a cause des équations
pour p et p;, si nous rappelons la valeur ci-dessus (v — 7,), il
vient ‘

(cos w— cosw,) { (e]pg) e— po + A }——- (siﬁw — singw)| { ¢ (0,—2) } ;;.—__o,
équation qui ne saurait étre satisfaite qu’avec
COSW — COS W, : o, sinw — sinw, = o,
de sorte que -

. w1: w," Cou Wy = — &Q.TCJ-—A_W),
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d01t étre 1’angle de la rotation autour. du nouvel axe égal a
I'angle donné, ou égal a son complement pl is négativement a o1,
Faisons tourner a présent le systeme X autour du second axe
de I'angle w, et effectuons la translation t,, alors le radius vector
d’un point quelconque du systeme apres le changement de lieu
est ; '
el = (I — cosw) (¢ o) e+roswpo+s1n[ eol, +'co,

Lot il suit avec_-p‘:pI — X, 9{) = p, — A,
pr= (1 — cosw) (e|p,) e 4 coswp, - sinw|(egy) + T =0p.

On voit que le second mouvement est équivalent au premier.
~ La rotation autour d’'un axe o d'un angle w et la transla-
tion T inclinéé sur cet axe d'un systéme invariable S sont indé-
pendantes de lordre et équivalentes & une rotation autour
d’'un certain axe paralléle a Paxe o du méme angle et a une
translation paralléle a cet axe, égale & la projection de la trans-
lation donnée sur la direction des azes.

Que le systéme X tourne autour de I'axe « de Iangle w et
qu’il subisse la translation 1, alors le radius vector d'un point du
systeme quelconque, aprés que les deux mouvements ont eu lieu,
est

0= (1———coswj (e[po)e+ coswp, - sinw| (ep,) + .

Que le méme systeme tourne de plus autour de 'axe {3 paral-
lele a «, de I'angle w, et qu’il subisse la translation 1, alors le
radius vector d’un point quelconque du systeme, apres que les
deux mouvements ont eu lieu, sile point O, de P est point de
relation est '

pr= (1— Coswi) (e] &%) e - cosw;ol; -|—-si,n w | (e2%) + L.

Posons 00, = 2, Je = o, alors pl= 0o — A, pl_._p — X, et

avec ces valeurs on artive a la derniere equatxon
p' = (r —cosw,) (e} py) € 4 cosw, (o —-X) ~+sinw, |[e (og — A)] +<!.

S’1l faut que le second mouvement soit equwalent au premier
mouvement, 1l faut avoir p = p, ou

(cosw —cosw,) g (el po) € — Py } — (sinw — sinw, )| (ep,)
+ (x —coswy) A — sinw, | (ed). 4 ' — 1 =o,.
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par conséquent on aura’

W, = w,

ctl = v (cosw—1) XA + sinw] (e}),

et la derniére relation entrainera

tlle =1]e.

Si un systéme invariable I subit une rotation autour d un
aze o et une translation, son mouyvement est équivalent a une
rotation de méme angle autour d'un axe quelconque B, paralléle
& Uaze donné et & une translation. Cette derniere translation est
dépendante de la distance réciproque des deux axes, sa projec-
tion sur la direction des axes est égale a la projection de la trans-
lation donnée sur cette direction. 4

§ 5. A présent, supposons que le systéme T subisse une rotation
infiniment petite de. l'angle dw et une translation infiniment
petite dr. | l

Il s’ensuit par ce qui précéde que nous obtenons immédiate-
ment, si nous mettons dans les résultats ci-dessus, a la place
de w et resp. dw et dz, pour le radius vector d’un point quel-
conque du systeme apres les deux mouvements

p = po -+ dw](epy) + dr;

de plus l’équation de l’axe autour duquel le systeme fait un
mouvement de vis infiniment petit est

£ = ) 4 v

sa distance du point O est

A= (edr), 1= -SnEd) g

dw dw 2 du_—_‘/a_'rz,‘

la translation parallele a I’axe o est

d<, = dt 4 dw]|(e)) = dt — (ed7)|e,
d-colé:: dr e, dt, = (dz|¢) e.

L’élément, de la trajectoire d’un point du systeme parcouru
dans 1’élément de temps dt est
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dp=p— p, = dw|(epo) + dr,

\

dp = pl — py = dw](epY) -+ dro,
par conséquent la vitesse de ce point est

do _dw , cdtv dw . dr,
W——jﬁ‘\(f%)—l—%—m—\(gpo)‘i— T

ou ;

v =w]|(ep) + w= w1 (%) 4 %ee-

: L’équation de ’axe de vis peut s’écrire
I

Cd=
. X = ————-——dw <€ "'d—t‘) 'J(_ “Ze
dt | -

ou
- \ N
7= | (o) 4 %e,

il en résulte

de sorte qu’il y a moyen de construire facilement l'axe du
mouvement infiniment petit de la vis.
Pour la vitesse parallele a cet axe nous obtenons

.___drgo_...

Uy =~ = (u)e)e, iLO = u cos (g,u).

S1 le systeme X tourne autour de 'axe duquel nous venons de
parler de I'angle dw et s’il posséde la translation' dt,, alors la
vitesse d’un point du systéme quelconque . est

v=w|[e (pp —N] 4 us,
l’équa'tion du premier axe avec O, comme point de relation est
oy =— A + xe,

par conséquent les vitesses des points de la droite du systeme
qui coincide avec cet axe (en mettant pour » dans I’équation
po — h==pg) sont |

v =—w|(e}) + uge,
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mais on a A cause de I’équation relative a 2,
W)= — ()]s,
par conséquent |
| v = (SZ)] e fuge=u,

de sorte que, par suite’ du second mouvement du- mouvement
infiniment petit de la vis du systéme, les points du systéme sur

le premier axe ne possédent que la vitesse de translation_;,
comme 1l faut que cela soit.

Avec cela le mouvement du systeme est ramené a4 son mouve-
ment du paragraphe précédent.

Si le systeme ¥ tourne autour de l'axe o de I'angle dw et s’1l a
encore la translation autour du vecteur dz, on a alors

0 == p, + dwl(ery) + dr.

S1 1'on veut que le méme résultat soit obtenu par sa rotation
autour d’un axe ﬁ parallele a celui de o, lesquels axes pos-'
sedent la distance réciproque A, et une translation dr;, alors 1l
faut que, selon ce qui a été dit a la fin du § 5, I'angle de rota-

tion autour de I'axe (3» soit égal a dw ; la translation

drt, = dv 4 dw|(e}),
la vitesse angulaire égale la précédente et la vitesse de la trans-
lation '
v, = u + w| (eh).
On peut comparer ce développement avec les articles corres-
pondants d’Appell et Schell sur la cinématique théorique ; on

verra alors les avantages qu ‘offre le calcul geometmque sur les
developpements usuels.

Ferpixaxp Knarr. (Zﬁmcn.)
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