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ÉQUIVALENCE DES ROTATIONS

AUTOUR D'AXES PARALLÈLES ET DES TRANSLATIONS

D'UN SYSTÈME INVARIABLE

§ i. Nous imaginons un système S invariable, matériel ou

géométrique ayant pour éléments des points. Nous allons considérer

le mouvement de X quand il passe d'une position S1 à une
autre position S2 sans avoir égard à sa cause. Nous nous occuperons

seulement de son changement de position, de la vitesse et
des accélérations de ses points, lesquels gardent, puisque S est

censé invariable, une distance invariable entre eux pendant son

mouvement. Le système S et ses positions Si et S2 forment de cette
manière trois systèmes congruents. Le système S est dans la
position S1? quand des éléments homologues des deux systèmes
coïncident; S est passé de la position S1 à la position S2, quand
les éléments homologues de S et S2 coïncident, après que tous les
points homologues de S et de S4 ont coïncidé. Si nous nommons
A un élément de S, alors Aa et A2 représenteront les éléments
correspondants de S1 et de S2.

Si le système S passe d'une position Sx à une autre position
S2, la nature du mouvement de S est donnée ou elle est inconnue.

Nous allons ici supposer le premier cas et nous allons regarder
le mouvement de S quand il sera transporté, moyennant des

rotations autour d'axes parallèles et des translations d'une position

S1 dans une autre position S2.

La méthode de recherches de laquelle nous nous servirons est
fondée sur le calcul géométrique. Le lecteur trouvera, ce qui est
nécessaire de savoir, dans le traité : « Application de la méthode
vectorielle de Grassmann à la géométrie infinitésimale »j par
Henri Fehr (Paris, Carré et Naud, 1899).
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§ 2. Rotation d'un angle w du système invariable S autour dun
axe fixe ol.

Quand un système invariable S tourne autour d'un axe fixe

a, chaque point du système décrit un arc circulaire. Le plan de

la trajectoire dont le centre est situé sur l'axe est perpendiculaire

audit axe de rotation.
Soit (fig. 1) OA l'axe de rotation, 0 un point fixe quelconque

sur cet axe, e son vecteur d'unité, w l'angle
duquel S tourne autour de l'axe, OM0= p0

le radius vector d'un point quelconque du

système, M0 ou M0 O + p0 un point
quelconque du système avant le commencement

du mouvement (de S à la position

S,), M 0 4- P la position de ce

point après que la rotation a eu lieu (le

point homologue dans S8), de sorte que M0

et M se trouvent dans un plan perpendiculaire

à Taxe, et que les perpendiculaires
de M0 et M qui tombent sur l'axe s'y coupent en un point N
de l'axe. On a NM0?. NM!. Mettons NM0 80, NM= S, faisons
attention que OM =ON +NM. Prenons le vecteur unité s, de

telle manière que la rotation, regardée de son élément final, se

fasse comme le mouvement d'une aiguille de montre, rotation

que nous fixons comme positive. Alors subsistent, puisque M0NM

w (fig. 1) les équations

p ~ (e|p0) £+8, 8 cos woQ -j- sin w\ (e80),

mais puisque

A) po — (£lPo)
'

(A) ='(ePo)>

il vient aussi

P (£lPo) e ^— c^>s ^ [(£|Po) £ — Pol +- sin (spo),

OU

p — (1 — cos w) (e|p0) s + cos wpQ + sin w\ (ep0).
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Il s'ensuit de l'équation pour 80, si nous rappelons que nous

avons S0- 81,

si- [po—(eipo) s]?, \ ^
ou

83 (ep0)2 =z,r2 sin2 (e,p0), ^/82 r sin (e,p).,;

si r représente la longueur du radius vector p, qui est constante

pour le point M, pour l'équation de la trajectoire du cercle de ce

point du système.
Pour un point du système qui se trouve sur l'axe de rotation,

on a M0 — N, (e|p0) s =.p0, (ep0) — o, de manière que p p0.

Cela veut dire que les points du système qui coïncident avec l'axe
de rotation, ne changent pas de place pendant le mouvement
de S.

La vitesse du point M du système est la dérivée de son radius
vector p par rapport au temps t.

En différentiant l'équation relative à p par rapport à t quand
nous désignons la vitesse du point Mpar^

-dp dw •
1

r — — I sin w [(e|p0) £ p0] -f cos-^l (ep0')-j-, t.tw j

ou, quand nous mettons [dw : dt) w, représente la vitesse

angulaire du système S autour de l'axe a7 ^ •••-)

vw j cos w\ (spo) H- P|j] j- : ;

mais nous obtenons, en multipliant l'équation en p par s,

(ep) cos «f» (sp0) + sin w[e|'(ep0)]

— c°s "> (epo) + sln C(elp<d £f—>oi

par conséquent on a aussi

v~ w l (eo) — w| (e8). •

La quadrature intérieure des membres de cette équation
donne

V- — V2~ w2 (sp)2 zz w2 (ep)* ' • »

et il vient, avec S- A2, "

V ~ wr sin (e,p)zz wh v - :*
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La vitesse ü du point M est perpendiculaire au plan déterminé

par l'axe de rotation et le point M. Sa grandeur est égale au produit

de la vitesse angulaire du système au même temps par la

distance de ce point à l'axe.

§ if. Si le système S fait une rotation infiniment petite autour
de l'axe a de l'angle dw, alors nous avons, à cause de cos dw — i,
sin dw dw.

P Po + dw\ (£Po)-

dp — p — po^dH (epo),

V==^W ~w' (£P°) ~wl (£§°) ~w! {s5)'

Il résulte de la dernière équation, pour la vitesse v9 si nous la
différentions par rapport au temps t, l'accélération cp du point M
du système au temps t, savoir

dv d2p I dp \ dwsr= IFWI + HTI
ou, avec la valeur de — et =w', qui est l'accélération angu-
laire du système S,

cp =w| [sw[ (sp)] + w'| (e8),

ce qui peut s'écrire

cp — — w2 j p— (s | p) s J -f- w' | (sp), cp| e o,

OU

cp — w28 -f- w' | (s8).

D'après ce qui précède, l'accélération cp paraît être la somme

de deux composantes cpn et cp^ savoir

cpn — w2 (sp) | £ — - W28,

" Vt — w'j(sp) wr|(s8)

la première, <pn9 est normale à la trajectoire du point du système,
sa direction tend vers l'axe, sa grandeur est égale au carré de la
vitesse angulaire multipliée par la distance du point du système
à Laxe; la seconde va directement du côté de la vitesses; <pn
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et cpf sont appelés à cause de cela la composante normale et la

composante tangentielle de l'accélératio11 cp, qui est, à cause de

cp Je o, perpendiculaire à l'axe.
Pour l'angle d'inclinaison b2 de cp vers S nous obtenons

tanrb
_\/-(§y)! _ w'

ta gbä~
8|? ~

de sorte que les accélérations de tous les points du système avec
les normales de leurs trajectoires renferment le même angle.

En élevant les côtés de l'équation cp à la quadrature intérieure
nous obtenons pour la grandeur de l'accélération. £

cp^ — (w4 + w'2) 81, © A ^/w4 -p w'2.

La différentiation successive de l'équation du radius vector o

du point M à l'égard du temps nous conduit à des vitesses et
aussi à des accélérations d'ordres supérieurs de ce point de
système.

Il suit de l'équation

v® — cp ~ — w2 (sp) | s -f w'| (sp)

par différentiation par rapport à t

Vl3) —
<f>(2) — 2WW' (sp) | S — W2 (sp') I S

+ w" I (sp) 4-w'l (sp'),

et, en remarquant que p' w| (ep), il résulte

V^ — 3ww' (sp) | £ — (w3 — w") 1 (sp)

=:—3ww'o — (w3—w") | (s8), cp^2) | £ — O.

Aussi cette vitesse paraît composée d'une composante normale
et d'une composante tangentielle, elle se trouve de même dans le
plan de la trajectoire du point M.

Pour l'angle d'inclination bs de la troisième vitesse vers la
normale de la trajectoire (M) nous obtenons
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,il est lé même pour tous les points de système. Der plus, nous
obtenons pour là grandeur de cette vitesse

(f)l — h2 9W2W'2 _f_ (w3 _ w")2 j

Il est évident qu'on peut aller plus loin.
En général on à, comme nous voyons

vln) _ ^(» - 1) _ an ^ | e hn | vin> ] è — o.

anù -f- bn | (e8).

L'équation générale du radius vector de la ligne droite qui
passe par les points A2Ö 4- p1? B2 O 4~ p2- du système S

dans la position S2 ou de S au temps t est

p — mpi -f- npv

' Les vitesses successives'd'un point quelconque de cette ligne
sont - : ^ f r, t ^

"
• ». ^ » -

1

TT=mJJT +"J7T'--CL L CL v CL v

ou

et

V'} I Vf v
Posons

c$l ^ mtfl -h>p'2 • -

p" — mp " -f- ftp2", m-f « —i,
<-i ^ - -

p(w) — mp^n) + p2(»).

Xk— pk^rpiïn), ;

alors nous obtenons encore

X mXi + nLr m + n—i.

Avec p;, p^j... p(n) et X comme radius vector toutes ces équations

sont celles de lignes droites, ce qui fait que nous arrivons
au théorème suivant : \

Vhodographe des vitesses de tout ordre des points d^une droite
du système est une ligne droite. Les éléments terminaux des

vitesses de tout ordre des points d?urie droite du système se trouvent

sur une ligne droite. a
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Nous appelons l'ensemble des vitesses d'ordre n des points du

système S son système des vitesses d'ordre ri.

Puisque v w|. (ep), l'équation de l'hodographe de vitesse de

la droite du système est

p' W [wiUspJ +n\ (sp2)]. '

Il faut donc que pour une droite du système soit sans
vitesse

^(ePi) + »(sp2):=0-

Cette équation existe seulement quand on a

- (sPlp2) ~ o,

ou

^ • - spi — o et sp2 — o.

Il faut donc qu'à cause de la première de ces équations les

vecteurs e, p^ et p2 soient parallèles à un plan, c'est-à-dire il faut

que la droite coupe l'axe de rotation; son intersection avec l'axe
n'a pas de vitesse. Le second résultat nous enseigne qu'il faut

que p4 et p2 soient parallèles à £, de sorte qu'il faut que la droite
coïncide avec l'axe de rotation, c'est-à-dire que tous les points
du système qui se trouvent sur l'axe de rotation sont sans
vitesse.

Pour une droite du système, dont les points ont une même
vitesse, il faut que l'on ait

v =W1 (£P) — w I (£Pi) w.(ep2)

• (ep) (ep1) =.(ep2),

'
"

£'(pi — Pa) °>

c'est-à-dire il faut que la droite soit parallèle à l'axe de rota-
tion. ;

Les points d'une droite du système parallèle à l'axe de rotation
possèdent la même vitesse. Par conséquent toutes les sections
planes du système 2 perpendiculaires à l'axe de rotation ont le
même mouvement ou des mouvements congruents.

ou

d'où s'ensuit
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§ 3. Le système invariable S tourne successivement autour des

axes a et fi] qui sont parallèles l'un à Vautre, des angles wL et w2.

Soit 0 le vecteur unité des axes, OL )> la distance de l'un à

l'autre, on a (e | A) o, puisque OL est perpendiculaire à a et ß

(fig. i). Avant le commencement
du mouvement, soit M0 O + p0

un point quelconque du système.
Par suite de la rotation autour

de l'axe a d'un angle wi le point
de système M0 vient en O

-f- p4, le point L O + X du
second axe ß en Lt O + Ai, et
l'axe ß dans la position ß

Il vient donc selon le § i :

Pi (i—cos wj (eI Po) S + cos w±p0

+ sin | (ep0),

Ii — ços -f- sin | (eA),

Fig. 2. Li Mi — p2—pj

(i—cos W±) (s I p0) e 4- cos (p0— A) + sin «^[e (p0 — X)].

L'équation de l'axe ß est

pP — A —j— ut)

celle de l'axe ßi

PPi + ue>

ou

Pß! — cos w^k -f- êin w± | (eX) -|- us.

Alors le système S tourne autour de l'axe ßi de l'angle wr Par
cela même le point de système MA vient à la position M — L! -f- p3,

et on a

p3 (i — OOS w2) (e| p2) e + cos w2p2 + sin w2 | (ep2).

Prenons maintenant M O -f- p — O -f- \ + p3, alors nous

obtenons, en posant p3 — p — p2 — p4 — \9

p — (i — cos w2) (s I Pi) e + cos (p! —\) + sin^i | [e (Pi — Ai)]+XA,
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la substitution des valeurs ci-dessus de et \ dans cette équation

donne

p (.1 — cos w2) (i — cos w±) (s I p0) +.COS (s 1 Po) ] e

+ cos [ (i — cos wj (s I Po) s + cos (Po — X) -f- sin wi | [s. (p0 — X)] j

+ sin | | cos w±s (p0 — X) + sin ^i£ I [£ (Po — ^)] j

-f- cos w^X -f- sin wi | (eX),

et, si nous réduisons, en faisant attention que

e [e (p, - X)] - [s (p0 - X)] 1 e - { (p„- X) - (e | p0) e }

nous trouvons

p cos W^k -f- | (sX) + | I — cos (wi w2) j (s | p0) £

+ cos K + W,) (Po — X) + sin K+ w2) I [e(po — X)],

ou, si nous posons
W± -f- W2 — w,

p — (cos wi — cos w) X + (sin w± — sin w) | (sX)

+ (i — cos w) (s | p0) s + cos wpo -f- sin w | (ep0).

Cette équation représente le radius vector d'un point du
système quelconque, les rotations autour les axes a et ß ayant lieu.

Pendant la seconde rotation l'axe ß4 ne change pas de place, il
résulte de la dernière équation et de p0 X. -f- m>

pp± — cos w.L\ -f- sin wL | (eX) -f- us,

comme plus haut, mais l'axe, a passant à la position a2, nous
obtenons, avec p0 ut,

p«a =: (cos w± — cos w) X -f- (sin w± — sin w) | (sX) -f- us

comme équation de cet axe après les deux rotations.
Par ces deux rotations le vecteur X OL vient dans la position

LgLj on a

pL2 (cos wi — cos w) X -f- (sin wi — sin w) | (eX),

et comme
X z= cos wiXi — sin^l (sXd,

nous trouvons

pL2 zu X1— | cos«^ -f- sin w2 I' (sX1) j.
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de sorte qu'il vient

L1L2 '

pL2 — { cos + sin-fP2 | (sX1) j.

Si nous prenons le point L4 comme pôle des coordonnées, il s'ensuit

pour Taxe ot2, puisque maintenant p2 — \ -j- ut est

l'équation de a,

prK2 HT (i COS W2) [ £ | (Ut XJ] £ COS [m Xj
+ sinw2| [s (&£ — -XJ], 1 •

ou

pra2 — — | cos fv3X4 —|— sinw2|-(sXj) j -f- ut.

Si M0 0 pL0, N0 0 + v0 sont deux points du système avant
le commencement des rotations, M 0 + pi, N 0 + v les

positions de ces points après, on a

(y — K) (ï — cos w) [£ I (V0 — ftl)] £ +, cos> (v0 — Po)

+ s.inw|[s (v0— Po)],

ou
MN (i — cos w) [s | M0N0] £ -f- cos wM0N0 q- sin w | [£M0N0].

Chaque vecteur du système et par conséquent aussi chaque
droite du système tourne, à cause des deux rotations du système S

autour les axes a êt (3 de l'angle w [wl + w2). Les axes a et ß

font seuls une exception, le premier tournant de l'angle le

dernier de l'angle w±, ce qui est clair d'après les équations données

pour a2 et ß,.
Maintenant nous allons examiner si le système invariable 2 a

des points qui ne changent pas de positions, malgré les deux

rotations.
Si U 0 + pc est un tel point, il faut donc que la condition

pc =..p0 p, existe pour lui et par conséquent, à cause de l'équation

pour p, cette condition devient

pc — (cos wt — cos w) X + (sin — sin w) | (eX)

+ (i — cos w) (e | pc) £ -}- coswpc + sinw | (epc),

ou, en réduisant,

(cos^ — cos w) X (sin^i — sinw) | _(sX) — (i — cos w) [(epc) |e]

q- sinw\(epç) o.
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Alors, le radius vector pc peut toujours être décomposé

numériquement en trois vecteurs non coplanaires, nous posons donc

Pc + u\2^ ~~f~ UZ I (£^) •

De cette équation, suit • •

(epc) — u2 (sa) -f- u3s| (eX), | (epc) u2 |(eX) — u3 (sX) | e,

•(epc) |s u2l + tt8|(eX). -

La substitution de ces valeurs à l'équation de condition

pour pc donne

[ cos«^— cos w + u2 (i —cosw) —- u3 sin w j X

+ | sinuq — sinw -f- u2 sinw— U3 (1 — cosw) j | (eX) o.

Cette équation ne saurait être remplie; c'est

cos w±.— cos w -f- u2 (1 — cos w) -f- za3 sinw o,

sin w± — sin w -|- u% sinw — uz (1 — cos w) ~ o,

qui donnent des relations

sm wq
2

2
1

u9 — cos — w*.

sm Wq
2 1

u~ — sin — w.,à .1 2
1

sm w
2

Le coefficient uv au contraire, reste indéfini.
Si nous formons avec ces valeurs la dernière équation

pour pc, il résulte alors, comme équation de radius vecteur du
lieu des points sans déplacement

.1sm Wq
2t I I J

- 5 cos wA +. sin w, I (eX) > 4- us.
T / 2

A l
2 HV/II

sm-

d'où il suit :

Vendroit des points de système, qui ne changent pas de situation

par les deux rotations, est une ligne droite parallèle aux
deux axes de rotation.

Plaçons maintenant le point de rotation en un point
quelconque de cette ligne singulière. D'après la première équation
pour pc, il viendra, si nous mettons (p — pc)===-^,

X (1. — cosw) j e|(p0 — pc) j e 4. cos w (p0 — pc) + s'mw | [ e (p0 — pc)
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ou-, en prenant (?„ — pc)

X(i — cosw)(e]"X0)e + eoswXo"f- sin«>|(eXo).

Le système S tourne donc, par suite des deux rotations autour
des axes a et (à, autour d'un axe y, qui est parallèle à a et j3, de

l'angle w (wl^{-w2).
Les trois axes a, (3 et y sont les arêtes d'un prisme, les

axes a, ß1 et y ceux d'un second prisme, les deux prismes ont les

arêtes a et y en commun, ils sont symétriquement congruents.
Pour l'intersection C de l'axe y et du plan passant par 7, et

perpendiculaire à s, on trouve, avec 0= 0 + pcl L-f- p^, les

équations

sm -

M 1 1

Qa — I cos w.\ -4- sin w> I (eX) \

i i ism w

ism —- w,

— \ cos — sin —w21 (eX)

sm w
2

car on a pj1 pe—à; de plus, nous avons

X|pci -tang a TfpV~ g
»

par conséquent, il vient

LOG zu wi%

N'ayant rien supposé de particulier à l'égard des angles wi
et w% et de leur manière réciproque d'être engendré, les

résultats sont généraux.
Le système invariable S tourne maintenant d'abord autour de

l'axe (3 de l'angle w2, ensuite autour de l'axe a de l'angle wr
Dans ces conditions, en choisissant le point L comme l'origine

des coordonnées, le calcul se fait ainsi, en mettant LM0==pJ,
LO — X1^ — X, LM pI, précisément comme avant, et si nous

échangeons, dans les résultats tout à l'heure obtenus, avec

a avec X1, p0 avec pj, nous obtenons immédiatement

p1 zzi (cos w2 — cos«»)!1 + (sinw2 —sin w) | (eÀ1)

+ (i — cosw) (s| pg e + coswp^ + sinw\ (epg,
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de plus, avec M='L+ pê, pour le lieu des points sans dépla-

cement
1

sm —- w.L \
pic — — j cos W9X1 ~f- sin —w21 (eX1) j + ue.

sin w
2

Prenons maintenant le point Ö comme pôle des coordonnées,

alors il faut mettre ^l — —\ Po (Po—^)> p1 (pi — ^'ou

il résulte

px (1 — cos w>2) X -f- (sin w — sin w2) | (eÀ)

+ (ï — cos w) (e| p0) s 4- cos wp0 + sinw| [e (p0— X)] ^ p,

et l'équation de l'axe de rotation sera (en observant que pei

^ + PÏ)

i
sm

~

pCl — X — \ I C0S "7* + sin — I (£^) j + US — Pc-

sin w
1

Mettons l'origine des coordonnées en n'importe quel point de

l'axe de la rotation résultante (pcl), mettons (pL — pcl) y i,
(po — pc^_y^ alors nous trouvons de la même manière que

pour l'axe (pc) :

Xi (* — cos w) (£Xo:) £ + cos wlol + sin w (£XoI) •

Dans le second axe, les points du système ont donc, après
les deux rotations, une position différente de celle du premier
cas; l'axe de la rotation résultante n'est pas le même dans le
second que dans le premier cas, cependant les deux axes sont
parallèles aux axes de rotation donnés, et les amplitudes des

rotations résultantes sont égales entre elles. L'ordre de la suite
des rotations n'est pas à changer.

<( Si un système invariable S tourne successivement autour des

axes a et ß, parallèles l'un a l'autre, des angles wi et
respectivement, alors son mouvement est équivalent à sa rotation
autour d'un troisième axe y, parallèle aux axes donnés, de

l'angle w — et l'ordre de successions des rotations
n'est pas à changer. »

Si les amplitudes des rotations et w2 sont opposées ou
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égales, c'est-à-dire s'il s'agit d'un couple "de rotation, alors
est censé positif, et, le premier cas supposé, l'amplitude de rotation

résultante

W — W± — W± O,

le radius vector d'un point du système quelconque après les

rotations autour des axes a et ß

p — (cos^i .— i) X -f- sinw^l feX) p0,

et si t désigne le déplacement total de ce point du système,
alors nous avons

t p — po — (cos — ï) ^ H- sin w± | (£X). '

Mais l'expression pour t est la même pour tous les points du

système ; à Cause de cela, le système, par les rotations autour
les axes a et ß successivement, dont les angles sont et — wi9
subit la translation t.

Il résulte de l'équation pour t
T Xj,— X, z\s — O,

de plus, l'équation de l'axe de rotation résultant y est à présent

pe oo | cos — m^X -f- sin —î-
w± | (eX) j -f- m,

et on a

(X, — • X)| | cos —w^X -|- sin — w± | (eX) | r± o,(2 2

comme on voit aisément, quand on calcule le produit avec la
valeur de — A) sur le membre gauche de cette équation.

Conséquemment, la translation t est perpendiculaire aux axes
des rotations donnés et à la bissectrice de l'angle LOLr

Pour la grandeur de la translation, nous obtenons

t? (cos^ — i)2 Z2 + sin2*r4Z2 2 (i — coswj Z2

— 4 sin2 —wj2.
i 2

Si le système S d'abord tourne autour de l'axe ß de

l'angle —wxi ensuite autour de l'axe a par l'angle nous obte-
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nons pour le radius vector d'un point du système quelconque,
avec L comme pôle de coordonnées, après les deux rotations

p1 (coswt — 1) X1 — sin w± I (eX1) 4" pT0,

t1 — p1 — p^ — (cos^ — I-) X1 — s'mwi I (eX1).

et, avec le point 0 comme pôle, il résulte

11 pi— p0 — | (cosw± — i)X + smwL 1 (eX) j ^ t.

La translation du système n'est pas égale maintenant à -éell'e

du cas précédent.
« La suite de deux rotations opposées égales autour d'axes parallèles

est une translation équivalente et l'ordre de cette succession

ne se peut intervertir ».

Si les axes a et ß coïncident, )v o, l'axe y coïncide avec

eux; w w±-{- et on peut changer l'ordre de la succession
des rotations; avec w2 — wi7 on aura w o. Des rotations
opposées égales autour du même axe s'annulent.

§ 31. Si les rotations autour les axes a et ß sont infiniment
petites, si leurs angles sont dw± et dw2, nous obtenons
immédiatement, en vertu des résultats pour des rotations finies,
les équations dont il s'agit maintenant, en mettant pour wt et w9
les amplitudes infiniment petites dwx et dw9 resp., remarquons
qu'alors cos dw — 1, sin dw= dw.

Si successivement les rotations infiniment petites ont lieu
autour les axes a et ß, alors le radius vector d'un point M du
système quelconque, après que les deux rotations sont achevées

p — — dw2 J (sX) -j- po'-f" dw (ep0), dw •=: dwx dw2 *

les équations des axes a et ß, à la fin du mouvement du
système, sont

p<X2 —— dw.2 j (Xs) —j— UZ î= UZy

ph — X + dwi I (eX) 4- uz X4- uz,

ces axes se déplacent infiniment peu perpendiculairement au
plan [sA], de sorte que, si des quantités infiniment petites sont
négligées, ils ne changent pas de situation dans l'espace.

Enseignement math. X3
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Pour l'axe de rotation résultant y nous obtenons l'équation

et si nous prenons le point L pour le pôle des coordonnées et si
nous désignons le radius vector de l'axe y, pris en partant de

lui, par pc{1), ou alors pJ11—pc —\ on a

de sorte que l'axe y est parallèle aux axes a et p, et situé dans le

plan déterminé par eux, partageant le vecteur À en proportion
inverse aux angles des rotations dwx et dw%:

Si d'abord la rotation du système S a lieu autour de l'axe ß

de l'angle dw2 et puis autour de l'axe a de l'angle dwv on obtient
les mêmes résultats, les axes de rotations résultants des deux
cas tombant sur la même ligne droite. L'ordre de la succession
des rotations infiniment petites autour des axes parallèles peut
donc s'intervertir.

En choisissant maintenant un point de l'axe y pour pôle des

radii vectores, le radius vector du point M sera alors

le système S tournant autour d'eux de l'angle dw —dwi~{~ dwr
Un système invariable S tournant successivement autour de

deux axes parallèles différents d'angles infiniment petits ; son
mouvement est équivalent à une rotation infiniment petite
autour d'un troisième axe parallèle à ces axes et situé dans le

plan de ces axes ; l'amplitude de la rotation autour de ce
troisième axe est égale à la somme des amplitudes données et l'ordre
de la succession des rotations données est indifférent.

X P — pc (Po — Pc) + 1 [E (Po — Pc).]'

ou

X Xo + dw\(e^o).
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Si les angles dès rotations infiniment petitesdw± et dw2 sont

opposés et égaux, alors nous trouvons, avec dw2 — dwv

P Po + (eX), d* -p— p0= dw±\ (si),
- pc := 00 l -f- US. dW—Oi

« La suite de deux rotations infiniment petites, opposées égales
autour des axes parallèles est équivalente à une translation
infiniment petite perpendiculaire au plan de ces axes, l'axe de la
rotation résultante est situé infiniment loin dans le plan des axes

donnés, l'angle de la rotation est nul, et l'ordre de la succession
des rotations peut être interverti, »

Par cela, la rotation du système S autour des axes a et ß, qui
sont parallèles l'un à l'autre, est ramenée à la rotation autour
d'un troisième axe parallèle aux deux premiers.

Si les amplitudes des rotations données sont infiniment
petites, alors l'élément de la trajectoire d'un point quelconque
du système est

dp — p — Po dw* | (le) + dw I (ep0) ;

par conséquent, la vitesse de ce point est

dp dw* dw

ou

v w21 (le) + w [ (epo), w wA + w2 ;

nous avons aussi

d? 1— Xo^dw] (exo),- ï.=5w|(eXo).*

Dans ce cas-ci, on peut écrire l'équation de l'axe de la rotation
résultante

(dw9
dw \

-dT:-dr)l + u'-

On a alors aussi

pc — l ~{~ P;> — —~~ ^ H- •

w 1 c w

Si les rotations infiniment petites autour des axes a et ß sont
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opposées et égales, la translation du système qui en résulte est
infiniment petite

dz — dwl | (sX)

et sa vitesse de translation^est

^=^r=Wil(eXj-

On voit facilement d'après le § 2' comment on arriverait aux
vitesses d'ordre supérieur.

§4 -Le système invariable S possède une rotation autour de

Vaxe en de Vangle w et une translation tparallèle à cet axe.

Soit O un point fixe de l'axe a, son vecteur unité e,M0 0+ p0

un point quelconque du système (fig. 3) avant
le commencement du mouvement. Par suite de

la rotation, le point M0 vient dans la position
M O -f- p1? et on a, d'après le § 2,

Pi — i1 — cos w) (s I p0) + cos wp0 sin w | (ep0) ;

Fig. 3.

par la translation du système, qui s'effectue

ainsi, le point du système «passant de
l'endroit M4 à l'endroit M M4 + t O + p, de

sorte que le radius vector d'un point du
système quelconque, après que les deux mouvements

ont eu lieu, est donné par l'équation

P Pi + T (x ~ cos w) (£ I Po) £ + cos w p0 + sin w | (ep0) + t
Cette équation nous enseigne que l'ordre de la suite de rotation

et de translation est arbitraire, et aussi que les deux
mouvements peuvent se faire en même temps.

Chaque point du système se meut sur un cylindre circulaire
l'axe de celui-ci coïncidant avec l'axe de rotation, la longueur
du. demi-diamètre de ce cylindre est h =\/(£Po)--

§ 4'- Si l'angle de rotation et la translation sont infiniment
petits égaux à dw et à dz;=dus, alors le radius vector d'un point
quelconque du système, après les deux mouvements, est

P Po + dw\(epQ)+dm.
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L'élément de la trajectoire décrite par cé point,- dans l'élément
du temps, dt est

' d? ?-~Po '= dw\(£p0) + du£ ; '

sa vitesse est donc

- do dw I du
v ^r=-dr\^ + nrz

ou
- » / \ du
V — w\(zp0)+U0Z,

et, à l'égard du § 275

V — W |. (£00) +UQZ.

Puisque alors (v | ô) o, la vitesse de chaque point du
système est donc normale à la perpendiculaire qui tombe de lui sur
l'axe de rotation.

On conclut de la même équation

(ü|e)=w0, (s) s z=

les projections des vitesses des points du système sur la direction

de l'axe de rotation a sont égales l'une à l'autre et égales
à la vitesse de translation parallèle à a.

De plus, nous avons

(ew) — w [e.| (eô0) j, * (eu)r — w2 (e8ö)2 w2A'2,

de sorte que nous obtenons pour l'angle b, que forment la
vitesse v avec la direction de l'axe a,

"
l \/(£y)" W 7tang b ——— — - - h.

Z\V UQ

La grandeur delà vitesse v résulte de la même équation par sa

quadrature intérieure

v y/w2k2 + i rA

Il n'y a pas de point du système sans, vitesse, car la vitesse uQ

est commune à tous les points du système.
De 5gv—• o résulte —v u()e, tous les points de système sur

l'axe a se meuvent donc avec la vitesse zZ,
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La differentiation successive de l'équation de la vitesse par
rapport au temps conduit aux vitesses d'ordre supérieur du point,
du système^ c'est son accélération à l'égard du § d

d*p
: — w280 +w'!(eS0) + u'0s

§ 5. Le système S tourne autour d'un axe a de Vangle w et il
possède une translation t inclinée sur cet axe.

Soit le point 0 sur l'axe de rotation oc le pôle de coordonnées,
M0= 0 + p0 un point de système
quelconque avant le commencement du

mouvement. Par suite de la rotation et
de la translation, le point M0 prend la

position M 04~p (fig. 4)dans l'espace.
On a évidemment

p (i — cos w) (e | p0) s + cos <vp0-f sin} (ep0)+*,

l'ordre de la suite de rotation et de

translation est échangeable, les deux
mouvements peuvent avoir lieu
simultanément.

L'équation d'une droite du système avant le commencement
du mouvement étant

W

r°\ \
'

\ v\
y

—- / \\\
x ; /

Fig. 4-

Po : X —{—X ß, X J B O,

son équation, après que la rotation et la translation ont eu lieu
si nous substituons cette valeur de p0 pour p dans l'équation, est
alors

p >c (i — cos«') (e]ß) e -j- cos w (X + xß) -f- sin|[eX + x (sß)] + x.

S'il faut que le système S possède une droite, dont les points
se déplacent autour du vecteur t0? alors il faut pour cette rangée
de points que l'on ait la condition.

x (i — cos w) (e i ß) e —f- cos w (X xß) + sin w | [eX + x (eß)}

-f- X =Z X 4" xß 4~ T0,

x; | (i —cos w) [(e| P) e — ß] + sin «4 (eß) ] -f- (cos w

sin w j (eA) — .x0 — x.

i)X



ÉQUIVALENCE DES, ROTATIONS s 19^

Parce que (t0 — t) seulement peut être un vecteur invariable,
il faut donc pour une telle droite du système

(1 — cos w) [(si ß) e — ß] + sinwl (sß) m o,

(i—cos«.') X — sinwI (sX) (t0—t) — o.

De la première de ces équations résulte, s'il elle est exacte,

(e|ß).£ — ßo, (sß) O,

et, puisque de la première de ces relations résulte la seconde, il
faut que ß soit parallèle à e, soit la droite cherchée parallèle à

l'axe a, de sorte que d'abord l'équation de cette droite est

X — A + Z£> s|X—o.

De la seconde condition suit, par multiplication avec [e,

(x0 — t)| srro, t0[s=:t|e,

c'est-à-dire la translation des points de cette droite est égale à

la projection de la translation donnée sur sa direction, c'est-à-
dire la direction de l'axe a.

Maintenant il faut encore déterminer la distance du vecteur
X 004 de la droite à l'axe de rotation a.

Prenons

T— T0— Zi9 T± |s — O,

alors il faut que

(1 — cos w) X — sin j (sÀ) — rzi (st) (s,

la multiplication de cette équation avec s donne

(1 — cos w) (eX)—- sinwsI (eX) ~ (exj (et),

de sorte que

(1 — cos w) I (sX) -f- sin wâ — ] (st),

on a donc
I (ex)-»in«*

I COS w

et par conséquent

(1 — cos w) X 1 [1 (st) — sin w)"] (st) [s,
1 —cos w -

J v '1
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4 oü îl suif

\ 'I cotang w | (ex) -f- (st) I£ j >

et conséquemment l'équation de la droite du système qui autour
du vecteur t0 se déplace en elle-même est

X1 cotang ~ w|'(et) + (st}{e j + xe.

Pour la distance de cette droite à l'axe nous obtenons

l2 — | i -4~ cotang2 w "j (ex) Lm — (ex) i,4 ' 2
^ sin2 — «/

2

2 sin -— «/
2

Si nous faisons tourner maintenant le système 2 autour
de cette droite comme axe d'un angle w1 et donnons en même

temps au système la translation -r0 parallèle audit axe, alors en

posant M0 — -j- pj, et désignant par M1 — 0± -f- p1, en

appelant M1 l'endroit de M0 après les deux mouvements, on a

Pl=z (i — cos wt) (e IPT0) £ + cos w±plQ -f- sin w± | (£pT0) -f x0,

et avec O comme pôle des coordonnées il vient en mettant OM

Pi P1 — \ plPo — \
pi — (I — coswj [(e[p0) £ —A] -f- cos^Po -f sin w± | (ep0 — ek) + x0.

Si nous voulons que par le- second mouvement le système

passe à la même position comme par le premier mouvement,
alors il faut que l'on ait M1 M, px p, à cause des équations

pour p et px, si nous rappelons la valeur ci-dessus (t—- t0), il
vient

(cos w— cos «/^) | (e | p0) s— p0 -f- 1 j — (sin«/ — sin«^} | | e (p0 — a) j zz o,

équation qui ne saurait être satisfaite qu'avec

cos«/— cos«/1 zz o, sin«/ — sin«^ zz o,

de sorte que

«^ — «/, ou «^ zz.— (arc— «/),
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doit être l'angle de la rotation autour, du nouvel axe égal à

l'angle donné, ou égal à son complément pris négativement à 27t.

Faisons tourner à présent le système S autour du second axe
de l'angle et effectuons la translation t0, alors le radius vector
d'un point quelconque du système après le changement de lieu
est *

p1 — (I — cos w) (s I pT0) £ + cos + sin| (ep\) + t0,

d'où il suit avec o1 Oj — ~k, pj p0 — X,

pi — (1 — cos w) (e I p0) e cos wpQ -j- sin w | (ep0) + % — p

On voit que le second mouvement est équivalent au premier.
La rotation autour d'un axe cl d'un angle w et la translation

t inclinée sur cet axe d'un système invariable S sont
indépendantes de Vordre et équivalentes à une rotation autour
d'un certain axe parallèle à l'axe cl du même angle et à une
translation parallèle à cet axe5 égale à la projection de la translation

donnée sur la direction des axes.
Que le système S tourne autour de l'axe cl de l'angle w et

qu'il subisse la translation t, alors le radius vector d'un point du

système quelconque, après que les deux mouvements ont eu lieu,
est

P — (1 — cos w) (e I p0) e -{- cos wp0 -j- sin w | (sp0) -j- z.

Que le même système tourne de plus autour de l'axe ß, parallèle

a a, de l'angle w± et qu'il subisse la translation V, alors le
radius vector d'un point quelconque du système, après que les
deux mouvements ont eu lieu, si le point Oj de ß est point de
relation est

Pi= (i — cosh^) (e j p^) £ -j— cos wapT0 -j— s in j (£pl0) + t1

Posons 00, X \\to, alors pj= p0 — Pl p1 — \ et
avec ces valeurs on arrive à la dernière éqùation

p' ' —COS «.„) (s 1 p0) e + cos (V, (p„ — X) + sir. iv, | fe (p0 _ X)] +11

S'il faut que le second mouvement soit équivalent au premier
mouvement, il faut avoir p1 p, ou

(cos w — cos tv,) [ (s | Po) s — p0 j _ (sinw — sin «>,) | (sp0)

4" (I —cos (Vi) À— sinfVj | (eX). -f- t1 — xn o,
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par conséquent on aura

Wi W,
'

x1 x -f- (cos w—i) X 4~ sinw] (eX),

et la dernière relation entraînera

T1] e T | 8.

Si un système invariable S subit une rotation autour d!un

axe a et une translation, son mouvement est équivalent à une
rotation de même angle autour d1 un axe quelconque ß, parallèle
à Vaxe donné et à une translation. Cette dernière translation est

dépendante de la distance réciproque des deux axes, sa projection

sur la direction des axes est égale à la projection de la translation

donnée sur cette direction.

§ 5f. A présent, supposons que le système S subisse une rotation
infiniment petite de ïangle dw et une translation infiniment
petite dx.

Il s'ensuit par ce qui précède que nous obtenons immédiatement,

si nous mettons dans les résultats ci-dessus, à la place
de w etx resp. dw et Jx, pour le radius vector d'un point
quelconque du système après les deux mouvements

P Po + dw | (ep0) -f- di ;

de plus l'équation de l'axe autour duquel le système fait un
mouvement de vis infiniment petit est

X 1 (£<^ + X£;

sa distance du point 0 est

X ±z —— | (s^x), l — S^adu, du—Sj1,dw x ' dw r

la translation parallèle à l'axe a est

dz0 — d% dw | (eX) — d'z — (edz) | s,

dx0|s — dz\zt dz0 — '(dx|e) s.

L'élément de la trajectoire d'un point du système parcouru
dans l'élément de temps dt est
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dp p — Po dw t (epo) + dz>

OU

dp — p1 — pl0 — dw ] (epi) + dz0y

par conséquent la vitesse de ce point est

d? dw dz dw d^
-if nr1 (fp»)+^r ÏTK£PO) + -57-'

OU

v w I (sp0) -f u — w I (eplQ) + u0e.

L'équation de l'axe de vis peut s'écrire

dw
dt

£^F>+-

OU

il en résulte

X — I (£W) + X£>

1 — —— I (eu), 1 — sin (t,u),
w w

de sorte qu'il y a moyen de construire facilement l'axe du

mouvement infiniment petit de la vis.
Pour la vitesse parallèle à cet axe nous obtenons

- dZr,

dt (m| e)e, u0 — u cos (e,w).

Si le système S tourne autour de l'axe duquel nous venons de

parler de Tangle dw et s'il possède la translation ^t0, alors la
vitesse d'un point du système quelconque est

V=rw|[e(p0—X)] -f- u0e,

l'équation du premier axe avec 0A comme point de relation est

p£o X + xe,

par conséquent les vitesses des points de la droite du système
qui coïncide avec cet axe (en mettant pour v dans l'équation
po — ^ po) sont

v — w|(eX) + u0e,
'
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mais on a à cause de l'équation relative a Xt

w\(el)=z — (ei*)|e,.

par conséquent

V — (S II) 1 £ 4- UqE — il

de sorte que, par suite du second mouvement dm mouvement
infiniment petit de la vis du système, les points du système sur
le premier axe ne possèdent que la vitesse de translation u,
comme il faut que cela soit.

Avec cela le mouvement du système est ramené a son mouvement

du paragraphe précédent.
Si le système 2 tourne autour de l'axe a de l'angle dw et s'il a

encore la translation autour du vecteur ôêr, on a alors

p — Po + dw|(£p0) + dz.

Si l'on veut que le même résultat soit obtenu par sa rotation
autour d'un axe ß parallèle à celui de a, lesquels axes
possèdent la distance réciproque À, et une translation drl9 alors il
faut que, selon ce qui a été dit à la fin du § 5, l'angle de rotation

autour de l'axe ß soit égal à dw ; la translation

dzL — dz -f- dw | (eX),

la vitesse angulaire égale la précédente et la vitesse de la translation

— Ü + w|(EX).

On peut comparer ce développement avec les articles
correspondants d'Appell et Schell sur la cinématique théorique ; on

verra alors les avantages qu'offre le calcul géométrique sur les

développements usuels.

Ferdinand Kraft. (Zürich.)
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