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32 CORRESPONDANCE

Fon aura
X=ga(w—sinw), Y=a(1 cosuw).

C.q.f d.

N.-J. HATZIDAKIS,;(AthéneS).

Sur la formule de Binet.
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se trouve ordinairement démontrée dans les Traités soit indirectement
(c’est-a-dire aprés avoir trouvé la formule:
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La formule de Binet

‘que l'on différentie), soit "en égalant a zéro la composante de I'accé-
lération suivant la perpendiculaire au rayon vecteur; cela est direct,
mais assez long, parce qu’il faut trouver d’abord les deux composantes
de I'accélération. Le moyen suivant est direct et assez court : on a
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Calculons z” et ayons égard a la relation
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doti, en remplagant :
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F=— [ ] c. q. f. d.
‘ p* p-+ ‘

d6?
On peut évidemment aussi partir de la formule
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N.-1. Hatziaxis (Athénes).
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A propos de la note de M. Berdellé : Sur une question
de terminologie. :

M. Berdellé propose (E. M., 15 nov. 1go1), pour les Allemands, les
termes : aequivalent, Aequivalenz, ou bien wertgleich (gleichgeltend),
Wertgleichheit { Gleichgeltung), pour la traduction du sens équivalent
(figures équivalentes) en francais. Les mots les plus convenables et qui
du reste sont déja en usage (Voir D. Hilbert, Grundlagen der Geometrie,
p. 40) sont : Fldchengleich (Flichengleichheit), ou bien inhaltsgleich
(Inhalisgleichheir). (M. Hilbert y considére flachengleich « comme un
peu plus étroit que inhaltsgleich », mais c’est une nuance de différence
dontil n’est pas question ici). : :
N.-I. Harzipaxis (Athénes).

Sur une simplification de démonstration.

On trouve, au Livre II de tous les Traités de Géométrie, les pro-
priétés suivantes : 1° la droite de Simson d’un point M du cercle cir-
conscrit & un triangle ABC, dont l'orthocentre est H, passe par le
milieu du segment MH ; 2° les cercles circonscrits aux quatre trianglés‘
résultant des quatre droites données ont un point commun P, qui a
méme droite de Simson p par rapport aux quatre triangles.

Mais une autre propriété importante du quadrilatére est celle-ci: Les
orthocentres des quatre triangles sont en ligne droite. Gette propriété est
toujours rejetée au Livre I1I, et méme fort loin dans le Livre II1. Ca-
talan, dans ses Théorémes et Problémes de géométrie élémentaire, en
donne une démonstration compliquée, qui exige la connaissance des
propriétés du quadrilatére complet, des axes radicaux, etc. MM. Rouché
et de Comberousse, dans leur Traité, en font 'objet du dernier (n° 372)
de tous les exercices proposés, non sur le Livre III lui-méme, mais sur
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