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SUR LE CALCUL DES QUATERNIONS |

-Le calcul des quaternions, dont ’exposé ordinaire, tel quil a
été6 donné par son inventeur Sir Rowan Hamirrox, a un carac-
tere assez abstrait ('), peut étre établi d’'une maniére simple, en

9

partant de certaines relations bien connues () de vecteurs qui
seront d’abord rappelées dans les paragraphes 1 asj.

1. La somme des vecteurs A,B,C,..... ou somme géométrique
posséde les mémes propriétés quune somme algébrique : elle
est associative et commutative. En représentant par Qb la lon-
gueur de A, par &, b, b, les -longueurs de ses composantes
paralleles a trois axes rectangulaires xyz, formant un systeme
droit (ox vers 'est, oy vers le nord, oz vers le zénith), on aura

(1) A= do i+ doyj + Sy k|

sii, ], k sont des vecteurs-unité dans les trois axes.

2. L'expression scalaire
(2) Qo By + Moy By + fog By = B cos (AB)

formée des deux vecteurs A et B, est simplement désignée par
AB et nommée produit scalaire ou interne de ces deux vecteurs,
Cette définition nous fournit immédiatement :

3) - AB = BA
(4) AAEA3::JL;%+.J\9§+J{O§:J\DQ

() P.-G. Tarr dans son Traite elementaire des Quaternions (I, p. 66) appelle le
raisonnement de Hamilton « presque métaphysique », et O. Heavisipe (Electrical
Papers, vol..1I, p. 528) trouve que the quaternion (as)... fundamental idea... renders
the establishment of the algebra of vectors without metaphysics a very- difficult
matter,

() O. Heavisipe, Electrical Papers, vol. II, p. 528-333.
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6 AB 4 AC 4+ ..... —ABLCH..... )
(6) (A + D) (B 4- C) = AB 4- AC -~ DB -+ DC

AB =.0 lorsque A est perpendiculaire 4 B .
ii::jj::/f/é:l; ij = jk = ki = o.

Le produit scalaire est done commutatif (3) et distributif (6)
comme un produit ordinaire.

3. Le vecteur |
(7) (Jh’z 533 - JL’S 6*)’2) L + (0%3 531 - &91 S53)] + (0%1 u532 = °R92 531) k

formé de A et B est représenté par VAB et nommé produit vec-
toriel ou externe de ces deux vecteurs. Il est perpendiculaire a
A, car son produit scalaire par A, formé d’apres I’équation (2),
est égal a zéro ; il est de méme perpendiculaire a B, tandis que
le carré de sa longueur, calculé d’apres (4), devient :

(e’[\?z EB3 - Q’%3 532)2 + (&93 531 — oy 533)2 + (U[‘f’i 532 — Jboy 3?’1)2
= (Jbo2 4 Sop? - °R932) (B2 + B2 4 5332) — (foy B, + oy 5‘)’2 -+ oy 533)2
' = M2F?2 — q}\o2 932 cos? (AB) = A% 332 sin® (AB).

La longueur elle-méme est donc ABsin(AB), et quant a la direc-
tion, on voit facilement que A, B et VAB forment un systéme
droit, car en'prenant i et j au lieu de A et B, on trouve % pour
le produit vectoriel. La définition donnée par (7) nous fournit
maintenant les relations suivantes :

(8) VAB — — VBA

(9) - - VAA=o .

(10) VAB+VAC+ ..... =VAB+C+ ..... )
(11) V (A + D) (B 4 C) = VAB + VAC -+ VDB + VDG
(12) Vij = & Vik = i Vi = j

Le produit vectoriel est done distributif commeé un produit ordi-
naire (11); mais il n’est pas commutatif (8).

4. Le pfbduit scalaire CVAB des deux vecteurs C et VAB est

d’apres(2) et (7)
‘ €, (oy B3 — hog 532)+@2 (hog 531;" oy 533) +‘ Sy (Mo By — Moy B)
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ou égal au déterminant

1, ®Bs |
il s’ensuit que . ” -
(13) CVAB = AVBC — BVCA.
Si les trois vecteurs sont dans un méme plan — coplanaires —

A peut s’écrire mB —+- nC et 'on aura
(14) AVBC = (mB + nC) VBC = mBVBC+4nCVBC =o.
5. Le produit vectoriel VCVAB de C et VAB contient d’apres
(7) six termes. Nous n’en écrivons que deux :
[

Sy (fo, By — oy B,) — @3(&9 B, — Jo, B )]i+[—]j+[—]/:
= [(331 @l + %2@2 33 ) cj\o s (QRD <y —+— e/[lsn s N u%3@3) 531]7.

Le premier, le troisieme et le cinquieme ensemble donnent

( 1V1+552V2."|—33;V3) (J‘Jli_f“u zj+ “%3]‘)
ou : o
BC.A,

tandis que les trois autres fournissent

- (&’1@1'”{' 0*%2@2 + &3@3) (5311' +‘ 532j + EB3 k)

ou
| — AC.B,
Il est done
(15) VCVAB = A.BC — B.CA
et c_onséquemmerit
(16) VCVAB - VAVBC VBVCA = o.
6. Quaternions. — En supposant (ﬁg. 1) que les deux vecteurs

R et R’ aient la méme longueur &, et que A, soit un vecteur-
unité perpendiculaire a leur plan, nous voyons'(§ 3) que la lon-
gueur de VA R auSS1 sera eg'\le ad&, et comme R’ est 1'1 somie

des vecteurs OP et OQ, nous aurons

-'R,_COSQR-}—SIDQVAB
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ce que nous écrirons encore

(cos 6 4 sin 6 VA)R

ou o -

(cos 6 4+ sinb I\:) R.

, R

Fig. 1.

De la méme maniere ’on trouverait S’ égal a
cos 0.5 - sin 0.VA,S
ou
| (cos 6 -+ sin 0 &) S.
Le multiplicateur
cos O - sin 6 A,
change R en R’ et S en S/, c’est-a-dire il tourne toui vecteur
dans le plan e ou dans un plan parallele d’an angle H autour du

vecteur-unité A, dans le sens indiqué, sans en changer la lon-
gueur. Il est évident que 'opérateur

m (cos 0 4 sin 0 A)

_fait, tout en tournant d’un angle 6, la longueur m fois plus
grande. Cet opérateur-la est un quaternion ¢ ; '

cos 0 -} sin OXL

en est le « verseur » Ug; m en est le « tenseur » Tq.
Réciproquement, comme

A)R= MHVA) R = /a7 = A2 ¢ A IR
(@B R= ot AVA) R= W[ ot 2 R |
(x7) ={/a? F o £ o? + o2 (cos O + sin 64;) R
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I'opérateur a— A estun quaternion,; dont le tenseur.

g =@ F Ao o £ og?

et dont le verseur
Ug = cos 6 4~ sin'GKI,
‘mgle § étant determlne p'u‘
cos 0 = a: ‘/a~+c}\°2

et
sin 0 = :‘/az—-l—— fo2.

s

La « partie scalaire » S¢ en est a, la « partie vectorielle® 5 V'q
en est A. Il est entierement déterminé par les quatre qu'lntltes
a, fo,, foy, o, ; ¢’est de la que vient son nom.
L’egqhte de deux quaternions implique aussi bien celle de
leurs P‘ll‘tles scalaires que celle- de leurs parties vectorielles et

r e01p 1“0quem ent

7. Le multiplicateur
m[cos (— 0) 4 sin (— 0) A,
ou
m [cos f — sin (HTJ

qui tourne d’un angle —0 est appelé le quaternion conjugué Kgq
de : |
m [cos 0 4 sin BXJ

tandis que

[cos f —sinf A ]
m
en est le quaternion inverse g~ . Il est évident que les deux opé-
rations ¢ et K¢ effectuées sur le vecteur R n’auront d’autre
résultat que d’en faire la longueur m* fois plus grande :

I?q g =m? = q.Kq

' Le V employé ici pour la partie vectorielle d’un quaternioh est différent de
celui employé pour le produit vectoriel de deux vecteurs.
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tandis que les opérations g, et ¢* effectuées successivement ne
changeront rien au vecteur :

lg=1=q.qt
Il existe en outre la relation
Kq = (Tq)% ¢~
8. Addition. — Les denx quaternions
p=m (cosl 0+ sin‘();A—).E a-+ A

et : .
q__ma(cosc?-{-smoB) b +B

peuvent ‘lgll‘ sur la drmte commune 2 leurs plans et 1'1 ﬁgule 2'

fait voir que pR = R’ et qR R”, donc
PR+ gR = (P+‘])R——~R'+R": R"=(¢ +p)R

Nous en concluons d’abofd, que p+ g):g—{—p et ensuite, q.u;e '

113

cette somme est equlvalente a un nouveau quatelnlon tournant

d’un angle d} tout vecteur dans-le plan (RR"”). A ce nouveau

quatermon peut étre ajoute un tr0151eme ‘ K
= G + C)

Pensemble sera alors equlvqlent a un quatrleme quaternion

a4 b+ cLEEBEC
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et éomine : . o T o
pratr=rdatp=(p+a+Fr=p+i+n
I’'addition des quwternlons est aussi bien commu’mtwe qu’asso-

ciative.

9. Mulziplication; — Pour faire coincider fig.:3) Ie vecteur R

av ec R” , nous pouvons d’ ab01d lu1 'xpphquel Ie multlphcateuf

OU Verseur
cos 0 —}— sin 0 A,

c est-a dne le tourner d un qngle@ autour de « 1 axe » A, ensmte
par le verseur : S
cos ¢ |- sin © _E:

¢

le faire tourner d’un angle o autour de B,, mais nous pouvons
aussi directement lui appliquer le multiplicateur

cosab —l—smq/Dl,

ol D, est un vecteur-unité normal au plan passant pfu“ R et R”
et l angle que font entre eux ces deux vecteurs. Le « produit »
des deux premiers verseurs est donc un nouveau verseur, et le
produit des deux quaternions -

p=a- A

et o
—b+B

un nouveau quaternion dont !’ expresswn se dedmt de :

PR=(b+B)(a + A} R= (b + VB (aR+VAR)
=—.abR + aVBR 4+ b VAR + VBVAR,
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Les. identités (16) et (15) permettent de substituer au dernier
terme d’abord | |
| -— VAVRB — VRVBA
et ensuite ,
— AB.R 4 AR.B— VRVBA,

ce qui, A étant normal a R et AR zéro, se réduit a

— AB.R — VRVBA,

nous trouvons donc

gpR = (ab — AB)R 4 aVBR 4 bVAR — VRVBA
= (ab — AB 4+ aB + bA + VBA) R

”

£

et

(18) | gp = ab — AB - 4B |- bA  VBA.

Les deux premiers termes forment la partie scalaire, les trois
derniers la partie vectorielle du nouveau quaternion. A cause du
dernier terme, pg n’est pas égal a ¢gp : la multiplication n’est
pas commutative, ce qui se voit d’ailleurs facilement par la
figure 3. En effet, en appliquant au vecteur S successivement
les opérateurs ¢ et p, nous obtenons d’abord R’ et ensuite S;
pq ast donc équivalent a un quaternion opérant dans le plan
SOS”, qui est différent du plan ROR”, dans lequel opere gp.
 Considérons maintenant (fig. 4) trois quaternions p, ¢,  opé-
rant dans les plans V,, V,, V.. Le second faisant coincider le vec-
teur S avec S,, nous aurons

Sl —= gS;
de méme

S, = pSl
et conséquemment

S, = pqS.

Il en résulte que pq opére dans le plan V,, et qu'il peut faire

coincider S, avec S;, pourvu que les arcs (SS,) et (S,S,) soient
égaux. On aura donc aussi

5 — PqSIn
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ensuite 4
S, = rS,

et enfin

(19)

Fig. 4.

- Par un raisonnement analogue, nous trouvons

,, T, =T, T,=qT,
et

Ty = qrT
donc
T, =Ty, Ty =T,
et enfin |
(20) Ty, = p.qrT,.

Les équations (19) et (20) nous montrent que pqg. r et p.gr
“sont des quaternions, qui opérent dans les plans (S,S;) et (T,T,),
et pour que la multiplication soit associative pg.r = p.qr, il
nous faudrait démontrer que les quatre vecteurs S,S,T,T, sont
dans un méme plan, _e:t‘que les ares (S,S,) et (T,T,) sont égaux,
ce que Hamilton fait e.a. en employant certaines propriétés des
coniques sphériques. Mais nous pouvons aussi démontrer I’éga-
lité des parties scalaires et celle des parties vectorielles pour les
deux quaternions pg.r et p. gr en question,
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En effet ’ : - ‘

S, = pqS = (ab — AB + aB I FA I VAB)S
S; = pqS, = pq.rS, —'(ab——AB+aB+bA+VAB) (c+ C) S,

ce qui, multiplié d’apres (18) donne pour la partie scalaire
(21) 8pg.r = abc — (c.AB.+ a.BC + b,CA) — CVAB

tandis que la partie vectorielle

(ab — AB) C + ¢ ¢ (aB + bA + VAB) 4+ V (aB 4 bA - VAB) c
dont le dernier terme est
— VCVAB
ou (15) B
~— BC.A 4+ CA.B

peut s’écrire

Vpg.r = (be — BC) & + (ca + CA)B + (ab — AB)C
(22) < + aVBC — bVCA + cVAB |

Pour le produit p. gr nous trouvons

T, = pT, = p.q¢Ty; = (a + A) (be — BC + bC I~ ¢B 4 VBC) T

Les parties scalaires et vectorielles en sont les mémes que
celles de pg.r. D’une maniére analogue, on prouve que la mul-
tiplication est distributive : p(q - 7) = pq‘—{—pz Un produit de
quaternions n’est donc pas commutatif, mais, en dehors de cela,
il posséde les propriétés d’un produit ordman By

'10. Sl les composantes rectangulalres de A et B sont Qo JL, o}\o |
et BB 533, l’equatlon (18) dev1ent

qp= ab — Jo By = oy By — oy By + [y + aB, +53;m3—'53m92]i
+[Mg + @, + By ——sanm,],Hm + a4 By _%AD] \

LJ formule du prodmt (18) nous pelmet de demontrel quel-—
| gwes relatlons 1mp0rtantes | -

Qo ~Kgpr—_-‘?1{p".‘1cqﬁ
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et generalement GRS DL

=

En effet, en changeqnt (§ 6) le signe de la partie vectoriellé, (18)
nous donne |

Kgp—ab — AB — 4B J& — VBA;
~tzn;disk que |
Kp.Kgq :(a.——'A) (b — B) = ab— AB — 7B — bA 1 VAB.
“ Nous avoné donc | |
| qu = Kp. Kgq

et"de méme

Kqg,q5. .. qgn = K(q;. .o qn).Kq, =K (q,9,... ¢n). Kq,.Kgq,
o = ... =Kgqn. Kgn — 1. Kgn_2... Kgq,
b ' ‘ . Sgp = Spq ' A »
et en général - S

SN Qe 41 In=5Gi+1. .. 4y - 1)

car, comme la partle scalalre en (18) ne change as lorsqu on
inter Vert1t ’ordre des qmtermons nous avons d’ qud Sgp = Spq
‘et ensuite, pourva qu’on garde le méme ordre cyclique

S9:02- - n =S (g1 @) (91 + 1. g2) =S (g1 4 9. qn) (91 9)
| =5qi419142 - nq 92 -+ - qi.

.‘c) Ilo;‘sque p=m (cos 0 - sinﬂ A,) Péquation (18) donne

ipp _—-:‘—R:Zi—_-,mz'(cos%e —sin20 —]— 2 sin 6 cos GKi) == m? (cos 28 4 siﬁ; 26Ki)
et g.e’:nér,aléniént{ qﬁa‘nd r est un nombre eniier positif |
pr :m” "(»cov's'rﬁ -+ sin roA,)

Il en résulte

. . ) « i ‘ N ; \ P . B . § . :

: '_y . o [ (T T _ " Tc . .,__:_x LMo
‘ .| cos —-[—’Sm A} =A,
oo\ o eme lln S L S
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ce qui conduit tout naturellement a la convention

1
T .. T = = "m
cos -} sin AisA1
am om
et
n
n o . n T - T
cos — .— —-sin— . .— A = A, "™
m 2 m 2

1]
Cette derniére formule permet d’identifier un verseur quel-
conque a une puissance de son vecteur-unité.

11. Division.— Comme g (g7*p) ou (¢ ~*)pest équivalent au qua-
ternion p, il est tout naturel d’appeler ¢~* ple quotient de p par g,

pourlequel on pourraencore écrire !;—, pourvu qu'on se rappelle

-

constamment que cette fraction est q~'p et non pas pg—*'. Sa

valeur (§7) est

o I —— - I

—_ Ay — — — e o $ - —

TP = (b —B)(a A= s (ab—(—AB-f—bA aB —VBA)
Il est maintenant facile: d’interpréter une fraction, dont le

numérateur et le dénominateur sont des fonections entieres des

quaternions p, ¢, 7,.....

12, Vecteurs. Quaternions élémentaires. — Un quaternion se
réduit 3 un vecteur }T(quziternion élémentaire), quand sa partie sca-
laire est zéro, ¢’est-a-dire quand son angle est droit. Les régles
trouvées pour les quaternions s’appliquentv encore a ces vecteurs.
Nous allons nous conformer, dans la suite, a la notation la plus

répandue des quaternionistes qui représentent A,B,C,... par

o,3,Y,.. leurs tenseurs par Ta,TB..., les vecteurs-unité 7,7,k par
i,j,lc, AB par Ta Tg cos §, etc; mais il sera bon de rappeler que
A ==« est autre chose que A. Les équations que nous allons trou-
ver sont des égalités de quaternions, dont chacune est équiva-
lente, en général, a-quatre équations entre scalaires.

a) Ce qui a été trouvé pour 'addition des quaternions permet
de conclure, que la somme des vecteurs o,3,y... est un nouveau
vecteur, qu'on trouve en les composant comme des forces don-
nées ; cette somme est associative et commutative. |
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b) Pour les produits de deux vecteurs « el {3, qui font entre-eux -
I'angle 0, 'équation (18) nous donne

(23) af = -~ AB 4 VAB Bz =—AB - VBA

Leurs scalaires sont égales :

L4

(24) Saf = Sga

avec la valeur commune — Teo. TR. cose Leurs parties vecto-
rielles different par le 51gne :

(25) ‘ - Vaﬁ = —— Vo

le premier membre de (25) est To T sin 6. &/, si ¢/ est un vec-
teur-unité perpendiculaire a o et B3, tel que o, @, 7 forment un
systeme droit. On a évidemment encore

(26) _ aP + Po = 284
et |
G o« — o =2 Va3,

La partie scalaire Saf3= o, lorsque o est perpendiculaire & §;

la partie vectorielle VaB==o, lorsque o est parallele & 8.

¢) Pour le carré d’un vecteur, les équations (23) fournissent :

o' = — (Ta)*; donc, pour le carré d'un vecteur-unité, quel qu’il

soit — 1. Il est donec = — 1; P=7*7i=—1, etec.

d) Pour le produit afy de trois vecteurs, 'on trouve d’apres
r)et (22) '
Safy = — CVAB
et |
Vapy=—BC.A4CA.B—AB.E
Il en résulte .
(8.  Sapy=SPra=Syaf

et

(29) Vofy = aSBy — BSya 4 vSaB
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- Le premier. membre de la derniére équation peut s’écrire
ValStr+Ve) o
ou |
«.SBy + VdVﬁY’
de sorte que
“(30) - o . -VaV{?,y':——-BSY’a‘—'}— ~(SacB~

‘ce qui, lorsqu’on y substitue le vecteur Vée au lieu de «, nous
montre que

(31) VV8:Vpy = — Sy (8 — S3¢) + 18 (3 — S8) p=— Syds - 155:
e) Enfin, nous avons d'apres (§ 1o, a) et (§ 7)

Koyaya,. .. ap = KayKay, — ¢ .. KUK,
ou

Kaoa;. .. 0p =(— 1) 00 —y ..... 00,
ce qui peut s’écrire
Sajayay. . . oty — Vo ayay. .. oy = (— 1)"[Sanan 1oy Vapo, 1 ... ]

Il en résulte les deux équations :

(32) Sajaay... ap=(— 1" Saza, — ... a
et -
(33) -\/Tala,'}."‘ an:("“" I)n_ivanan-—j e U.L

dont (24) et (25) ne sont que des cas spéciaux.
Les équations (24 — 33) suffisent pour les nombreuses apph—
cations du calcul des quaternlons

M. Fr. Da~rivrs, Fribourg (Suisse).
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