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SUR LE CALCUL DES QUATERNIONS

•Le calcul des quaternions, dont l'exposé ordinaire, tel qu'il a

été donné par son inventeur Sir Rowan Hamilton, a un caractère

assez abstrait (*), peut être établi d'une manière simple, en

partant de certaines relations bien connues (2) de vecteurs qui
seront d'abord rappelées dans les paragraphes i à 5.

1. La somme des vecteurs A, B,C, ou somme géométrique
possède les mêmes propriétés qu'une somme algébrique : elle
est associative et commutative. En représentant par Jb la

longueur de A, par Xx X2 Jb3 les longueurs de ses composantes
parallèles à trois axes rectangulaires xyz> formant un système
droit (ox vers l'est, oy vers le nord, os vers le zénith), on aura

(i) A — (vLi i -f- Jb2y -j- c)b3 k

si Qy, k sont des vecteurs-unité dans les trois axes.

2. L'expression scalaire

T) Jb^ 53
^ -f- CJL>2 ^L3 53

3
Jb53 COS (Aß)

formée des deux vecteurs A et B, est simplement désignée par
AB et nommée produit scalaire ou interne de ces deux vecteurs.
Cette définition nous fournit immédiatement :

(') P.-G. Tait dans son Traité élémentaire des Quaternions (I, p. 66) appelle le
raisonnement de Hamilton « presque métaphysique », et 0. Heaviside (Electrical
Papers, vol.-II, p. 5^8) trouve que the quaternion (as)... fundamental idea... renders
the establishment of the algebra of vectors without metaphysics a very difficult
matter.

(2) 0. Heaviside, Electrical Tapers, vol. IJ, p. 528-533.

(3)

(4)

AB BA

AA A2 zz cibi -j- oAd2 —{— 0A93 zz Jb2
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(5)
'

AB + AC + — A (B + C +
(6) (A + D) (B + C) - AB + AC + DB + DC

ÀB =.o lorsque A est perpendiculaire à B ; -

ii — jj — kk — i ; ij — j'k — hi z=z o.

Le produit scalaire est donc commutatif (3) et distributif (6)

comme un produit ordinaire.

3. Le vecteur

(7) (X>2 ^3 ^3 ^2) * d~ 55, X^ «33g) j 4~ (X>^ 55%* c^92 ^l) ^

formé de À et B est représenté par YAB et nommé produit
vectoriel ou externe de ces deux vecteurs. Il est perpendiculaire à

A, car son produit scalaire par A, formé d'après l'équation (2),
est égal à zéro ; il est de même perpendiculaire a B, tandis que
le carré de sa longueur, calculé d'après (4), devient :

(X2 553 — X3 632)2 + (X3 55, — XA 553f + (XA 552 — X2 55,f
=5 (XA2 + X22 + X32) (55,2 + £B22 + 5532) — (X, 55, + X2 552 + X3 £B3)2

X2 552 — X2 552 cos2 (AB) X*2 552 sin2 (AB).

La longueur elle-même est donc XtBsin(AB),- et quant à la direction,

l'on voit facilement que A, B et VAB forment un système
droit, car en'prenant i etj au lieu de A et B, on trouvé k pour
le produit vectoriel. La définition donnée par (7) nous fournit
maintenant les relations suivantes :

(8) YAB — YBA

(9) YAA o

(10) YAB + YAC + — YA (B + C +
(i j) V (A .+ D) (B + C) YAB + YAC + YDB + YDC

(12) Y ij k Yjk — i Yki j
Le produit vectoriel est donc distributif'comme un produit
ordinaire (11) ; mais il n'est pas commutatif (8).

4. Le produit scalaire CVAB des deux vecteurs C et VAB est

d'après (2) et (7)

(<X2 55% — X3 55.2)" 4~ ^2 (^3 — X>^ tB3) 4- ®03 (Xj 55% — X2 93^.)
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ou égal au déterminant,

I 0iGjb2333 I ;

il s'ensuit que

(13) CYAB — AYBC — BYCA.

Si les trois vecteurs sont clans un même plan — coplanaires —
A peut s'écrire mB 4~ nC et l'on aura

(14) AYBC (mB + nC) YBC jnB\BC + ?iCYBC o.

5. Le produit vectoriel YCYÀB de G et VAB contient d'après

{j) six termes. Nous n'en écrivons que deux :

[02 (oiloi 532 — Jl£)2 33J — 03 (Jb3 33
x 533)] i + [—]j + [—] k

^2 ^2 + 03) cJl£>1 (Xi 01 + cyL2 02 -j- oilog 0g) 53J l
• • +[-]/-M-]*,

Le premier, le troisième et le cinquième ensemble donnent

(33i ©i + d3202 + d3303) (=^i l" ~b + c)b3^)

ou
BG.A,

tandis que les trois autres fournissent

- (XL e.L + JU, 02 + oib3 03) (S, i f- 332y + d33 X")

ou
— AC. B.

11 est donc

(15) YCYAB — A.BC — B.CA

et conséquemment

(16) YCYAB + YAYBC 4- YBYCA o.

6. Quaternions. — En supposant (fig. i) que les deux vecteurs
R et R7 aient la même longueur <R, et que Aa soit un vecteur-
unité perpendiculaire a leur plan, nous voyons (§ 3) que la
longueur de YA^R aussi sera égalé à~<R, et comme R7 est la somme
des vecteurs OP et OQ, nous aurons

R' cos Ô.R 4- sin 0.YAiR
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ce que nous écrirons encore

(cos 6 sin 6 VAJ R

OU

(cos 6 -f- sinö Aj) R.

De la même manière l'on trouverait S' égal à

cos 0.S î—j sin 0.YA1S

ou

(cos 6 -f- sin 0 A1) S.

Le multiplicateur

cos 0 -f- sin 0 Al

change R en R' et S en S', c'est-à-dire il tourne tout vecteur
dans le plan e ou dans un plan parallèle d'un angle 9 autour du

vecteur-unité A1 dans le sens indiqué, sans en changer la

longueur. Il est évident que l'opérateur.

m (cos 0 -f- sin 0 Ax)

fait, tout en tournant d'un angle 9, la longueur m fois plus
grande. Cet opérateur-là est un quaternion q ;

cos 0 -f- sin 0 AI

en est le « verseur » \}q ; m en est le « tenseur » Tq. <

Réciproquement, comme

(Ï-+D *_ C + «i,, R _v/^.[-7^=+7?iA_rÂ1]R
(17) ä \/o? —{— -|- cihg2 —{— (cos 0 -j- sin 0 Aj,) R
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l'opérateur a+A est un quaternion, dont le tenseur

Tq — ^ ci2 -j- —j— cA-o^2

et dont le verseur

\]q — cos ô -f- sin 6A4,

l'angle 8 étant déterminé par

cos Ô a : \/a? -j- =A>2

et

sin ô — cA) : \/a2 -f- cA>2.

La « partie scalaire » S q en est a, la « partie vectorielle1 »

en est À. Il est entièrement déterminé par les quatre quantités
cAq, eA>2, oA>3 ; c'est de là que vient son nom.
L'égalité de deux quaternions implique aussi bien celle de

leurs parties scalaires que celle-de leurs parties vectorielles et

réciproquement.

7. Le multiplicateur

m [cos (— G) -f- sin (—J)) A.J

OU

m [cos 6 — sin G A1]

qui tourne d'un angle —8 est appelé le quaternion conjugué K(/
de '

m [cos G -j- sin 6 A1].

tandis que

—[cos G — sin G A.l
m

en est le quaternion inverse q~y Il est évident que les deux
opérations q et Ky effectuées sur le vecteur R n'auront d'autre
résultat que d'en faire la longueur m2 fois plus grande :

Kq q 7?i2 q .Kq

i Le Y employé ici pour la partie vectorielle d'un quaternion est différent de
celui employé pour le produit-vectoriel de deux vecteurs.
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tandis que les opérations <7. et q~l effeçtuées successivement, ne
changeront rien au vecteur :

q-l.q — i q.q-K

Il existe en outre la relation

Kq - (Tq)% q~K

8. Addition. — Les deux quaternions

p 7?z1 (cos 0 -f- sin 0 A:) a -|- A

et

q — /7?2 (cos cp -j- sin cp Bj b -j- B

peuvent agir sur la droite commune à leurs plans, et la figure i
fait voir que pR R/ et R;/, donc

pR + </R s (p + q) R R' + R" — R'" — (<7 + p) R*

Nous en concluons d'abord, que p-\-q=q-\-p et ensuite, que

cette somme est équivalente à un nouveau quaternion, tournant
d'un angle A tout vecteur dans le plan (RR//7). A ce nouveau

quaternion peut être ajouté un troisième

r c + C l

l'ensemble sera alors équivalent à un quatrième quaternion

ö b, -j— c A -|— B -j- C,,
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et comme -

p + q + r — r + q -j- p — [p + q) + r p + (q + r)

l'addition des quaternions est aussi bien commutative
^

qu'associative.

r V

9. Multiplication. — Pour faire coïncider- ;(fig^ 3) lé "vecteurR

avec R", nous pouvons d'abord lui appliquer le multiplicateur
ou verseur

cos 0 -j- sin 0 Al

c'est-à-dire le tourner d'un angle 0 autour de « l'axe » Alt ensuite

par le verseur
cos cp -f- sin cp B1

le faire tourner d'un angle cp autour de Bn mais nous pouvons
aussi directement lui appliquer le multiplicateur

cos tl -j- sin <j/ Di ;

où Da est un vecteur-unité normal au plan passant par R et R7/,

et A l'angle que font entre eux ces deux vecteurs. Le «jproduit »

des deux premiers verseurs est donc un nouveau verseur, et le

produit des deux quaternions

p — a -j- A

et
'

ft r|- B

un nouveau quaternion dont l'expression se déduit de :

qpR (b + B) (a + A) R (b + V B+ VAR)
— .abK+ aVBR + 6YAR + YBYAR.
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Les. identités (16) et (i5) permettent de substituer au dernier
terme d'abord

— VAVRB — YRYBA
et ensuite

— AB.R + AR.B — YRYBA,

ce qui^ A étant normal à R et AR zéro, se réduit h

— AB.R —YRYBA,

nous trouvons donc

qpR (ab — AB)R + aYBR + //VAR — YRYBA
ss (ab — AB + aB + bA + YBA) R

et '

(18) qp — ab — AB + aB -f- bA -f- YBA.

Les deux premiers termes forment la partie scalaire, les trois
derniers la partie vectorielle du nouveau quaternion. A cause du
dernier terme, pq n'est pas égal à qp : la multiplication n'est

pas commutative, ce qui se voit d'ailleurs facilement par la

ligure 3. En effet, en appliquant au vecteur S successivement
les opérateurs q et p, nous obtenons d'abord R/ et ensuite S" ;

pq ast donc équivalent à un quaternion opérant dans le plan
SOS", qui est différent du plan ROR", dans lequel opëre qp.

Considérons maintenant (fig. 4) trois quaternions p, y, /* opérant

dans les plans V1? V2, V3. Le second faisant coïncider le
vecteur S avec SA, nous aurons

S1=ÎS;
de même

S2 pSL

et conséquemment

S2 pqS.

Il en résulte que pq opère dans le plan V4f et qu'il peut faire
coïncider S4 avec S5, pourvu que les arcs (SS2) et (S4SB) soient

égaux. On aura donc aussi

So />?S4,
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ensuite 4

et -enfin

S*

Par un raisonnement analogue, nous trouvons

T, rT, T2 cjTl

et

T* qrT

donc

T4 <FT3i TO PT4

et enfin

(20) T5 ==./>..?rT8.

Les équations (19) et (20) nous montrent que pq. 7' et /?. 7/'
sont des quaternions, qui opèrent dans les plans (S3Ss) et (T3T5),
et pour que la multiplication soit associative pq. r p. qr, il
nous faudrait démontrer que les quatre vecteurs S3S5T3T5 sont
dans un même plan, et que les arcs (S3S5) et (T3T5) sont égaux,
ce que Hamilton fait e. a. en employant certaines propriétés des

coniques sphériques. Mais nous pouvons aussi démontrer l'égalité

des parties scalaires et celle des parties vectorielles pour les
deux quaternions pq. r et p. qr en question.
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En effet *
v :î

S2 pq$ (ab — AB + aB + ïïA -f YAB) S

S5 pqS4 pq.rS3 =z (ab — AB + aB + bA + YAB) (c+ C) S3

ce qui, multiplié d'après (18), donne pour la partie scalaire

(21) Spq.r — abc — (c.AB.4- a.BC + b.CA) — CYAB

tandis que la partie vectorielle

(ab — AB) C + c (aB + bk + VAB) + Y (aB + bA YAB) C

dont le dernier terme est

4 YC VAB

ou (15)

— BC.A-fCA.B
peut s'écrire

Ypq.r rr (bc — BC) A -{- (ca -f- CA) B -f- (ab — AB C

(22) -f aYBC — bYÔL + cYÂB

Pour le produit p. qr nous trouvons

Ts pr4 1= p.qrTs (a + A) (bc — BC + bC + cB + YBC) Ts.

Les parties scalaires et vectorielles en sont les mêmes que
celles de pq-F. D'une manière analogue, on prouve que la
multiplication est distributive : p{q~\~F) — pq-^r p7'. Un produit de

quaternions n'est donc pas commutatif, mais, en dehors de cela,
il possède les propriétés d'un produit ordinaire.

10. Si les composantes rectangulaires de À et B sont cilfl

et l'équation (18) devient :

qp zz: ab — — oib2^2 — cibgfBg -}- -f- a'S^Y «^2^3 —* *

-j— [6cÜ£>2 -f" H-" ®8^i -— j [/> Jb'g -{- afBg 352cA9j] &

La formule du produit (18) nous permet de démontrer quelques

relations importantes :
s

;

a) "v" ' K<7p • zr Kp Kq -
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et généralement i: • :
: f

Kpip 2 • • • Pn — KpnKpn-i...Kpi.

En effet, en changeant (§6) le signe de la partie vectoriellé,(18)
nous donne

Kqp — ab — AB — aB — b~Ä — VBA;

tandis que

Kp.Kq —{a — A) (b — B) ab — AB — ~ÖB — IbA. VÄB

Nous avons donc

Kqp — Kp. Kq

et'de même

Kqiq%. qn — K(q2. qn) KqL — K (qzqti. qn) • Kq2. Kqi

%n. K^n - 1- - 2

b) Sqp — Spq

et en général

SqLq2. qiqt +i. qn — Sqi + t. qnqi... qi)

car, comme la partie scalaire en (18) ne change pas lorsqu'on
intervertit l'ordre des quaternions, nous avons d'abord S qp Spq
et ensuite, pourvu qu'on garde le même ordre cyclique

Sq±q2. qn — S (q±. qi) (qi + 4. çn) S +. fn) {q±.

— qi+2 ' • • Çi'

c) Lorsque p — m (cos 0 -J- sin 9 AJ l'équation (i 8) donne

pp p2 — m2 (cos2 0 — sin2 6 + 2 sin 0 cos OAJ m2 (cos 20 + sin 20AJ

et généralement, quand r est un nombre entier positif

pr — ?nr (cos 7*0 -|- sin r0A1)

Il en résulte
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ce qui conduit tout naturellement à la convention

i
ft TC *r" ' "7— tfYi

cos 1- sm A, A.,
2711 ' 2m A 1

et
72

n TU 71 7T -r — ~^T
cos [- sm — A, — A,

m 2 m 2 1

Cette dernière formule permet d'identifier un verseur
quelconque à une puissance de son vecteur-unité.

il .Division.— Comme q {q~*p) ou (qq~±)pzst équivalent au
quaternion p, il est tout naturel d'appeler q~ip le quotient de p par q,

pour lequel on pourra encore écrire pourvu qu'on se rappelle

constamment que cette fraction est q~l p et non pas pq~1. Sa

valeur (§ 7) est

rlp= (&-g)(a A)+ îrqrgp+ ab + 6a-«b_vba)

Il est maintenant facile d'interpvréter une fraction, dont le
numérateur et le dénominateur sont des fonctions entières des

quaternions p, q, r,..-...

12. Vecteurs. Quaternions élémentaires. — Un quaternion se

réduit à un vecteur A (quaternion élémentaire), quand sa partie
scalaire est zéro, c'est-à-dire quand son angle est droit. Les règles
trouvées pour les quaternions s'appliquent encore à ces vecteurs.
Nous allons nous conformer, dans la suite, à la notation la plus
répandue des quaternionistes qui représentent À,B,C,... par
a,ß,y,.. leurs tenseurs par Ta,Tß..., les vecteurs-unité ij,k par

ÀB par TaTßcos 9, etc ; mais il sera bon de rappeler que
A a est autre chose que A. Les équations que nous allons trouver

sont des égalités de quaternions, dont chacune est équivalente,

en général, à quatre équations entre scalaires.

a) Ce qui a été trouvé pour l'addition des quaternions permet
de conclure, que la somme des vecteurs a,ß,y... est un nouveau

vecteur, qu'on trouve en les composant comme des forces données

; cette somme est associative et commutative.
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b) Pour les produits de deux vecteurs a e.t ß, qui font entre eux

l'angle 9, l'équation (i8) nous donne

(23) aßrrr —ÀB + YÂB ßa=—AB + VBÏ.

Leurs scalaires sont égales :

(24) Saß— Sßa

avec la valeur commune — Ta. Tß.cos 9. Leurs parties
vectorielles diffèrent par le signe :

(25) Vaß — Vßa

le premier membre de (25) est Ta Tß sin 9. i', si i' est un
vecteur-unité perpendiculaire à a et ß, tel que a, ß, if forment un
système droit. On a évidemment encore

(26) aß -f- ßa — 2Saß

et

(27) aß — ßa—aVaß.

La partie scalaire Saß — o, lorsque a est perpendiculaire à ß ;

la partie vectorielle Vaß —o, lorsque a est parallèle à ß.

6') Pour le carré d'un vecteur, les équations (23) fournissent :

a2 =— (Ta)2 ; donc, pour le carré d'un vecteur-unité, quel qu'il
soit— 1. Il est donc P — 1 ; P P.i — i7 etc.

d) Pour le produit aßy de trois vecteurs, l'on trouve d'après
(21) et (22)

Saßy — CYAB

et

/ Vdtßyss: — BC.I+-ÇA.-H — AB.C

Il en résulte

(28) Saßy — Sßya — Syaß
^

et

(29) Vaßy — aSßy — ßSya -f- ySaß.
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Le premier ; membre de la dernière équation peut s'écrire

V«(Sßy+Vßy)
" - - .j - -

OU

a.Sßy 4- YaVßy,

de sorte que

"(3o) -VaVßy —ßSy'a -]- ySaß

ce qui, lorsqu'on y substitue le vecteur V8s au lieu de a, nous
montre que

"

(3i) VVSsVßy — — ßSy (8s — S8s) + yS (3s — S8s) ß — ßSySs + ySSsß

é) Enfin, nous avons d'après (§ io, a) et (§ 7)

Ka^ag... an Ka„Kaw _ t K2KA

OU

KaLa2as. an — (— i)n a.nan _ A aA a2

ce qui peut s'écrire

SaAa2a3. aw — VaAa2a3. an — (— i)72 [Sanan _ 4. aA -f- Yxnxn _ i a/J

Il en résulte les deux équations :

(3 -i) SaIa2a3. zu (— i)72 Saw an _ j. aL

et

(33) VaAa2. an =(— i) 71 ~ 1 an _ i aA

dont (^4) et (25) ne sont que des cas spéciaux.
Les équations (24 — 33) suffisent pour les nombreuses

applications du calcul des-quaternions.

M. Fr. Daniels, Fribourg (Suisse).
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