Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 4 (1902)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: EQUIVALENCE DU MOUVEMENT D'UNE LIGNE DROITE

INVARIABLE AU DÉPLACEMENT D'UNE POSITION DONNÉE \$\sigma_1\$ A UNE AUTRE POSITION DONNÉE \$\sigma_2\$

Autor: Kraft, Ferdinand

DOI: https://doi.org/10.5169/seals-5596

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

EQUIVALENCE DU MOUVEMENT

D'UNE LIGNE DROITE INVARIABLE σ AU DÉPLACEMENT $D'UNE\ POSITION\ DONNÉE\ \sigma_1$ A UNE AUTRE POSITION DONNÉE σ_2

1. — Le vecteur.

§ 1.—Soit un vecteur $\overline{AB} = \alpha$ passant d'une manière quelconque de la position $\overline{A_1B_1} = \alpha_1$ à la position $\overline{A_2B_2} = \alpha_2$, les points A. A_1 et A_2 , B, B_1 et B_2 étant les points homologues de α , α_1 et α_2 , et les déplacements des extrémités du vecteur α , soient $\overline{A_1A_2}$ et $\overline{B_1B_2}$, étant de grandeur finie.

Lorsque le vecteur passe de la position $\alpha_1 = \overline{\mathbb{A}_1 \mathbb{B}_1}$ à la position $\alpha_2 = \overline{\mathbb{A}_2 \mathbb{B}_2}$ (fig. 1), on a, à cause de l'invariabilité de sa longueur,

(1)
$$\alpha_{\underline{2}}^2 = \alpha_{\underline{1}}^2 = \alpha_{\underline{2}}^2 = a_{\underline{2}}.$$

Les extrémités de a ayant pour déplacements

$$\overline{\mathcal{A}_1 \mathcal{A}_2} = \delta_1, \ \overline{\mathcal{B}_1 \mathcal{B}_2} = \delta_2,$$

on a

$$\alpha_1 + \delta_2 - \alpha_2 - \delta_1 = 0,$$

de sorte que la différence des déplacements des extrémités B et A du vecteur a est

$$\delta_{\alpha} = \delta_{2} - \delta_{1} = \alpha_{2} - \alpha_{1}.$$

« La différence des déplacements totaux des extrémités d'un vecteur α , quand il passe d'une position α_1 en une autre α_2 d'une manière quelconque, est égale à la différence des vecteurs α_2 et α_1 .

De ce que

$$\alpha_1 + \delta_\alpha = \alpha_2,$$

on tire par quadrature intérieure des membres de cette équation

$$(\alpha_1 + \delta_\alpha)^2 = \alpha_2^2,$$

ou

$$\alpha_1^2 + 2(\alpha_1 \mid \delta_{\alpha}) + \delta_{\alpha}^2 = \alpha_2^2$$
,

d'où il suit par considération de l'équation (1)

$$(4) (2\alpha_1 + \delta_{\alpha}) \mid \delta_{\alpha} = 0,$$

et, si nous avons égard à l'équation (3)

$$(4') \qquad (\alpha_1 + \alpha_2) \mid \delta_{\alpha} = 0.$$

« La différence des déplacements totaux des extrémités d'un vecteur est continuellement perpendiculaire à la somme des vecteurs α_1 et α_2 . »

On a aussi

$$(\alpha_1 + \alpha_2) \mid (\delta_2 - \delta_1) = 0,$$

d'où

(5)
$$(\alpha_1 + \alpha_2) \mid \delta_2 = (\alpha_1 + \alpha_2) \mid \delta_1.$$

« Les projections des déplacements totaux des extrémités d'un vecteur α sur la direction de la somme $(\alpha_1 + \alpha_2)$ des vecteurs α_1 et α_2 sont égales entre elles. »

De l'équation (2) résulte en multipliant ses membres par $(\alpha_2 - \alpha_1)$

$$(\delta_2 - \delta_1) (\alpha_2 - \alpha_1) = 0,$$

de sorte que

(6)
$$[(\delta_2 - \delta_1)(\alpha_1 \alpha_2)] = 0,$$

et si nous prenons

$$[(\delta_2 - \delta_1) : \sqrt{(\alpha_1 \alpha_2)^2}] = |\epsilon,$$

il vient

(6')
$$(\delta_2 - \delta_1) \mid \varepsilon = 0, \quad \delta_2 \mid \varepsilon = \delta_1 \mid \varepsilon.$$

« Les projections des déplacements totaux des extrémités du vecteur α sur la direction du vecteur de position des plans parallèles à α_1 et α_2 sont égales l'une à l'autre. »

§ 1'. — Si le vecteur α passe de la position α_1 à la position infiniment voisine α_2 , on a $\delta_1 = d\rho_1$, $\hat{o}_2 = d\rho_2$, $\delta_{\alpha} = d\alpha$; il résulte donc du paragraphe 1:

(7)
$$d\alpha = d\rho_2 - d\rho_1 = \alpha_2 - \alpha_1,$$

$$\alpha' = \frac{d\alpha}{dt} = \frac{d\rho_2}{dt} - \frac{d\rho_1}{dt},$$

$$\alpha' = \overline{v_2} - \overline{v_1}.$$

« La dérivée du vecteur a par rapport au temps est égale à la différence des vitesses de son point extrême et son point initial. »

En négligeant des quantités infiniment petites d'ordre élevé devant des quantités d'ordre moindre, nous obtenons de l'équation (4)

$$2(\alpha_1 \mid d\alpha) = 0,$$
 $(\alpha_1 \mid d\alpha) = 0,$

ou

$$(\alpha \mid d\alpha) = 0, \qquad \alpha_1 \equiv \alpha,$$

de sorte que

$$\alpha \left| \frac{d\alpha}{dt} \right| = 0,$$
 $\alpha \left| \left(\overline{v_2} - \overline{v_1} \right) \right| = 0.$

et aussi

$$\alpha \mid d\rho_2 = \alpha \mid d\rho_1, \qquad \alpha \mid \overline{v_2} = \alpha \mid \overline{v_1}.$$

« La différence des déplacements infiniment petits, ainsi que celle des vitesses des extrémités d'un vecteur lui est perpendiculaire. Les projections des déplacements infiniment petits des extrémités d'un vecteur, ainsi que les projections des vitesses de ces points sur la direction du vecteur sont égales l'une à l'autre. »

Il résulte de plus de l'équation (6)

$$(d\rho_2 - d\rho_1) [\alpha (\alpha + d\alpha)] = 0$$

ou

$$(d\rho_2 - d\rho_1) (\alpha d\alpha) = 0.$$

Si nous prenons

$$(\alpha d\alpha): \sqrt{(\alpha d\alpha)^2} = (\alpha \alpha'): \sqrt{(\alpha \alpha')^2} = |\epsilon,$$

nous obtenons

$$(d
ho_2-d
ho_1)\mid arepsilon \equiv 0, \qquad d
ho_2\mid arepsilon \equiv d
ho_1\mid arepsilon, \ (\overline{v_2}-\overline{v_1})\mid arepsilon \equiv \overline{0}, \qquad \overline{v_2}\mid arepsilon \equiv \overline{v_1}\mid arepsilon.$$

« Les projections des déplacements infiniment petits, ainsi que ceux des vitesses des extrémités d'un vecteur α sur la direction du vecteur de position ε des plans parallèles à α dans ses positions originale et finale sont égales entre elles. »

§ 2. — Avec
$$\overline{\mathcal{B}_1 \mathcal{B}}' = \delta_1$$
 (fig. 1) on a $\overline{\mathcal{B}}' \overline{\mathcal{B}_2} = \delta_\alpha$,
$$\sqrt{\overline{\mathcal{A}_2 \mathcal{B}'^2}} = \sqrt{\overline{\mathcal{A}_2 \mathcal{B}_2}^2} = a.$$

Posons $\ensuremath{\nearrow} \ensuremath{\mathcal{B}}' \ensuremath{\nearrow} \ensuremath{\mathcal{A}}_2 \ensuremath{\mathcal{B}}'$ peut être transporté par rotation autour du point $\ensuremath{\mathcal{A}}_2$ en $\ensuremath{\nearrow} \ensuremath{\mathcal{A}}_2 \ensuremath{\mathcal{B}}'$, l'angle de rotation étant égal à $\ensuremath{\mathscr{W}}$, l'axe de rotation passant par $\ensuremath{\mathcal{A}}_2$ et étant une droite perpendiculaire au plan des points $\ensuremath{\mathcal{A}}_2$, $\ensuremath{\mathscr{B}}'$ et $\ensuremath{\mathscr{B}}_2$. Nous avons alors les relations

(8)
$$\alpha_{2} = \cos w \alpha_{1} + \sin w \mid (\epsilon \alpha_{1}),$$

$$\delta_{\alpha} = \alpha_{2} - \alpha_{1} = (\cos w - 1) \alpha_{1} + \sin w \mid (\epsilon \alpha_{1})$$

Si δ_{α} est considéré comme donné, il s'ensuit pour l'amplitude de w de la rotation

$$\{(\cos w - 1)\alpha_1 + \sin w | (\epsilon \alpha_1)\}^2 = \delta \alpha_2^2$$

d'où finalement

(9)
$$4a^2 \sin^2 \frac{1}{2} w = \delta_{\alpha}^2 = (\delta_2 - \delta_1)^2$$
,

équation qui détermine l'angle de rotation.

Le déplacement total de l'extrémité du vecteur a est alors

$$\delta_2 \stackrel{\sim}{=} \delta_1 + \delta_{\alpha},$$

$$\delta_2 \stackrel{\sim}{=} \delta_1 + [(\cos w - 1)\alpha_1 + \sin w | (\epsilon \alpha_1)]$$

ou

(10)
$$\delta_2 = \left[(\cos w - 1) \alpha_1 + \sin w \mid (\epsilon \alpha_1) \right] + \delta_1,$$

et nous obtenons cette proposition:

« Chaque mouvement d'un vecteur α , d'une position α_1 en une autre α_2 est équivalent à une translation qui est égale au déplacement total de son élément origine et à une rotation d'un angle égal à celui des vecteurs α_1 et α_2 autour de l'axe $\bar{\epsilon}$ qui passe par l'élément origine de α et est perpendiculaire aux vecteurs α_1 et α_2 .

La translation et la rotation d'après l'équation (10) sont liées additivement l'une à l'autre, l'ordre de leur succession étant arbitraire; par suite la translation et la rotation peuvent avoir lieu en même temps, l'axe ε se déplaçant parallèlement à lui-même autour du vecteur égal au déplacement total de l'élément origine de α . »

On a $\cos(2\pi - w) = -\cos w$, $\sin(2\pi - w) = -\sin w$. Par consequent le vecteur α_1 prend aussi la direction du vecteur α_2 s'il tourne autour de l'axe ε , qui passe par le point $\mathcal{A} \equiv \mathcal{A}_1$, d'un angle dont l'amplitude est égale à $(w - 2\pi)$; mais nous entendons toujours par l'angle des directions de deux droites celui de leurs parties positives, de sorte que même pour le mouvement le plus simple il ne soit question que de la première amplitude.

§ 2'. — Si les déplacements totaux des extrémités du vecteur α sont infiniment petits, la différence des directions des vecteurs α_1 et α_2 est aussi infiniment petite, $\ll w = dw$. Des équations (8), (9) et (10) il résulte pour ce cas spécial

$$\alpha_2 = \alpha_1 + dw \mid (\epsilon \alpha_1)$$

$$d\alpha = \alpha_2 - \alpha_1 = dw \mid (\epsilon \alpha_1) = dw \mid (\epsilon \alpha)$$

$$\alpha' = \overline{v_2} - \overline{v_1} = \frac{dw}{dt} \mid (\epsilon \alpha) = w \mid (\epsilon \alpha)$$

$$dw = \frac{1}{a} \sqrt{\overline{d\alpha_2}}, \qquad w = \frac{1}{a} \sqrt{(\overline{v_2} - \overline{v_1})_-^2},$$

où dw est le déplacement angulaire et si $w = \frac{dw}{dt}$ est la vitesse angulaire du vecteur α .

Le déplacement total et la vitesse du point extrême du vecteur α sont

$$d\rho_2 = d\rho_1 + dw \mid (\epsilon \alpha), \quad \overline{v_2} = \overline{v_1} + w \mid (\epsilon \alpha).$$

« Si les extrémités d'un vecteur α subissent, dans leur passage d'une position α_1 en une autre α_2 , des déplacements infiniment petits, leur mouvement est équivalent à une translation qui est égale au déplacement total de leur élément origine et à une rotation, d'une angle infiniment petit égal à celui des directions des vecteurs α_1 et α_2 , autour de l'axe ε qui passe par l'élément origine de $\alpha \equiv \alpha_1$ et est perpendiculaire à α_1 et α_2 . L'ordre de la

suite de la translation et de la rotation est arbitraire; celles-ci sont liées additivement l'une à l'autre et les deux peuvent avoir lieu en même temps. »

- § 3. Dans le cas général des déplacements d'un vecteur dont nous avons parlé dans les paragraphes précédents sont compris tous les cas particuliers, dont nous allons examiner les plus importants maintenant.
 - 1) δ_i = 0, le point A = A, du vecteur α = α_i est sans déplacement. On a alors

$$\delta_{\alpha} = \alpha_{2} - \alpha_{1} = \delta_{2}, \quad \delta_{1} \mid \varepsilon = 0, \quad \delta_{2} \mid \varepsilon = 0,$$

$$\alpha_{2} = \cos w \alpha_{1} + \sin w \mid (\varepsilon \alpha_{1}), \quad 4\alpha^{2} \sin^{2} \frac{1}{2} w = \delta_{2}^{2}.$$

$$\delta_{2} = (\cos w - 1) \alpha_{1} + \sin w \mid (\varepsilon \alpha_{1}), \quad 4\alpha^{2} \sin^{2} \frac{1}{2} w = \delta_{2}^{2}.$$

$$d\rho_{1} = 0,$$

$$d\alpha = \alpha_{2} - \alpha_{1} = d\rho_{2}, \quad d\rho_{1} \mid \varepsilon = 0, \quad d\rho_{2} \mid \varepsilon = 0,$$

$$\alpha_{2} = \alpha_{1} + dw \mid (\varepsilon \alpha_{1}) \text{ ou } \alpha_{2} = \alpha + dw \mid (\varepsilon \alpha), \quad \alpha_{1} = \alpha,$$

$$d\rho_{2} = dw \mid (\varepsilon \alpha), \quad \overline{v_{1}} = 0, \quad \overline{v_{2}} = w \mid (\varepsilon \alpha),$$

$$dw = \frac{1}{\alpha} \sqrt{d\rho_{2}^{2}}, \quad w = \frac{1}{\alpha} v_{2}.$$

Le déplacement total de l'extrémité du vecteur $\alpha \equiv \alpha_1$ est perpendiculaire à l'axe ε ; dans le cas 1') il est aussi perpendiculaire au vecteur $\alpha \equiv \alpha_1$. Le vecteur α peut être transporté de la position α_i à la position α_2 par rotation autour de l'axe ε passant par le point $\mathcal{A}_1 = \mathcal{A}_2$.

2) δ_2 =0, l'extrémité $\mathfrak{B}=\mathfrak{B}_1$ du vecteur $\alpha=\alpha_1$ est sans déplacement.

On a alors

$$\delta_{\alpha} = -\delta_{1}, \quad \delta_{2} \mid \varepsilon = 0, \quad \delta_{1} \mid \varepsilon = 0,$$

$$\alpha_{2} = -\left[(\cos w\alpha_{1} + \sin w \mid (\varepsilon\alpha_{1})), \quad \delta_{1} = -\left[(\cos w - 1)\alpha_{1} + \sin w \mid (\varepsilon\alpha_{1}) \right], \quad 4a^{2} \sin^{2} \frac{1}{2} w = \delta_{1}^{2},$$

$$d\rho_{2} = 0 \text{ donn\'e}:$$

$$d\rho = -d\rho_1, \quad d\rho_2 \mid \varepsilon = 0, \quad d\rho_1 \mid \varepsilon = 0,$$

$$\alpha_2 = -\left[\alpha_1 + dw \mid (\varepsilon \alpha_1)\right] \text{ ou } \alpha_2 = -\left[\alpha + dw \mid [\varepsilon \alpha)\right], \quad \alpha_1 \equiv \alpha,$$

$$d\rho_1 = -dw \mid (\varepsilon \alpha), \quad \overline{v}_1 = -w \mid (\varepsilon \alpha),$$

$$dw = \frac{1}{a} \sqrt{d\rho_1^2}, \quad w = \frac{1}{a} v_1.$$

Le vecteur α passe de la position α₁ à la position α₂ par rotation autour de l'axe ε qui passe par son extrémité si l'amplitude a le sens opposé comme dans 1).

3) Les déplacements δ_1 et δ_2 sont dans un plan si l'on a

$$[\alpha_1\delta_1\delta_2] = 0$$

et alors on a aussi

$$(\alpha_2 \delta_1 \delta_2) \equiv 0$$
,

car

$$\alpha_1 - \alpha_2 = \delta_1 - \delta_2,$$

on a donc

$$[\alpha_1\delta_1\delta_2] - [\alpha_2\delta_1\delta_2] = 0,$$

et si

$$[\alpha_1\delta_1\delta_2] = 0$$

on a aussi

$$[\alpha_2\delta_1\delta_2] = 0.$$

Le quadrilatère des points &, B1, &2, B2 est plan.

3') Pour $\delta_1 = d\rho_1$, $\delta_2 = d\rho_2$, $d\rho_1$, $d\rho_2$, $\overline{v_1}$, $\overline{v_2}$ sont dans un plan, si

$$\alpha_1 d\rho_1 d\rho_2 = 0, \qquad \alpha_1 \overline{v_1} \overline{v_2} = 0,$$

et alors on a aussi

$$\alpha_2 d\rho_1 d\rho_2 = 0, \qquad \alpha_2 \overline{v_1} \overline{v_2} = 0.$$

4) $\delta_2 = p \delta_1$, les déplacements des extrémités du vecteur α sont parallèles l'un à l'autre.

Alors nous avons

$$\delta_{\alpha} = (p-1) \delta_1, \qquad \alpha_1 \delta_1 \delta_2 = 0, \qquad \alpha_2 \delta_1 \delta_2 = 0;$$

si p = 1, on a $\delta_2 = \delta_1$ et aussi

$$\delta_{\alpha} = 0, \quad \alpha_2 - \alpha_1 = 0, \quad \alpha_2 = \alpha_1.$$

4') $d\rho_2 = pd\rho_1$ donné:

$$dlpha = (p-1) d
ho_1, \quad lpha_1 d
ho_2 = 0, \quad lpha_2 d
ho_1 d
ho_2 = 0,$$
 $lpha' = (p-1) \overline{v_1}, \quad lpha_1 \overline{v_2} = 0, \quad lpha_2 \overline{v_1} \overline{v_2} = 0.$

Le quadrilatère $\mathcal{A}_1\mathcal{B}_1\mathcal{A}_2\mathcal{B}_2$ est plan. Le plus simple déplacement du vecteur α de α_1 en α_2 a lieu en ce plan. Si les déplace-

ments des extrémités de α sont égaux, α peut être transporté de α_1 en α_2 par la translation δ_1 , respectivement $d\rho_1$.

5) δ_1 est perpendiculaire au vecteur $(\alpha_1 + \alpha_2)$. Alors nous avons

$$(\alpha_1 + \alpha_2) \mid \delta_1 = 0, \qquad (\alpha_1 + \alpha_2) \mid \delta_2 = 0,$$

 δ_2 est aussi perpendiculaire à ce vecteur.

$$\alpha_1 \mid \delta_1 = 0$$
 et $\alpha_1 \mid \delta_2 = 0$

donnent

$$lpha_2 \mid \delta_{lpha} = o.$$
 $lpha_1 \mid \delta_1 = o$ et $lpha_2 \mid \delta_2 = o$

donnent

$$\alpha_2 \mid \delta_1 = \alpha_1 \mid \delta_2$$
.

5') Si $d\rho_1$ est perpendiculaire à $\alpha_1 \equiv \alpha$, nous obtenons

$$d
ho_1 \mid \alpha = 0,$$
 $d
ho_2 \mid \alpha = 0.$ $\overline{v_1} \mid \alpha = 0,$ $\overline{v_2} \mid \alpha = 0,$

Si les déplacements des extrémités d'un vecteur a sont infiniment petits et si le déplacement de l'une de ses extrémités est perpendiculaire à la direction de ce vecteur, le déplacement de l'autre extrémité est aussi tel et alors les vitesses des extrémités sont précisément normales à cette direction.

§ 4. — Considérons la droite AB transportée de la position A_1B_1 à la position A_2B_2 ; A,A_1,A_2 et B,B_1,B_2 étant des points homologues.

Comme une droite est déterminée par deux quelconques de ses points, la droite $\mathcal{AB} = \sigma$ coïncide avec les droites $\mathcal{A}_1\mathcal{B}_1 = \sigma_1$ et $\mathcal{A}_2\mathcal{B}_2 = \sigma_2$, si deux points quelconques de σ coïncident avec des points correspondants de σ_1 et σ_2 et alors à cause de l'invariabilité de σ tous les groupes de deux points σ et σ_1 , σ et σ_2 coïncident respectivement.

Prenons un point fixe arbitraire de l'espace comme pôle de

coordonnées O et soit $A_1 = O + \rho_1$, $B_1 = O + \rho_2$, $O_1 = O + \rho$ un point arbitraire de σ_1 (fig. 2).

L'équation générale des trajectoires de la ligne o, est

$$\rho = m\rho_1 + n\rho_2, \qquad m + n = 1$$

$$ho =
ho_1 + n (
ho_2 -
ho_1),$$
 $ho =
ho_1 + n lpha_1, \quad \text{avec} \quad (
ho_2 -
ho_1) = lpha_1.$

Soient alors $\mathcal{A}_1\mathcal{A}_2 = \delta_1, \mathcal{B}_1\mathcal{B}_2 = \delta_2$ les déplacements des points

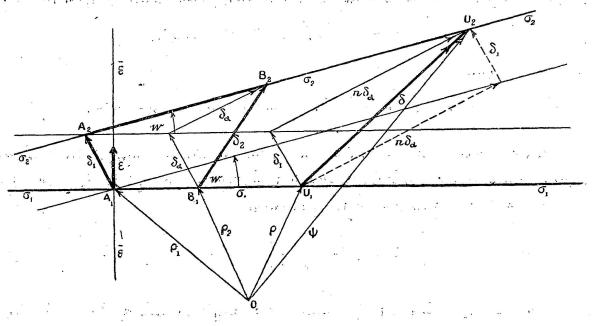


Fig. 2.

 \mathcal{A} et \mathcal{B} de la droite σ , l'équation de la droite $\mathcal{A}_2\mathcal{B}_2 = \sigma_2$ est, en posant $U_2 = O + \psi$, $U_2 = U_1 + \delta$,

$$\psi = \rho + \delta = m (\rho_1 + \delta_1) + n (\rho_2 + \delta_2),$$

$$\psi = m\rho_1 + n\rho_2 + m\delta_1 + n\delta_2$$

ou

$$\begin{split} \psi &= (\rho_1 + \delta_1) + n \left[(\rho_2 - \rho_1) + (\delta_2 - \delta_1) \right] \\ \psi &= (\rho_1 + \delta_1) + n (\alpha_1 + \delta_\alpha), \quad \delta_\alpha = \delta_2 - \delta_1 \\ \psi &= (\rho_1 + \delta_1) + n \alpha_2, \quad \alpha_2 = \alpha_1 + \delta_\alpha. \end{split}$$

Des équations des droites $\mathcal{A}_1\mathcal{B}_1$ et $\mathcal{A}_2\mathcal{B}_2$ il résulte pour le déplacement δ d'un point arbitraire de la droite σ

$$\delta = (\psi - \rho) = m\delta_1 + n\delta_2 = \delta_1 + n(\delta_2 - \delta_1),$$

$$\delta = \delta_1 + n(\alpha_2 - \alpha_1) = \delta_1 + n\delta_\alpha.$$

L'équation

$$\delta = \delta_1 + n\delta_\alpha$$

est avec δ comme radiusvector celle de l'hodographe des déplacements des points de la droite σ , quand elle est transportée d'une manière quelconque de la position σ_1 à la position σ_2 de sorte que, comme elle ne contient que la variable n, cet hodographe est une droite parallèle à la différence des déplacements des points \mathfrak{B} et \mathbb{A} .

Les déplacement δ_i und δ_k des points $\mathfrak Z$ et $\mathfrak X$ de la droite σ sont

$$\delta_i = \delta_1 + n_i \delta_{\alpha}, \quad \delta_k = \delta_1 + n_k \delta_{\alpha},$$

de sorte que

$$\delta_k - \delta_i = (n_k - n_i) \delta_{\alpha}, \quad n_k \delta_i - n_i \delta_k = (n_k - n_i) \delta_i,$$

et nous obtenons, si nous remplaçons dans l'équation trouvée plus haut pour l'hodographe les valeurs de δ_4 et δ_α par elles données par ces dernières équations

$$\delta = \delta_i + \frac{n - n_i}{n_k - n_i} (\delta_k - \delta_i).$$

« L'hodographe du système des déplacements de la droite σ est une droite parallèle à la différence des déplacements de deux quelconques de ses points, c'est-à-dire une droite qui passe par les extrémités de ces déplacements considérés comme trajectoires. Les différences des déplacements de deux groupes de points de la droite σ sont parallèles. Par les déplacements de deux quelconques de ses points sont déterminés les déplacements de tous les points de la droite σ. »

Comme

$$\delta = \delta_1 + n (\alpha_2 - \alpha_1)$$

nous obtenons en multipliant les deux membres de cette équation par $(\alpha_1\alpha_2)$

(12)
$$\delta(\alpha_1\alpha_2) = \delta_1(\alpha_1\alpha_2), \quad (\delta - \delta_1)(\alpha_1\alpha_2) = 0,$$

d'où

$$\delta | \varepsilon = \delta_1 | \varepsilon$$
,

si nous posons

$$(\alpha_1 \alpha_2) : \sqrt{(\alpha_1 \alpha_2)^2} = | \epsilon.$$

« Les projections des déplacements des points de la droite σ sur la direction perpendiculaire à ses déplacements σ_1 et σ_2 sont égales entre elles. »

Comme

$$\delta_i \delta_k = (\delta_1 + n_i \delta_\alpha) (\delta_1 + n_k \delta_\alpha) = (n_k - n_i) (\delta_1 \delta_2),$$

$$[\delta \delta_1 \delta_2] = 0, \quad [\delta \delta_i \delta_k] = 0,$$

les déplacements des points de la droite σ sont parallèles à un plan dont la position est déterminée par les déplacements de deux quelconques des points de σ .

§ 4'. — Si les déplacements des points \mathcal{A} et \mathcal{B} de la droite σ sont infiniment petits, on a $\delta_1 = d\rho_1$, $\delta_2 = d\rho_2$, $\delta_\alpha = d\alpha$, et alors leur hodographe a pour équation, comme on a $\delta = d\rho$, en vertu de l'équation (11),

$$d\rho = d\rho_1 + nd\alpha, \qquad d\alpha = d\rho_2 - d\rho_1,$$

et alors, l'hodographe des vitesses v de ses points a pour équation

$$\overline{v} = \frac{d\rho}{dt} = \overline{v_1} + n (\overline{v_2} - \overline{v_1});$$

ces lignes droites sont évidemment parallèles entre elles.

De plus, nous obtenons, puisqu'on a à cause de (11)

$$d\rho = d\rho_1 = nd\alpha$$
 et $\alpha | d\alpha = 0$,

avec $\alpha \equiv \alpha_1$,

$$(d\rho - d\rho_1) | \alpha = 0, \quad (\overline{v} - \overline{v_1}) | \alpha = 0.$$

« Les hodographes des déplacements infiniment petits et des vitesses des points de la droite σ sont perpendiculaires à celle-ci. » Il suit de là

$$d\rho |\alpha = d\rho_1 |\alpha, \qquad \overline{v} |\alpha = \overline{v_1} |\alpha.$$

« Les projections des déplacements infiniment petits ainsi que celles des vitesses des points de la droite σ sur sa propre direction sont égales. »

Nous obtenons encore d'après l'équation (12)

$$(d\rho - d\rho_1) (\alpha_1 \alpha_2) = 0$$
, ou $(d\rho - d\rho_1) (\alpha d\alpha) = 0$,

The following the season pulse of a first or wife in

ou, si nous posons

$$(\alpha d\alpha) : \sqrt{(\alpha d\alpha)^{2}} = (\alpha \alpha') : \sqrt{(\alpha \alpha')^{2}} = |\varepsilon,$$

$$(d\rho - d\rho_{1})|\varepsilon = 0, \quad (\overline{v} - \overline{v}_{1})|\varepsilon = 0,$$

$$d\rho |\varepsilon = d\rho_{1}|\varepsilon, \quad \overline{v}|\varepsilon = \overline{v}_{1}|\varepsilon.$$

« Les projections des déplacements infiniment petits ainsi que celles des vitesses des points de la droite σ sur la direction perpendiculaire à σ_1 et à σ_2 sont égales entre elles. »

§ 5. — Les équations des droites $\mathcal{A}_1\mathcal{B}_1$ et $\mathcal{A}_2\mathcal{B}_2$ sont

$$\rho = \rho_1 + n_1 \alpha_1, \quad \psi = (\rho_1 + \delta_1) + n_2 \alpha_2,$$

Ces lignes se croisent en général; soit d'leur plus courte distance.

Pour le vecteur θ , on doit avoir l'équation

$$\theta = \psi - \rho = \delta_1 + n_2 \alpha_2 - n_1 \alpha_1,$$

et comme θ est normal à α, et à α, on doit avoir aussi

$$\theta = \varkappa \mid (\alpha_1 \alpha_2),$$

et de là résulte la condition

$$\delta_1 + n_2 \alpha_2 - n_1 \alpha_1 = \varkappa \mid (\alpha_1 \alpha_2),$$

d'où il suit

$$(\delta_1\alpha_1\alpha_2) = \kappa (\alpha_1\alpha_2)^{\alpha_1}$$

et enfin

$$= \frac{\alpha_1 \alpha_2 \delta_1}{(\alpha_1 \alpha_2)^2} \left| (\alpha_1 \alpha_2) = \frac{\alpha_1 \alpha_2 \delta_1}{\sqrt{(\alpha_1 \alpha_2)^2}} \varepsilon.$$

Nous obtenons de plus pour les coefficients n_1 et n_2

$$\begin{array}{c|c} (\delta_1\alpha_2)\mid (\alpha_1\alpha_2)-n_1\ (\alpha_1\alpha_2)^2=0,\\ (\delta_1\alpha_1)\mid (\alpha_1\alpha_2)-n_2\ (\alpha_1\alpha_2)^2=0, \end{array}$$

et par suite

$$\theta = \delta_1 - \frac{(\delta_1 \alpha_2) \uparrow (\alpha_1 \alpha_2)}{(\alpha_1 \alpha_2)^2} \alpha_1 + \frac{(\delta_1 \alpha_1) \uparrow (\alpha_1 \alpha_2)}{(\alpha_1 \alpha_2)^2} \alpha_2^*$$

Si l'on effectue le produit intérieur des deux membres de cette formule, on peut, par le calcul des déterminants, modifier un peu sa forme. On a ainsi

$$\theta = \delta_{1} + \frac{1}{a^{4} - (\alpha_{1} | \alpha_{2})^{2}} \left\{ \left[(\alpha_{1} | \alpha_{2}) (\alpha_{2} | \delta_{1}) - a^{2} (\alpha_{1} | \delta_{1}) \right] \alpha_{1} + \left[(\alpha_{1} | \alpha_{2}) (\alpha_{1} | \delta_{1}) - a^{2} (\alpha_{2} | \delta_{1}) \right] \alpha_{2} \right\}.$$

Pour les radii vectores ρ_{θ} et ψ_{θ} des extrémités de la plus courte distance θ on a, avec les valeurs trouvées pour n_1 et n_2 ,

$$\rho_{\theta} = \rho_{1} + \frac{\left(\delta_{1}\alpha_{2}\right) \mid (\alpha_{1}\alpha_{2})}{(\alpha_{1}\alpha_{2})^{2}} \alpha_{1},$$

$$\psi_{\theta} = (\rho_{1} + \delta_{1}) + \frac{\left(\delta_{1}\alpha_{1}\right) \mid (\alpha_{1}\alpha_{2})}{(\alpha_{1}\alpha_{2})^{2}} \alpha_{2}$$

et on a, comme cela doit être, $(\psi_{\theta} - \rho_{\theta}) = \theta$.

Pour les déplacements des points de la droite σ , on a $n_1 = n_2 = n$,

$$\delta = \psi - \rho = \delta_1 + n (\alpha_2 - \alpha_1),$$

et par suite, le déplacement du point de la droite σ, qui coïncide avec l'extrémité origine de θ est

$$\delta = \delta_1 + \frac{(\delta_1 \alpha_2) \mid (\alpha_1 \alpha_2)}{(\alpha_1 \alpha_2)^2} (\alpha_2 - \alpha_1),$$

de sorte que ce point n'est pas déplacé en général pour le vecteur θ ; quand la droite σ passe de la position σ_i à la position σ_j , aucun de ses points n'admet le déplacement θ .

§ 5'. — Si les déplacements des points A et B de la droite σ sont infiniment petits, nous obtenons, d'après le paragraphe 5, pour la plus courte distance $\theta = d\theta$ des droites σ_1 et σ_2

$$d\theta = \frac{\alpha d\rho_1 d\rho_2}{(\alpha d\alpha)^2} \left| (\alpha d\alpha) = \frac{\alpha \overline{v_1} \overline{v_2}}{(\alpha \alpha')^2} \right| (\alpha d\alpha), \qquad \alpha_1 \equiv \alpha,$$

$$d\theta = d\rho_1 + \frac{\alpha^2 (d\rho_1 \mid d\alpha) - (d\rho_1 \mid \alpha) d\alpha^2}{(\alpha d\alpha)^2} \alpha_1 - \frac{\alpha^2 (d\rho_1 \mid d\alpha)}{(\alpha d\alpha)^2} \alpha_2,$$

ou puisque $\alpha \equiv \alpha_1$, $\alpha_2 = \alpha + d\alpha$, $(\alpha d\alpha)^2 = \alpha^2 d\alpha^2$,

$$d\theta = d\rho_1 - \frac{d\rho_1 | \alpha}{a^2} \alpha - \frac{d\rho_1 | d\alpha}{d\alpha^2} d\alpha.$$

Pour les trajectoires des extrémités de $d\theta$, nous trouvons

$$\rho_{\theta} = \rho_{1} + \frac{d\alpha_{-}^{2}(d\rho_{1}|\alpha) - a^{2}(d\rho_{1}|d\alpha)}{a^{2}d\alpha_{-}^{2}} \alpha,$$

$$\psi_{\theta} = \rho_{1} + d\rho_{1} - \frac{d\rho_{1}|d\alpha}{d\alpha_{-}^{2}} (\alpha + d\alpha),$$

le déplacement du point de la droite σ coı̈ncidant avec l'élément origine de $d\theta$ est

$$d\rho = d\rho_1 + \frac{(d\rho_1\alpha_2) \mid (\alpha_1d\alpha)}{(\alpha_1d\alpha)^2} (\alpha_2 - \alpha_1),$$

ou

$$d\rho = d\rho_1 + \frac{d\alpha_-^2 (d\rho_1 \mid \alpha) - a^2 (d\rho_1 \mid d\alpha)}{a^2 d\alpha_-^2} d\alpha,$$

de sorte qu'en général ce point n'est pas déplacé autour du vecteur $d\theta$; aucun point de la droite σ n'admet le déplacement $d\theta$ si σ passe de la position σ_1 à la position σ_2 .

§ 6. — D'après l'équation

$$\delta = \delta_1 + n\delta_{\alpha}$$

le déplacement δ consiste en un déplacement δ_{α} commun à tous les points de la droite σ et en un déplacement $n\delta_{\alpha}$ qui est perpendiculaire à la direction de

$$\varepsilon \equiv |(\alpha_1 \alpha_2) : \sqrt{(\alpha_1 \alpha_2)^2};$$

ces deuxièmes composantes des déplacements des points de la droite σ sont parallèles entre elles et directement proportionnelles en grandeur aux distances des points à l'axe passant par \mathcal{A}_1 et parallèle à ε . Ces deuxièmes composantes peuvent être engendrées par la rotation de la droite $\sigma = \sigma_1$ autour de l'axe ε passant par $\mathcal{A} = \mathcal{A}_1$, de sorte qu'elles forment un système de déplacements rotatifs. Soit ω l'angle compris entre les directions des droites σ_1 et σ_2 ; d'après le paragraphe 2, nous devons poser

$$\delta = \delta_1 + n \left\{ (\cos w - 1) \alpha_1 + \sin w | (\epsilon \alpha_1) \right\}$$

$$= n \left\{ (\cos w - 1) \alpha_1 + \sin w | (\epsilon \alpha_1) \right\} + \delta_1.$$

Le radius vector du point U auquel correspond le déplacement δ est avant ce déplacement.

$$\rho = \rho_1 + n\alpha_1$$
.

sa trajectoire après le déplacement autour du vecteur 8 est.

$$\psi = \rho_1 + \delta_1 + n \left\{ \cos w \alpha_1 + \sin w \right\} (\epsilon \alpha_1)$$

$$= \rho_1 + n \left\{ \cos w \alpha_1 + \sin w \right\} (\epsilon \alpha_1) + \delta_1.$$

Comme on a

$$\delta = \delta_1 + n (\alpha_2 - \alpha_1), \quad \delta_i = \delta_1 + n_i (\alpha_2 - \alpha_1)$$

on a aussi

$$\delta = \delta_i + (n - n_i) (\alpha_2 - \alpha_1),$$

$$\delta = \delta_i + (n - n_i) \{ (\cos w - 1) \alpha_1 + \sin w | (\epsilon \alpha_1) \},$$

et par suite, l'équation du radius vector d'un point arbitraire $U = U_2$ de la droite σ est, comme on le voit facilement, lorsque le déplacement a eu lieu

$$\psi = \rho_i + (n - n_i) \alpha_2 + \delta_i,$$

$$\psi = \rho_i + (n - n_i) \left\{ \cos w \alpha_1 + \sin w \mid (\epsilon \alpha_1) \right\} + \delta_i.$$

« Le déplacement d'une droite $AB \equiv \sigma$ d'une position σ_1 en une autre position σ_2 est équivalent à une translation qui est égale au déplacement total d'un quelconque de ses points et à une rotation autour de l'axe passant par ce point et perpendiculaire aux directions originale et finale de la droite. La translation déplace en général de point en point la droite; l'axe de la rotation a toujours la même direction; l'amplitude de la rotation est la même pour chaque point de réduction du système des déplacements et égale à la différence des directions des positions originale et finale de la droite. L'ordre de la translation et de la rotation est arbitraire et les deux peuvent avoir lieu en même temps. C'est pourquoi une ligne droite peut, à l'aide de rotations et de translations, être transportée d'une position dans une autre d'une infinité de manières. »

§ 6'. — Si les déplacements des points de la droite sont infiniment petits, on a

$$d\rho = d\rho_1 + nd\alpha = d\rho_1 + n(d\rho_2 - d\rho_1)$$

et aussi d'après le paragraphe 2'

$$d\rho = d\rho_1 + ndw \mid (\epsilon \alpha) = ndw \mid (\epsilon \alpha) + d\rho_1$$

la trajectoire du point auquel est relatif ce déplacement est

$$\rho = \rho_1 + n\alpha$$

sa trajectoire après son déplacement autour du vector $d\rho$ est

$$\psi = \rho_1 + n \left\{ \alpha + dw \mid (\epsilon \alpha) \right\} + d\rho_1, \quad \cdot$$

par suite, la vitesse de ce déplacement est

$$\overline{v} = \frac{d\rho}{dt} = \overline{v}_1 + nw \mid (\epsilon \alpha)$$

et la vitesse angulaire de la droite autour de l'axe $\tilde{\epsilon}$ qui passe par le point $\mathbb{A} = \mathbb{A}_1$ est

$$\hat{w} = \frac{1}{a} \sqrt{(\overline{v_2} - \overline{v_1})^2},$$

Si le point $(O + \rho_i)$ est point de réduction, les formules peuvent être écrites sans plus de difficultés.

§ 7. — Mais une rotation autour d'un axe et une translation gauche, outre cela, sont équivalentes à une rotation de même amplitude autour d'un axe parallèle à cela et à une translation parallèle à cet axe.

Avec $A = A_1$ comme point de réduction du système des déplacements des points de la droite, on a

$$\delta = n (\alpha_2 - \alpha_1) + \delta_1$$

$$= n \{ (\cos w - 1) \alpha_1 + \sin w | (\epsilon \alpha_1) \} + \delta_1.$$

Si δ_0 désigne la composante de δ_4 parallèle à l'axe $\bar{\epsilon}$ mené par

le point A = A, et égale à la projection de ô, sur celui-ci, et à l'autre composante, on a

$$\delta_0 = (\delta_1 \mid \varepsilon) \varepsilon = (\delta \mid \varepsilon) \varepsilon,$$

$$\delta_0 = \frac{\alpha_1 \alpha_2 \delta_1}{\sqrt{(\alpha_1 \alpha_2)^2}} \varepsilon,$$

et c'est précisément la translation pour le mouvement à chercher, l'autre composante est

$$\tau = \delta_1 - (\delta_1 \mid \epsilon) \; \epsilon = (\epsilon \delta_1) \mid \epsilon,$$

avec la valeur de e, nous trouvons, puisqu'on peut mettre aussi

$$\begin{split} \tau &= \varkappa \alpha_1 + \jmath \alpha_2, \\ \tau &= \frac{1}{(\alpha_1 \alpha_2)^2} \Big\{ \left[(\alpha_2 \alpha_1) \mid (\alpha_1 \delta_1) \right] \alpha_1 + \left[(\alpha_1 \alpha_2) \mid (\alpha_2 \delta_1) \right] \alpha_2 \Big\}, \end{split}$$

ou

$$\begin{split} \tau &= \frac{1}{\left(\alpha_{1}\alpha_{2}\right)^{2}} \Big\{ \left[a^{2} \left(\alpha_{1} \mid \delta_{1}\right) - \left(\alpha_{1} \mid \alpha_{2}\right) \left(\alpha_{2} \mid \delta_{1}\right) \right] \alpha_{1} \\ &+ \left[a^{2} \left(\alpha_{2} \mid \delta_{1}\right) - \left(\alpha_{1} \mid \alpha_{2}\right) \left(\alpha_{1} \mid \delta_{1}\right) \right] \alpha_{2} \Big\}. \end{split}$$

Par la rotation autour de l'axe ε_s que nous cherchons doit être engendrée la composante τ du déplacement δ_1 . Soit λ la distance perpendiculaire de l'axe ε_s à l'axe ε par le point $\mathcal{A} = \mathcal{A}_1$, on doit avoir, lorsque le vecteur λ tourne de l'angle w autour de son extrémité,

$$\tau = \lambda - \lambda_1, \quad \lambda_1 = -[\cos w\lambda + \sin w \mid (\epsilon\lambda)]$$

de sorte que doit subsister l'équation

$$\tau = (1 - \cos w)\lambda - \sin w \mid (\varepsilon \lambda) = (\varepsilon \delta_1) \mid \varepsilon.$$

Ainsi nous obtenons de la manière déjà connue

$$2\lambda = (\epsilon \delta_1) \mid \epsilon + \operatorname{cotang} \frac{1}{2} \quad w \mid (\epsilon \delta_1),$$

$$l = \frac{\sin(\epsilon, \delta_1) \sqrt{\delta_1^2}}{2 \sin \frac{1}{2} w}.$$

L'axe es est ainsi déterminé, son équation est

$$\rho_s = \rho_1 + \lambda + \mu |(\alpha_1 \alpha_2).$$

Mais nous pouvons aussi représenter λ comme une somme multiple de α_1 et α_2 . Nous obtenons

$$2\lambda = (\epsilon \delta_1) |\epsilon + \frac{\sin w}{1 - \cos w}|(\epsilon \delta_1),$$

ce qui est aussi avec la valeur de s

$$2\lambda = \frac{\left[\left|\left(\alpha_{1}\alpha_{2}\right)\delta_{1}\right|\left(\alpha_{1}\alpha_{2}\right)}{\left(\alpha_{1}\alpha_{2}\right)^{2}} + \frac{1}{a^{2} - \left(\alpha_{1}\left|\alpha_{2}\right)\right]}\left[\left(\alpha_{1}\alpha_{2}\right)\left|\delta_{1}\right],$$

ou

$$\begin{split} \mathbf{a}\lambda &= \frac{-\mathbf{1}}{a^4 - (\alpha_1 \mid \alpha_2)^2} \left\{ \left[a^2 \left(\alpha_1 \mid \delta_1 \right) - \left(\alpha_1 \mid \alpha_2 \right) \left(\alpha_2 \mid \delta_1 \right) \right] \alpha_1 \right. \\ &+ \left[a^2 \left(\alpha_2 \mid \delta_1 \right) - \left(\alpha_1 \mid \alpha_2 \right) \left(\alpha_1 \mid \delta_1 \right) \right] \alpha_2 \left. \right\} \\ &+ \frac{\mathbf{1}}{a^2 - \left(\alpha_1 \mid \alpha_2 \right)} \left\{ \left(\alpha_1 \mid \delta_1 \right) \alpha_2 - \left(\alpha_2 \mid \delta_1 \right) \alpha_1 \right\}; \end{split}$$

ou

$$2\lambda = \frac{\left[\left| \left(\alpha_1 \delta_{\alpha}\right) \delta_1 \right| \left(\alpha_1 \delta_{\alpha}\right)}{\left(\alpha_1 \delta_{\alpha}\right)_{-}^{2}} + \frac{\alpha^2 + \left(\alpha_1 \mid \alpha_2\right)}{\left(\alpha_1 \delta_{\alpha}\right)_{-}^{2}} \left[\left(\alpha_1 \delta_{\alpha}\right) \mid \delta_1 \right],$$

ce qui donne

$$2\lambda = \frac{1}{(\alpha_1 \delta_{\alpha})^2} \Big\{ \left[\alpha^2 \Big\{ (\alpha_1 + \delta_{\alpha}) \mid \delta_1 \Big\} + (\alpha_1 \mid \alpha_2) (\alpha_1 \mid \delta_1) - (\alpha_1 \mid \delta_1) (\alpha_1 \mid \delta_{\alpha}) \right] \delta_{\alpha} \\ - \Big\{ \left[\alpha^2 + (\alpha_1 \mid \alpha_2) + (\alpha_1 \mid \delta_{\alpha}) \right] (\delta_1 \mid \delta_{\alpha}) - (\alpha_1 \mid \delta_1) \delta_{\alpha}^2 \Big\} \alpha_1 \Big\},$$

par qui à est représenté par les grandeurs directement données.

Soit, avec un point de l'axe ε_s comme pôle de coordonnées, ρ_I le radius vector d'un point quelconque de la droite a subi la rotation d'angle w autour de l'axe ε_s et la translation δ_0 ,

$$\rho = (\mathbf{1} - \cos w)(\epsilon | \rho_{\mathbf{I}}) \epsilon + \cos w \rho_{\mathbf{I}} + \sin w | (\epsilon \rho_{\mathbf{I}}) + \delta_{0}.$$

Avec le point extrême de λ sur l'axe $\overline{\epsilon}_s$ comme le point relatif, l'équation de la droite $\mathcal{A}_4\mathcal{B}_4$ est

$$\chi_0 = -\lambda + n\alpha_1$$

de sorte que les radii rectores des points de la droite σ, si celle-ci a subi le mouvement hélicoïdal, sont, avec le point précédent comme origine des coordonnées,

$$\chi = (\mathbf{1} - \cos w) \left[\varepsilon \left[(-\lambda + n\alpha_1) \right] \varepsilon + \cos w \left(-\lambda + n\alpha_1 \right) \right] + \sin w \left[\left[\varepsilon (-\lambda + n\alpha_1) \right] + \delta_0,$$

$$\chi = n \left[\cos w\alpha_1 + \sin w \right] \left(\varepsilon\alpha_1 \right) - \cos w\lambda - \sin w \right] \left(\varepsilon\lambda \right) + \delta_0.$$

Choisissons maintenant le point \mathcal{A}_1 comme pôle de coordonnées, posons $\chi = \acute{\rho} - \lambda$, il vient

$$\rho = n \left[\cos w\alpha_1 + \sin w \right] \left(\epsilon \alpha_1\right) + \left(\epsilon - \cos w\right) \lambda$$

$$-\sin w \left(\epsilon \lambda\right) + \delta_0,$$

c'est-à-dire

$$\rho = n \left[\cos w\alpha_1 + \sin w \mid (\epsilon\alpha_1)\right] + \delta_1.$$

de sorte qu'en effet, la droite σ par la rotation autour de l'axe ε_s , d'un angle ω et la translation δ_0 peut être transportée de la position σ_1 en la position σ_2 , de telle sorte que les points de la droite subissent la plus petite translation, et c'est évidemment le mouvement le plus simple de σ pour passer de la position σ_1 à la position σ_2 . Si la rotation et la translation ont lieu en même temps, l'angle de rotation et la translation croissent proportionnellement au temps, et alors les points de la droite σ décrivent des axes d'hélice autour de l'axe ε .

« La droite σ passe de la plus simple manière de la position σ_1 à la position σ_2 par mouvement hélicoïdal. »

§ 7'. — Si la droite σ subit un déplacement infiniment petit, le déplacement d'un point arbitraire de cette droite est

$$d\rho = ndw \mid (\varepsilon \alpha) + d\rho_1 \qquad \alpha_1 \equiv \alpha,$$

et le vecteur de translation dans le mouvement hélicoïdal est

$$d\rho_0 = (d\rho_1|\varepsilon)\varepsilon = \frac{\alpha d\rho_2 d\rho_1}{a^2 d\alpha^2} \cdot |(\alpha d\alpha),$$

la vitesse est

$$\overline{v_0} = \frac{d\rho_0}{dt} = \frac{a\overline{v_2}\overline{v_1}}{a^2 (\overline{v_2} - \overline{v_2})^2} |[\alpha (\overline{v_2} - \overline{v_1})],$$

et la composante de translation perpendiculaire à l'axe \(\tilde{\epsilon} \) est

$$d\tau = (\varepsilon d\rho_1)|\varepsilon$$
,

laquelle doit être engendrée par rotation autour de l'axe du mouvement hélicoïdal.

Pour la distance de l'axe e, au point A, nous obtenons

$$\lambda = \frac{1}{dw} | (\epsilon d \rho_1) = \frac{1}{w} | (\epsilon \overline{v_1}),$$

de sorte que l'équation de cet axe est

$$\rho_s = \rho_1 + \frac{1}{w} \mid (\varepsilon \overline{v_1}) + u\varepsilon,$$

à l'égard des valeurs de ε et w, nous en obtenons, ou en outre nous tirons pour λ de la troisième formule générale,

$$\rho_s = \rho_1 + \frac{1}{d\alpha_-^2} \left[(\alpha | d\rho_1) d\alpha - - (d\alpha | d\rho_1) \alpha \right] + u | (\alpha d\alpha),$$

ou

$$\begin{split} \rho_s = & \; \rho_1 + \frac{\mathbf{I}}{\left(\overline{v_2} - \overline{v_1}\right)^2} \left[(\alpha \,|\, \overline{v_1}) \,(\overline{v_2} - \overline{v_1}) - \left\{ \,(\overline{v_2} - \overline{v_1}) \,|\, \overline{v_1} \,\right\} \alpha \right] \\ & + u \,|\, \left\{ \,\alpha \,(\overline{v_2} - \overline{v_1}) \,\right\}. \end{split}$$

Prenons le pôle de coordonnées sur l'axe du mouvement hélicoïdal, on a après ce mouvement pour le radius vector d'un point arbitraire de la droite

$$\rho = \rho_{\rm I} + dw \mid (\epsilon \rho_{\rm I}) + d\rho_{\rm 0},$$

son déplacement total et sa vitesse sont

$$d
ho \equiv dw \mid (\epsilon
ho_{\rm I}) + d
ho_{\rm 0},$$

$$\bar{v} \equiv w \mid (\epsilon
ho_{\rm I}) + \bar{v_{\rm 0}}.$$

 \S 8. — L'équation de l'hodrographe du système des déplacements des points de la droite σ est

$$\delta = \delta_1 + n (\alpha_2 - \alpha_1).$$

Parmi les déplacements des éléments de la droite σ , l'un est le plus petit possible, il est égal à la perpendiculaire abaissée du pôle de l'hodographe sur celui-ci.

Soit de ce déplacement, on a

$$\delta_k = \delta_1 + n_k \delta_{\alpha}, \quad \delta_k | \delta_{\alpha} = 0.$$

Il s'ensuit

$$\delta_1 |\delta|_{\alpha} + n_k \delta_{\alpha}^2 = 0,...$$

de sorte que

$$\begin{split} \delta_k &= \delta_1 - \frac{\delta_1 | \delta_\alpha}{\delta_\alpha^2} \, \delta_\alpha, \\ \delta_k &= \frac{1}{\delta_\alpha^2} \left[\left(\delta_2 | \delta_\alpha \right) \delta_1 - \left(\delta_1 | \delta_\alpha \right) \delta_2 \right]. \end{split}$$

Le radius vector du point qui subit ce plus petit déplacement est

$$\rho_k = \rho_1 - \frac{\delta_1 | \delta_{\alpha}}{\delta_{\alpha_1^2}} \alpha_1,$$

son radius vector, après que le déplacement a eu lieu est

$$\psi_k = \rho_1 + \delta_1 - \frac{\delta_1 \mid \delta_\alpha}{\delta_{\alpha_-^2}} \alpha_2.$$

Ce plus petit déplacement n'est pas égal en général à la plus courte distance des droites σ_1 et σ_2 ; afin que cela ait lieu, il faut que soit remplie la condition

$$\delta_k = \theta$$
,

ce qui, avec les valeurs de δ_k et θ , donne

$$\delta_1 - \frac{\delta_1 \mid \delta_{\alpha}}{\delta_{\alpha_{-}}^2} \delta_{\alpha} = \frac{\alpha_1 \delta_2 \delta_1}{(\alpha_1 \delta_{\alpha})^2_{-}} \mid (\alpha_1 \delta_{\alpha}),$$

d'où il suit

$$(\delta_{\alpha}\delta_{1}) \mid (\alpha_{1}\delta_{\alpha}) = 0, \quad \text{ou} \quad [(\alpha_{2} - \alpha_{1})\delta_{1}] \mid (\alpha_{1}\alpha_{2}) = 0,$$

de sorte qu'on doit avoir

$$(\alpha_2\delta_1) \mid (\alpha_1\alpha_2) - (\alpha_1\delta_1) \mid (\alpha_1\alpha_2) = 0,$$

ou

$$\begin{bmatrix} \alpha_2 | \alpha_1 & \delta_1 | \alpha_1 \\ \alpha_2 | \alpha_2 & \delta_1 | \alpha_2 \end{bmatrix} - \begin{bmatrix} \alpha_1 | \alpha_1 & \delta_1 | \alpha_1 \\ \alpha_1 | \alpha_2 & \delta_1 | \alpha_2 \end{bmatrix} = 0,$$

ce qui donne finalement

$$[(\alpha_1 | \alpha_2) - \alpha^2][(\alpha_1 + \alpha_2) | \delta_1] = 0.$$

Cette condition est remplie, si l'on a

$$(\alpha_1 + \alpha_2) | \delta_1 = 0$$
, or $[(\alpha_1 | \alpha_2) - \alpha^2] = 0$.

1) $(\alpha_1 + \alpha_2) | \delta_1 = 0$. Le déplacement δ_1 doit être perpendiculaire à la somme des vecteurs α_1 et α_2 .

De ce que généralement

$$(\alpha_1 + \alpha_2) \mid \delta_1 = (\alpha_1 + \alpha_2) \mid \delta_2,$$

on conclut aussi

$$(\alpha_1 + \alpha_2) \mid \delta_2 = 0.$$

Mais on a

$$\delta = \delta_1 + n (\delta_2 - \delta_1) = (\mathbf{I} - n) \delta_1 + n \delta_2$$

et par suite

$$(\alpha_1 + \alpha_2) \mid \delta = (\mathbf{1} - n) \left[(\alpha_1 + \alpha_2) \mid \delta_1 \right] + n \left[(\alpha_1 + \alpha_2) \mid \delta_2 \right],$$

c'est-à-dire soit

$$(\alpha_1 + \alpha_2) \mid \delta = 0, \quad (\alpha_2 \mid \delta) = -(\alpha_1 \mid \delta),$$

le déplacement de chaque point de la droite σ est alors perpendiculaire à la somme des vecteurs α_1 et α_2 .

Avec cette condition, nous obtenons après de faciles transformations

$$\delta_k = \delta_1 + \frac{\alpha_1 \mid \delta_1}{\alpha^2 - (\alpha_1 \mid \alpha_2)} (\alpha_2 - \alpha_1) = \theta.$$

Les trajectoires des extrémités du déplacement δ_k sont maintenant

$$\rho_{k} = \rho_{1} + \frac{\alpha_{1} | \delta_{1}}{a^{2} - \alpha_{1} | \alpha_{2}} \alpha_{1} = \rho_{0},$$

$$\psi_{k} = \rho_{1} + \delta_{1} + \frac{\alpha_{1} | \delta_{1}}{a^{2} - \alpha_{1} | \alpha_{2}} \alpha_{2} = \psi_{0};$$

on a en ce cas

$$\delta | \varepsilon = \delta_1 | \varepsilon = \theta | \varepsilon = \frac{\alpha_1 \delta_2 \delta_1}{\sqrt{(\alpha_1 \alpha_2)^2}}$$

c'est-à-dire que les projections des déplacements des points de la droite σ sur la direction de ε sont égales à la plus courte distance de σ_1 et σ_2 .

L'équation générale

$$\delta = \delta_i + (n - n_i) (\alpha_2 - \alpha_1)$$

devient, si l'on prend $\delta_k = \theta$ comme translation générale de tous les points de la droite σ ,

$$\delta = \theta + \left\{ n - \frac{\alpha_1 \mid \delta_1}{a^2 - \alpha_1 \mid \alpha_2} \right\} (\alpha_2 - \alpha_1).$$

C'est pourquoi le déplacement de la droite σ est dans ce cas équivalent à un mouvement hélicoïdal dont l'axe ε_s , coïncide avec la plus courte distance des droites σ_1 et σ_2 , et l'équation de cet axe est

$$\rho_s = \rho_k + u\varepsilon,$$

ou

$$\rho_s = \rho_1 + \frac{\alpha_1 | \delta_1}{\alpha^2 - \alpha_1 | \alpha_2} \alpha_1 + u | (\alpha_1 \alpha_2).$$

Nous arrivons au même résultat si, dans la seconde équation donnée en général pour λ , nous posons $(\delta_1 \mid \alpha_2) = -(\delta_1 \mid \alpha_1)$; nous trouvons alors

$$\lambda = \frac{\alpha_1 | \delta_1}{a^2 - \alpha_1 | \alpha_2} \alpha_1,$$

 λ coı̈ncide avec la droite σ_i et l'équation de l'axe du mouvement hélicoı̈dal est la même qu'auparavant; aussi pouvons nous écrire celle-ci

$$\left[\left(\rho_{s}-\rho_{1}\right)-\frac{\alpha_{1}\left|\delta_{1}\right|}{a^{2}-\alpha_{1}\left|\alpha_{2}\right|}\alpha_{1}\right]\left(\alpha_{1}\alpha_{2}\right)=0.$$

2)
$$a^2 - (\alpha_1 | \alpha_2) = 0$$
.

On peut alors écrire

$$\alpha_1 \mid (\alpha_2 - \alpha_1) = 0,$$

de sorte qu'on a $(\alpha_2 - \alpha_1) = 0$, c'est-à-dire $\alpha_2 = \alpha_1$, ou bien $(\alpha_2 - \alpha_1)$ doit être perpendiculaire à α_1 .

a) $\alpha_2 = \alpha_1$. Puisqu'on a toujours $\delta_2 - \delta_1 = \alpha_2 - \alpha_1$, on a alors $\delta_2 = \delta_1$, $\delta = \delta_1 = \delta_2$, tous les points de la droite σ possèdent le même déplacement total. Le mouvement de la droite est alors équivalent à une translation qui est égale au déplacement total

d'un de ses points. Dans ce cas les droites σ_1 et σ_2 ne se croisent pas, elles sont parallèles l'une à l'autre de sorte que $\alpha_2 = \alpha_1$ ne suffit pas.

Si ici en particulier on a $(\delta_1 | \alpha_1) = 0$, on a aussi $(\delta | \alpha_1) = (\delta_2 | \alpha_2)$ = 0, et alors les déplacements de tous les points de la droite σ sont perpendiculaires à ses positions limites de sorte qu'aussi aucun déplacement n'est minimum dans ce cas.

b) $(\alpha_2 - \alpha_1) | \alpha_1 = 0$ ou $(\alpha_1 | \delta_{\alpha}) = 0$ sera encore satisfaite, si le déplacement δ_{α} est perpendiculaire à α_1 . De

$$\delta = \delta_1 + n\delta_{\alpha}$$

il suit

$$\delta \mid \alpha_1 = \delta_1 \mid \alpha_1$$

les projections des déplacements des éléments de σ sur σ , sont égales entre elles. C'est pourquoi on peut poser

$$\delta_1 = c\alpha_1 + b_1\beta, \quad \delta_2 = c\alpha_1 + b_2\beta, \quad (\beta \mid \alpha_1) = 0,$$

et alors on a aussi

$$\beta = \frac{\alpha_2 - \alpha_1}{b_2 - b_1}, \qquad \delta = c\alpha_1 + \left(n + \frac{b_1}{b_2 - b_1}\right)(\alpha_2 - \alpha_1),$$

ce qui entraîne

$$(\delta \alpha_1 \alpha_2) = 0, \quad \theta = 0,$$

les droites σ_1 et σ_2 se coupent, les déplacements des points de la droite σ sont en un même plan. — La seconde hypothèse conduit donc aux mouvements plans.

Soit $\theta = 0$, on a alors $(\alpha_1 \alpha_2 \delta_1) = 0$ et de l'équation de l'hodo-graphe résulte $(\delta \alpha_1 \alpha_2) = 0$; les déplacements des points de la droite σ sont alors dans un plan, le mouvement de la droite est équivalent à une rotation dans ce plan autour d'un de ses points.

§ 8'. — Si les déplacements des points \mathcal{A} et \mathcal{B} de la droite σ sont infiniments petits, on voit que d'après la formule pour δ_k le déplacement minimum possible est

$$d
ho_k = d
ho_1 - rac{d
ho_1 \mid (d
ho_2 - d
ho_1)}{(d
ho_2 - d
ho_1)^2} (d
ho_2 - d
ho_1)$$

de sorte que la plus petite vitesse possible est

$$\overline{v}_k = \overline{v_1} - \frac{\overline{v_1} | (\overline{v_2} - \overline{v_1})}{(\overline{v_2} - \overline{v_1})^2} (\overline{v_2} - \overline{v_1})$$

ou

$$\overline{v_k} = \frac{\mathbf{I}}{(\overline{v_2} - \overline{v_1})^2} \left\{ [\overline{v_2} \, | \, (\overline{v_2} - \overline{v_1})] \, \overline{v_1} - [\overline{v_1} \, | \, (\overline{v_2} - \overline{v_1})] \, \overline{v_2} \right\}.$$

Le radius vector du point de $\sigma = \sigma_1$ qui subit ce plus petit déplacement est

$$\rho_{k} = \rho_{1} - \frac{d\rho_{1} | (d\rho_{2} - d\rho_{1})}{(d\rho_{2} - d\rho_{1})^{2}} \alpha = \rho_{1} - \frac{\overline{v_{1}} | (\overline{v_{2}} - \overline{v_{1}})}{(\overline{v_{2}} - \overline{v_{1}})^{2}} \alpha,$$

pour son radius vector après son déplacement, on a

$$\psi_{k} = \rho_{1} - \frac{d\rho_{1} | d\alpha}{d\alpha^{2}} | \alpha + \frac{1}{d\alpha^{2}} \left\{ (d\rho_{2} | d\alpha) d\rho_{1} - (d\rho_{1} | d\alpha) d\rho_{2} \right\},$$

ou

$$\psi_{k} = \rho_{1} - \frac{\overline{v_{1} \mid \alpha'}}{\alpha'^{2}} \alpha + \frac{1}{\alpha'^{2}} \left\{ (\overline{v_{2} \mid \alpha'}) \overline{v_{1}} - (\overline{v_{1} \mid \alpha}) \overline{v_{2}} \right\}.$$

Soit avec cela le plus petit déplacement égale à la plus courte distance des droites σ_1 et σ_2 , nous devons avoir

$$(\alpha \mid d\rho) = (\alpha \mid d\rho_1) = 0,$$

c'est-à-dire que les déplacements des points de la droite o doivent lui être perpendiculaires, ce qui est le cas, si le déplacement d'un de ses points lui est perpendiculaire.

Dans ces circonstances nous obtenons

$$d\rho_k = d\rho_1 - \frac{d\rho_1 d\alpha}{d\alpha^2} d\alpha = d\theta,$$

ou

$$\begin{split} d\rho_k &= \frac{\mathrm{I}}{d\alpha_-^2} \left\{ \left(d\rho_2 \,|\, d\alpha \right) d\rho_1 - \left(d\rho_1 \,|\, d\alpha \right) d\rho_2 \, \right\}, \\ \overline{v_k} &= \frac{\mathrm{I}}{\alpha_-^{\prime 2}} \left\{ \left(\overline{v_2} \,|\, \alpha' \right) \overline{v_1} - \left(\overline{v_1} \,|\, \alpha' \right) \overline{v_2} \right\}, \end{split}$$

soit à présent

$$d\rho \mid \varepsilon = d\theta \mid \varepsilon = \frac{\alpha d\rho_2 d\rho_1}{\alpha \sqrt{d\alpha^2}},$$

c'est à-dire que les projections des déplacements des points de la droite σ sur la direction de la plus courte distance de ses positions limites sont égales à cette distance.

Avec $d\rho_k = d\theta$ comme translation générale de tous les points de la droite σ , l'équation de l'hodographe des déplacements devient

$$d\rho = d\rho_1 + \left\{ n + \frac{d\rho_1 | d\alpha}{d\alpha^2} \right\} d\alpha,$$

et l'équation de l'hodographe des vitesses de ces points devient

$$\overline{v} = \overline{v_1} + \left\{ n + \frac{\overline{v_1} \mid \alpha'}{\alpha'^2} \right\} \alpha'.$$

Par suite, dans ce cas, le changement de position de la droite o est équivalent à un déplacement hélicoïdal infiniment petit autour de la droite coïncidant avec la plus courte distance de ses positions limites prise comme axe, l'équation de cet axe étant

$$\rho_s = \rho_k + u\varepsilon$$

ou

$$\rho_s = \rho_1 - \frac{d\rho_1 \mid d\alpha}{d\alpha_-^2} \alpha + u\varepsilon,$$

$$\rho_s = \rho_1 - \frac{\overline{v_1} \mid (\overline{v_2} - \overline{v_1})}{(\overline{v_2} - \overline{v_1})_-^2} \alpha + u \mid [\alpha \ (\overline{v_2} - \overline{v_1})].$$

Les lemmes principaux sur le mouvement d'une ligne droite sont ainsi développés.

FERDINAND KRAFT (Zurich).