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32 ~ . J. JOFFROY

de longueur, sinon un multiple de cet atome, et qu’il n’y a pas
de lignes, a proprement parler, incommensurables entre elles,
¢’est-a-dire n’ayant aucune commune mesure. La diagonale d’un
~carré et son coté sont des droites ayant pour mesure commune
I'atome et pas d’autre ; il en est de méme de la circonférence
d’un cercle et de son rayon. Ce qui est vrai pour les lignes est
vral aussl pour les surfaces et pour les volumes.

S’il n'y a pas de grandeurs incommensurables entre elles, il
n’y a pas de nombre incommensurable avec 1'unité ; /2, /3, =,...
sont des nombres qui ont pour diviseur commun avec l'unité
I’atome numérique ou le plus petit de tous les nombres. La consi-
dération de I'atome supprime donc l'incommensurable, et elle
rend superflu, aprés l'avoir rendu acceptable, le procédé usuel
des limites, dans les définitions géométriques.

~

J.-F. BonneL (Lyon).

SUR LES

HEPTAGONES ET LES ENNEAGONES REGULIERS

Etant a 'Ecole Polytechnique j’ai trouvé ces théorémes qui ne
sont" peut-étre pas encore connus :

. y ’ ' . . . T v \
I. — Le cété de U'ennéagone régulier étoilé 2 sin -—45—- est égal &
- ’ r ’ . ' . ’ . 2W
la somme des cétés de [autre ennéagone régulier étoilé 2 sin —
: , , . . T 9
et de Uennéagone régulier convexe 2 sin 3

Démonstration : Il faut trouver zéro pour I’expression

- ~

qui s’écrit
' 4T o m
sin -4—_—,-— 2 sin cos —=> Y

6/
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ou
4T - T
sin —— — CO0S ——»
9 18
ou encore : ,
4 4T
sin =g i = %
c. q. f. d.
II. — Linverse du céié de Z’/zeptagone régulier conyexe est

égal a la somme des inverses des cétés des deux heptagones
réguliers étoiles. ' '
Démonstration : Il faut établir I'égalité

1 _ 1 i I

. ™ . am . 3w,

sin —- sin —  sin —

y - 7
ou celle-c1 g
. 2m . 3w . T . 3= . ® ., 2T
sin — sin ~——=—= sin — sin — -} sin — sin —.
-7 -7 7 7 7

Si je décompose en 3 sommes les 3 produits, elle devient

1 i 5% I 27 4T
—| cos =~ — co0s —— == — [ cOS —— —COS ——
7 7

& 7 2 7
1 T 3n
+ —{cos — — cos — |},
e 7. 7
ou
0 —=o, A
c. q. f. d.
III. — Le c6té de Uheptagone régulier convexe augmenté de

R \/7 (R étant son ra,yon) vaut la somme des cotés des deux hep-
tagones reguliers étotlés.

Démonstration : Si dans I’expression de sin nz en fonction de
sin z on fait 7 x = =, puis 2 x = y, ou obtient I'équation connue
38— 7yt + 1452 — 7 =o;

dont les racines sont '
<

"Fa2sin — ou *a
7

R 1+
=+ 9 sin — ou b
'7 \

L . 3m
=+ 2 sin — ou e,
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a, b, ¢, étantles cétés de 'heptagone convexe et des heptagones
étoilés. On voit que cette équation fournit

@+ b+ =7;
d’autre part mon dernier théoréme fournit

I I I
— _b__l__c_
ou

2b¢c — 2ab — 2ac = o,
ajoutant la premiére et la troisieme égalité, jobtiens

(b+e¢—a)3?=7
ou

a+y/7="0bec.

Remarque. — Le cdté de 'heptagone régulier convexe vaut
0,8677... et differe peu du double du module des logarithmes
vulgaires 0,8685... '

Jos. Jorrroy (Paris).

SUR UNE PROPRIETE DES CONIQUES

1. — Les théoréemes suivants sont présque évidents :

‘A, B, C, D, E étant cinqg points, les conjuguées karmo)ziques
des droites AE par rapport a (AC, AD) et BE par rapport a
(BC, BD) se coupent en un point F de la coniqgue (ABCDE). —

Car si 'on considere les points C, D, E, F comme fixes, on a,
enire les rapports anharmoniques, la relation

A (CDEF) = B (CDEF) = —1.

En vertu du théoréme de Chasles, les six points sont sur une -
conique. .
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