Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 4 (1902)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Buchbesprechung: H. Poincaré. — Electricité et Optique. — La lumière et les théories

électrodynamiques.— Leçons professées à la Sorbonne en 1888, 1890 et 1899, 2e edition, revue et completee par Jules Blondin et Eugène Néculcéa. 1 vol. gr. in-B°. Paris, G. Naud, editeur. Prix : 22 fr.

Autor: Buhl, A.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

qu'on pourrait le croire par le portrait en miniature que nous en avons sous les yeux. Et il aurait été très désirable et extrêmement utile que l'auteur, pour donner une idée de son état actuel, eût mis, à la fin de son beau travail, une liste des ouvrages qui s'y rapportent. Personne mieux que lui n'aurait pu la rédiger; et nous souhaitons qu'il saisisse une occasion prochaine pour faire ce travail supplémentaire; c'est un travail qu'il pourra faire sans grande peine et qui ne peut lui procurer que de l'honneur et du plaisir; car, n'est-ce pas avec un orgueil légitime qu'on fait le bilan d'une richesse due au talent, à l'initiative et à l'énergie qu'on a déployées?

G. Loria (Gênes).

H. Poincaré. — Electricité et Optique. — La lumière et les théories électrodynamiques. — Leçons professées à la Sorbonne en 1888, 1890 et 1899, 2° édition, revue et complétée par Jules Blondin et Eugène Néculcéa. 1 vol. gr. in-8°. Paris, C. Naud, éditeur. Prix: 22 fr.

Ce n'est pas une analyse de l'ouvrage de M. Poincaré que je me propose d'entreprendre en ces lignes. Je désire plutôt rendre audit ouvrage l'humble tribut de mon admiration.

Les théories électrodynamiques qui passent successivement sous les yeux du lecteur sont pourtant bien loin d'une perfection admirable; elles ne sont basées que sur des hypothèses qui ont été développées avec trop de rigueur et par de trop grands esprits pour s'allier d'une façon simpliste avec les résultats expérimentaux, mais ce sont précisément ces contradictions qui auraient fait le désespoir d'esprits moins grands, sur lesquelles M. Poincaré insiste pour en conclure d'une façon magistrale l'impossibilité radicale de faire de l'analyse mathématique l'instrument de recherche des causes primordiales des phénomènes physiques.

L'homme s'est imaginé pendant longtemps, en demandant le pourquoi des phénomènes naturels, qu'il posait une question très précise, accordant simplement qu'elle devait être très difficile à résoudre. Or, il n'y a pas là le moins du monde la difficulté d'un problème nettement posé et dont on sait à l'avance de la solution qu'elle doit nécessairement exister.

La difficulté provient d'une indétermination extraordinaire qui montre comme également vraisemblables une foule d'explications différentes dès que la raison humaine pure en est réduite à se débattre seule, elle qui est à coup sûr une fonction très peu consciente de ces mêmes principes qu'elle prétend parfois analyser.

M. Poincaré nous montre d'abord que dans tout phénomène physique, nos sens atteignent un certain nombre de paramètres q_1 , q_2 ..., q_n , qui, s'il existe une explication mécanique du phénomène, satisfont aux équations de Lagrange

$$\frac{d}{dt}\left(\frac{\partial T}{\partial q'_k}\right) - \frac{\partial T}{\partial q_k} + \frac{\partial U}{\partial q_k} = 0, \qquad (k = 1, 2, \dots n).$$

Or, une pareille explication mécanique repose toujours sur l'existence de certains mouvements de particules matérielles appartenant à la matière considérée elle-même ou à certains fluides tels que l'éther de Fresnel.

Soit p le nombre des particules considérées. Leurs coordonnées x_i, y_i, z_i (i = 1, 2..., p) doivent pouvoir s'exprimer en fonction des q de telle façon

que l'on ait

$$T = \frac{1}{2} \sum_{i=1}^{i=p} (x_i^{2} + y_i^{2} + z_i^{2})$$

pour l'énergie cinétique du système. Quant à l'énergie potentielle U, elle devra se réduire à une simple fonction des coordonnées x_i , y_i , z_i .

Or, il est facile de voir que ces deux conditions ne déterminent pas p et que ce nombre peut toujours conserver toute valeur attribuée à l'avance.

La possibilité d'une explication mécanique découle donc simplement du fait que l'énergie constante qui entre en jeu dans le système se scinde en deux parties T et U dont on peut connaître l'expression.

Et il y a alors une infinité d'explications mécaniques!

C'est là l'idée de Maxwell quant à son explication des phénomènes électromagnétiques. M. Poincaré nous présente également au début de ses leçons la célèbre hypothèse du savant anglais d'après laquelle tous les courants seraient des courants fermés.

Cette théorie dans laquelle les courants se fermeraient au travers des diélectriques par l'intermédiaire d'un fluide inducteur qui y prendrait un état d'équilibre contraint devait conduire à de nombreuses conséquences qui, vingt-cinq ans plus tard, devaient être triomphalement vérifiées par les expériences de Hertz. Ainsi s'établit définitivement dans la science la théorie électromagnétique de la lumière, d'après laquelle celle-ci serait une perturbation électro-magnétique se propageant dans les diélectriques, au premier rang desquels il faut placer le vide interplanétaire.

L'idée de ne pas faire jouer aux diélectriques un rôle absolument passif remonte, il est vrai, à Poisson et à Mossotti. Ceux-ci considéraient l'air comme le seul diélectrique homogène, tous les autres étant remplis d'une prodigieuse quantité de petites sphères conductrices susceptibles de s'électriser par influence et produisant par leurs mouvements les effets que, avec beaucoup plus de précision, Maxwell devait attribuer à son fluide inducteur.

La théorie du savant anglais conduit à quelques formules d'une admirable simplicité, qui apparurent comme liant d'une façon bien inattendue certains éléments des phénomènes électriques à d'autres relatifs aux phénomènes lumineux. Malheureusement, ces relations ne sont pas toujours d'accord avec les résultats des recherches expérimentales.

Suivant la nature du diélectrique qui sépare deux conducteurs, les phénomènes électriques mesurables changent de valeur, si bien que chacun de ces corps a un pouvoir inducteur spécifique qui lui est propre, lequel est représenté dans les formules par un simple coefficient que Maxwell appelle K.

Soient maintenant V₁ la vitesse des ondes électro-magnétiques dans le vide et V leur vitesse dans un certain milieu transparent. La théorie de Maxwell donne

$$\frac{V_1}{V} = \sqrt{K}$$
.

Mais d'après la théorie ordinaire de Fresnel, le premier membre de cette égalité est l'indice absolu de réfraction n du milieu considéré. Donc $n^2 = K$. Cette relation curieuse est assez bien vérifiée pour quelques diélectriques

liquides, mais paraît l'être d'autant moins que ceux-ci ont une formule ato-

mique plus compliquée.

Pour les solutions électrolytiques, elle cesse même d'avoir un sens, ce qu'il ne faut pas toutefois considérer comme extraordinaire, car l'ionisation fait des électrolytes des conducteurs d'une nature toute spéciale.

La théorie de Maxwell nous donne encore deux relations curieuses d'après lesquelles un corps serait d'autant plus opaque pour la lumière qu'il est conducteur pour l'électricité, son opacité étant d'ailleurs une certaine fonction exponentielle de l'épaisseur.

Il est à peine besoin d'ajouter que ces relations ne sont pas toujours d'une

vérification facile et satisfaisante.

Après un chapitre étendu consacré à la polarisation rotatoire magnétique et aux curieux phénomènes observés par Hall et par Kerr, qui indiquent une corrélation intime entre la lumière et l'électricité sans qu'on puisse encore en donner une explication analytique tout à fait satisfaisante, M. Poincaré consacre une seconde partie à l'examen comparé des théories électrodynamiques d'Ampère, de Weber et d'Helmholtz.

C'est surtout la théorie de Helmholtz qui est remarquable. L'expression du potentiel de deux éléments de courant est à la fois une généralisation des expressions données par Weber, Neumann et Maxwell, mais non de celle

donnée par Ampère.

Il faut remarquer en effet que, pour toute expression du potentiel de la forme imaginée par Helmholtz, il y a des couples qui tendent à faire tourner les éléments considérés et qui existent toujours en même temps que la force dirigée suivant la droite qui joint lesdits éléments.

Or, Ampère envisage uniquement cette dernière force. Il y a là un antagonisme assez singulier entre les théories d'Ampère et d'Helmholtz.

Ce fut pour Joseph Bertrand l'occasion d'une vive controverse, l'illustre savant prétendant que si les couples de Helmholtz agissaient réellement sur les éléments d'un fil, celui-ci serait réduit en poussière, et Helmholtz répliquant que les aiguilles aimantées ne manifestaient aucune intention de rupture, bien que tous leurs éléments soient soumis à un couple.

M. Poincaré déclare qu'il ne veut pas s'immiscer dans cette polémique, mais en trois lignes qu'on ne saurait trop admirer nous fait remarquer qu'il y a peut-être là un oubli du caractère artificieux des hypothèses, qu'on ne croit pas à la réalité des fluides magnétiques de Coulomb agissant sur l'aiguille aimantée et-qu'il ne faut pas croire davantage « à l'existence objective d'un courant matériel circulant dans un conducteur ».

M. Poincaré consacre un long chapitre à montrer comment on peut passer de la théorie de Helmholtz à celle de Maxwell et passe en revue les divers arguments qui militent plutôt en faveur de celle du savant anglais.

L'examen des théories de Hertz et de Lorentz forme une troisième partie

qui n'est certainement pas la moins intéressante.

Hertz divise un peu arbitrairement son électrodynamique en deux parties relatives l'une aux corps en repos, l'autre aux corps en mouvement, de telle sorte que les équations fondamentales soient de même forme dans les deux cas, à cela près que les secondes contiennent un terme de plus que les premières. Il est vrai que ce terme complémentaire n'est simple que grâce à une notation symbolique. La théorie de Hertz est assez satisfaisante au point de vue mécanique, mais elle ne permet pas d'expliquer tous les phénomènes

optiques. Le contraire arrive pour la théorie de Lorentz, qui explique des phénomènes optiques que n'expliquait pas Hertz, mais qui malheureusement contredit le principe de l'égalité de l'action et de la réaction. On sait maintenant ce qu'il faut penser des postulats fondamentaux de la mécanique, lesquels apparaissent aussi fragiles que ceux de la géométrie, et Hertz lui-mème les a suffisamment critiqués. La théorie de Lorentz n'en est donc pas moins à considérer, surtout pour le caractère hardi des hypothèses que fait son auteur.

Suivant lui, il n'y a pas de magnétisme, mais seulement des courants particulaires tels que les entendait Ampère, et quant aux conducteurs ils sont chargés d'ions qui transportent l'électricité ainsi que dans les électrolytes.

De là deux façons différentes d'envisager les phénomènes suivant que l'on suppose à l'observateur des sens assez subtils pour qu'il puisse voir les courants particulaires et le cheminement des ions dans les conducteurs, ou des sens aussi grossiers que les nôtres avec lesquels il ne perçoit que des effets moyens et donne le nom de magnétisme et de courants de conduction à des phénomènes dont il ne peut pénétrer le détail intime. Une partie très intéressante de la théorie de Lorentz est celle qui traite des phénomènes optiques dans les corps en mouvement.

Il semble que les phénomènes optiques doivent notamment être altérés à la surface de la Terre par suite du mouvement de celle-ci, mais on a toujours rencontré des difficultés bizarres à vouloir vérifier cela par l'expérience. La théorie de Lorentz explique en partie ces difficultés, et si elle ne les lève complètement, elle est pourtant assez parfaite sur ce point, comme d'ailleurs sur beaucoup d'autres, pour pouvoir être considérée comme une théorie perfectible que de nouveaux perfectionnements rapprocheront sans doute beaucoup de la réalité.

M. Poincaré consacre encore des pages remarquables au phénomène de Zeeman. On sait qu'il y a là une nouvelle influence remarquable du magnétisme sur la lumière en ce sens que l'effet Zeeman est produit non par l'action d'un milieu aimanté sur un faisceau de lumière, mais par le fait que les ondes lumineuses naissent dans un champ magnétique, la source lumineuse elle-même étant placée entre les pôles d'un électro-aimant.

L'ouvrage de M. Poincaré se termine par un exposé succinct d'une théorie récente due à Larmor, et à ce propos il rappelle toutes les théories précédentes pour les comparer avec la nouvelle, qui ne respecte pas plus le principe de l'égalité de l'action et de la réaction que celle de Lorentz.

C'est en comparant toutes ces théories différentes, et d'ailleurs peu compatibles, que le géomètre trouvera matière à réflexion, tout autant que le physicien qui accorde trop de crédit à l'expérience.

Ce nouvel ouvrage de M. Poincaré a été rédigé dans sa partie nouvelle par l'un de ses élèves, M. Eugène Néculcéa, qui a rendu ainsi un grand service au monde scientifique. Il a été corrigé aussi scrupuleusement que possible par M. Néculcéa et moi, et fait d'ailleurs honneur à son éditeur quant à sa perfection matérielle.

A. Buhl (Paris).